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Worldwide rooftop photovoltaic electricity 
generation may mitigate global warming
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Rooftop photovoltaic (RPV) is often understood as a niche contribution 
to climate change mitigation. However, the global potential of RPVs to 
mitigate global warming is unknown. Here we map the global rooftop area 
at 1-km resolution, quantifying 286,393 km2 of rooftops worldwide through 
geospatial data mining and artificial intelligence techniques. Using nine 
advanced Earth system models from the coupled model intercomparison 
project phase 6, we reveal that RPVs could substantially contribute to 
reducing global temperatures by 0.05–0.13 °C before 2050. Region-specific 
analysis underscores the variability in RPV potential and the necessity of 
tailored approaches to optimize RPV deployment, considering local solar 
resources, existing infrastructure and grid carbon intensity. Our findings 
reveal that leveraging RPV systems offers a viable and impactful strategy 
for reducing carbon footprints and combating climate change globally, 
while advocating targeted interventions to enhance the benefits of RPVs, 
particularly in areas with high solar radiation or rapid urbanization.

Global warming, driven by carbon emissions mainly from fossil fuels, 
has caused a 1.07 °C rise in global surface temperature during the 2010s 
compared with the pre-industrial era1. This warming poses substantial 
climate challenges to natural systems and human societies2. The 2015 
Paris Agreement underscores the importance of limiting global tem-
perature rise to below 1.5 °C or 2 °C (ref. 3). However, without interven-
tion, the global temperature is projected to rise by 2.8 °C by the end 
of the century, pushing the Earth system closer to or surpassing the 
climate tipping points4.

Solar energy is an essential technology for climate change miti-
gation, showing impressive technological learning curves and large 
future potential5,6. While often underestimated in climate stabilization 
models, it could provide the single largest contribution to mitigation 
in 20507. Rooftop photovoltaic (RPV), initially a niche solution8, may 
also offer a global-scale opportunity to reduce fossil fuel reliance9. 
Previous studies have shown that the carbon mitigation potential of 

RPVs in China is up to 4 gigatonnes (Gt), accounting for 70% of the 
country’s emissions from the electricity and heat sector10. However, at 
the global level, studies have mainly focused on the technical benefits 
and economic feasibility of RPVs9,11. Analyses of the impact of RPVs on 
carbon mitigation and, consequently, their benefits to global climate, 
particularly in regions with diverse natural and societal conditions, 
are notably absent. Bridging this gap is vital for understanding the 
role of RPVs in climate change mitigation and guiding effective energy 
policy-making.

Evaluating the potential of RPVs over large geographic areas faces a 
considerable challenge in obtaining a comprehensive, high-quality global 
distribution of the rooftop area. Existing datasets, derived from on-site 
surveys or high-resolution Earth observations, are region-specific and 
have heterogeneous spatiotemporal references, leading to inconsisten-
cies and variabilities in coverage and quality when applied globally12–14. 
Global rooftop area estimates also suffer from uncertainties due to the 
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limitations of conventional remote sensing technologies with moder-
ate resolutions in the tens to hundreds of metres. This could lead to 
misidentification of dispersed and fine-scale building rooftops, intro-
ducing cumulative errors in rooftop area quantifications15,16. The limited 
understanding of fine-grained global rooftop area hinders accurate 
assessments of RPV potential and their spatial variations17,18.

In this study we integrate geospatial data mining and artificial intel-
ligence techniques to estimate the global rooftop area at a resolution 
of 1 km, addressing the lack of detailed geographic distributions. We 
evaluate the technical potential of RPVs, focusing on regional differ-
ences. Technical potential quantifies electricity generation based on 
resource availability, system performance and physical availability for 
RPV development19. This metric provides a baseline for understanding 
maximum feasible deployment under theoretical conditions, serving 
as a foundation for further studies on economic or market viability. For 
the associated environmental and climate benefits, this study estimates 
carbon mitigation from substituting grid electricity with RPVs using a 
baseline emission methodology. Then, by using nine advanced Earth 
system models (ESMs) from coupled model intercomparison project 
phase 6 (CMIP6), we explore the potential warming mitigation achiev-
able by mid-century under various future climate policy scenarios. We 
also examine the spatial distribution of this potential, particularly in 
climate-sensitive regions and its role in mitigating climate tipping risks. 
These analyses enhance understanding of impact of regional RPVs on 
global energy landscapes and highlight how resource endowments 
shape their climate mitigation contributions.

Global rooftop area estimation
We developed a two-stage approach, combining both top-down and 
bottom-up methods, to estimate the global rooftop area (Extended 
Data Fig. 1). In the top-down stage, a deep learning model based on the 
Vision Transformer architecture19 (Methods) was trained and applied 
to high-resolution (1.2 m) remote sensing imagery to quantify rooftop 
area in selected representative regions. In the bottom-up stage, we 
modelled the nonlinear relationship between the rooftop area deter-
mined in the top-down stage and various geospatial variables using an 
ensemble of random forests. This allowed for the global extrapolation 
of rooftop area estimates.

The deep learning model was initially pretrained on publicly 
available benchmark datasets covering ~2,500 km2 (Methods and 
Supplementary Table 1). This pretraining phase enabled the model 
to recognize common building patterns across imagery with varying 
spatial resolutions, architectural styles and geographic contexts20. The 
model was then fine-tuned using manually labelled high-resolution 
remote sensing imagery, which covered 1,600 km2 of diverse land-
scapes worldwide (Methods and Extended Data Fig. 2a), including 
835,253 labelled buildings. The deep learning model was evaluated 
on a separate set of high-resolution remote sensing images cover-
ing 386 km² from various locations, ensuring that these images were 
not part of the training process or model optimization (Methods and 
Extended Data Fig. 2b). The validation results confirmed that the model 
can accurately quantify rooftop area across a variety of landscapes 
globally (Methods and Extended Data Fig. 3).

In the bottom-up stage, we partitioned the global land surface into 
discrete spatial grids, each consisting of 1 km2 units. Geospatial data-
sets were aggregated into these grids, including population statistics, 
night-time light imagery, road networks, digital elevation models and 
land use and land cover data (Methods and Supplementary Table 2). 
An ensemble of random forest models was then used to estimate the 
global rooftop area from these datasets. To develop the predictive 
models, 1,724 cities were strategically selected as regions of interest 
(here the term ‘city’ refers to administrative divisions that may include 
both rural and urban areas; Extended Data Fig. 4). The trained deep 
learning model was applied to quantify rooftop area in these regions. 
Subsequently, 8.5 million spatial grid samples were generated, with 

rooftop area as the dependent variable and the aforementioned geo-
spatial datasets as independent variables, which were then used to 
train the predictive models (Methods).

The extrapolated global rooftop area was assessed using 16,000 
grids across macroregions (Methods and Extended Data Figs. 5, 6 and 7 
and Supplementary Fig. 3). The grid-level analysis showed high consist-
ency across regions (r2 = 0.89; bias error = 2%). Additionally, the global 
estimates demonstrated high consistency with other reference datasets, 
including the Google building footprints (GBF)21, the Microsoft building 
footprints (MBF)22, the global human settlement layer (GHSL)23 and the 
world settlement footprint 3D (WSF3D)24, with r2 values ranging from 
0.75 to 0.85 (Methods and Extended Data Fig. 8). The global rooftop area 
was estimated to be 286,393 km2, with 30% of the total area contributed 
by East Asia (E-ASI) and 12% by North America (N-AME). At the national 
level, China (74,426 km2) and the United States (30,928 km2) ranked first 
and second, respectively, followed by India (23,087 km2) in third place 
(Fig. 1a). These global rooftop area estimates provide comprehensive 
coverage, accurately capturing the morphology of urban agglomera-
tions in both developing and developed regions (Fig. 1b–d).

Electricity generation and carbon mitigation
Owing to geographical constraints such as rooftop orientation, slope 
and shading between buildings, only a fraction of rooftops is suit-
able for RPV installation. We calculated available rooftop area using 
a scaling factor of 30% based on general cases reported (Supplemen-
tary Table. 3). Solar energy input was derived from a high-resolution 
global surface solar radiation dataset (3-h temporal, 10-km spatial 
resolution)25. The dataset, derived from ISCCP and ERA5 datasets using 
improved physical inversion algorithms, has demonstrated better 
accuracy than GEWEX SRC, CERES and ISCCP datasets25. For regional 
studies, higher-quality datasets such as NRSDB, CAMS or CM-SAF are 
recommended, although they currently lack global coverage26. The 
electricity generation potential of an RPV system was defined as the 
maximum achievable electricity production for a given rooftop area. 
By considering a 20% panel conversion efficiency and an 80% overall 
efficiency, the conversion from solar energy to electricity generation 
can be accomplished (Methods). The carbon mitigation potential was 
defined as the CO2 reduction from replacing grid electricity with RPV 
electricity and thus calculated using baseline grid emission factors 
developed by the technical working group of the international financial 
institutions (Methods). To explain the variations in the main results 
caused by different panel efficiencies and rooftop availability, we con-
ducted sensitivity evaluations (Supplementary Tables 4–6).

Solar radiation intensity largely determines the electricity 
generation of RPVs. The global average surface solar radiation is 
~1,500 kWh m−2 yr−1, with hotspots concentrated in Africa (2,000–
2,200 kWh m−2 yr−1). However, owing to limited building stock, the 
installation potential in Africa (1,188 GW) is only 7% of the global total. In 
contrast, the macroregions (N-AME, Northern America; N-EUR, North-
ern Europe; W-EUR, Western Europe and E-EUR, Eastern Europe) with 
lower solar radiation (900–1,200 kWh m−2) have an installation poten-
tial of 4,339 GW, which constitutes 25% of the world’s total (Extended 
Data Fig. 9a,b). National disparities between installed capacity and 
solar resources are evidenced by the volume and intensity of electricity 
generation (Fig. 2a). More countries (62%) have advantages (in the top 
50%) in only one aspect of volume or intensity.

The carbon mitigation benefits of RPVs depend on grid baseline 
carbon intensity. While the global average carbon intensity stands 
at 529 gCO2 kWh−1, national values range from 0 to 1,330 gCO2 kWh−1 
(Extended Data Fig. 9c). Macroregions with higher clean energy shares, 
such as W-EUR, generally exhibit carbon intensities below the average 
(206 gCO2 kWh−1), while fossil fuel-reliant regions such as E-ASI exceed 
the average (700 gCO2 kWh−1). Spatial disparities in installed capacity 
and grid intensity are reflected in mitigation volume and intensity 
(Fig. 2b). Countries with advantages (in the top 50%) in both mitigation 
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Fig. 2 | Global distribution of RPV electricity generation and carbon mitigation 
potential. a,b, Electricity generation (a) and carbon emission reduction (b). 
Intensity and volume combinations are divided by quartiles, with the percentages 

of countries in each combination summarized. While the volume index refers 
to the benefits provided by all potential RPV installations, the intensity index 
indicates the benefits provided per unit of potential RPV installation.
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volume and intensity accounted for 22% of the total. Notably, 9% of 
the countries, including Egypt, Sudan, South Africa and many other 
African, Asian and American countries, achieved dual volume-intensity 
benefits in both electricity generation and carbon mitigation.

While global RPV currently offers substantial carbon mitigation 
potential, ongoing energy transitions are gradually lowering grid carbon 
intensity. Scenarios—stated policies (STEPS), sustainable development 
(SDS) and net-zero emission (NZE)—represent different visions for energy 
transition and climate goals (Supplementary Note 1). Each outlines vary-
ing levels of constraints, where the increasing penetration of clean energy 
and optimization of power technologies progressively reduce the carbon 
mitigation potential of RPVs. From 2020 to 2050, the grid carbon inten-
sity is expected to decrease by 48%, 96% and 101%, respectively, under 
the three scenarios (Supplementary Note 2 and Supplementary Fig. 4). 
Correspondingly, RPV electricity generation contributes to cumulative 
global carbon mitigation of 268, 144 and 102 Gt over three decades, 
respectively (Supplementary Fig. 5). At the macroregional level, differ-
ent resource endowments in terms of installed potential, solar radiation 

and grid carbon intensity remain key factors driving differences in RPV 
electricity generation and carbon mitigation potential (Fig. 3).

Mitigations of global warming and climate tipping 
point risk
The conversion from RPV carbon mitigation to global warming miti-
gation potential was performed using the transient climate response 
to cumulative emissions of CO2 (TCRE)27, a well-established metric 
that quantifies the linear relationship between cumulative carbon 
emissions and global temperature. Regional temperatures also exhibit 
a linear response to cumulative carbon emissions27. We calculated 
regional TCRE (RTCRE) by aggregating data from nine ESMs (Methods). 
By applying this method, we were able to translate the carbon mitiga-
tion potential of RPVs into an estimated global and regional warming 
mitigation. The spatial pattern of RTCRE values varied across different 
latitudes and elevations (Extended Data Fig. 10a). The RTCRE values on 
land range from 0.7 to 6.9 °C per trillion tonnes of carbon (TtC), with an 
average of 2.4 ± 0.8 °C per TtC. The highest values were observed for 
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high-latitude E-EUR and N-AME (>3°C TtC−1). Additionally, high-altitude 
regions such as the Qinghai-Tibet Plateau and the Western Austral-
ian Plateau in mid-to-low latitudes also have relatively high RTCRE 
(2.5–3.5 °C TtC−1). The spatial pattern of the intermodel distribution of 
RTCRE (Extended Data Fig. 10b, calculated as the standard deviation 
among the models) indicated that RTCRE uncertainty was generally 
higher in high-latitude regions than in mid- to low-latitude regions in 
the Northern Hemisphere.

In total, GHG emission reduction through RPVs from 2020 to 
2050 under the STEPS, SDS and NZE scenarios are projected to miti-
gate global warming by 0.13–0.05 °C (Fig. 4). Since the global average 
temperature has already risen by 1.2 °C above pre-industrial levels by 
20203, meeting the goals of the 1.5 or 2 °C warming limit requires an 

additional margin of only 0.3 or 0.8 °C. Under the STEPS scenario, we 
find that if RPV potential is not tapped, the additional carbon emissions 
from the power grid from 2020 to 2050 could lead to an approximate 
increase of 0.13 °C in global temperature. This equals 43% and 16% of 
the remaining allowable warming below the 1.5 and 2.0 °C thresholds 
(0.3 and 0.8 °C), respectively. However, more stringent climate poli-
cies (SDS and NZE scenarios) will optimize the power mix and further 
mitigate its baseline carbon emissions, resulting in greater mitigation 
of the relative avoidable global warming (0.07 and 0.05 °C). These 
contribute an additional 17–23% and 6–9% to meet the 1.5 or 2.0 °C 
thresholds, respectively.

The contributions of RPVs to global warming mitigation may 
be particularly substantial in regions with high climate sensitivity, 
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where irreversible impacts on society and ecosystems are likely to 
occur once tipping points are reached28. Currently, at the warming 
level of ~1.2 °C, five tipping points have already been approached, 
with an additional five expected to be reached when the 1.5 °C warm-
ing is achieved29. In this context, efforts of RPV carbon mitigation are 
expected to reduce the likelihood of triggering these climate-critical 
thresholds. For example, RPVs may potentially provide a 25–66% 
additional warming margin to reach the lower warming threshold 
for the Atlantic meridional overturning circulation collapse (Fig. 5). 
RPVs could also potentially contribute an additional 17–44% margin 
for reaching the lower threshold for Barents Sea ice abrupt loss and 
mountain glaciers loss.

Discussion
Although previous studies demonstrated substantial electricity gen-
eration and carbon mitigation benefits of RPVs in energy transition, 
further investigation is required to understand their role in addressing 
climate change challenges. Here we estimated global rooftop areas at 
1-km resolution by using geospatial data mining and artificial intelli-
gence techniques, addressing the critical bottleneck in detailed energy 
assessments. Furthermore, we systematically assessed the climatic 
benefits of global RPV electricity generation, highlighting its poten-
tial contribution to climate change mitigation, particularly towards 
achieving global temperature targets.

Using nine advanced ESMs from CMIP6, we fill a critical gap in 
evaluating the climatic benefits of RPVs. From 2020 to 2050, poten-
tial carbon mitigation from RPVs corresponds to a global warming 
mitigation of 0.05–0.13 °C. This provides an additional 17–43% margin 
towards the 1.5 °C warming threshold and reduces risks of triggering 
the tipping points in climate-sensitive regions. High-resolution global 
rooftop area estimation further supports detailed energy assessments. 
Policy-makers often face trade-offs between coverage and resolu-
tion, but our robust and scalable method enables accurate large-scale 
assessments. Specifically, the top-down approach, which applies a 
deep learning model on high-resolution remote sensing imagery to 
quantify rooftop areas in selected regions, reduces bias errors and 
cumulative inaccuracies from medium-to-low resolution imagery or 
crowdsourced geographic information9,30. The bottom-up method 
enables efficient extrapolation of global rooftop area, ensuring accu-
rate and seamless predictions. While this study successfully estimated 
the global rooftop area distribution at high resolution, accuracy was 
constrained by uncertainties in explanatory variables and geographical 
heterogeneity, causing regional variations in our data quality. Future 
work could refine region-specific variables, introduce spatiotemporal 
causal reasoning and integrate domain-specific knowledge to improve 
the estimations. The detailed global baseline data and potential distri-
bution simulations provided may offer valuable micro-level support 
for future macro-level climate change integrated assessment models 

0 °C 1 2 3 4 5 6 7 8 9 10

Greenland ice sheet (collapse)

West Antarctic ice sheet (collapse)
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East Antarctic subglacial basins (collapse)
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Minimum Maximum
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Fig. 5 | Potential climate impacts of RPVs on climate-sensitive areas. The estimation of temperature thresholds for tipping points of climate-sensitive areas is revised 
from ref. 29. The 1.5–2 °C temperature target is indicated by the blue range. The potential warming mitigation derived from RPV relative to the current warming level 
(green dashed line) is shown in the yellow range.
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or energy system models31,32. This could enhance their decision-making 
capabilities at regional and city levels, promoting more precise energy 
planning and climate policy evaluation.

Encouraging citizen participation in energy production and turn-
ing them into consumers of the energy they produce are crucial steps 
in tackling global climate challenges33. Our results show considerable 
global potential for widespread RPV deployment. However, future 
sustainable development should not rely solely on universal solutions. 
Our results highlight the necessity for regional planning that adapts to 
local conditions to enhance the energy and climate benefits of RPVs. 
Considering volume and intensity metrics and perspectives of elec-
tricity generation and carbon mitigation, we delineate advantageous 
combinations for developing RPVs in different regions, advocating 
for the rational use of resource endowments. For instance, despite 
holding 60% of the best solar resources globally, Africa accounts for 
only 1% of photovoltaic (PV) installations. Poor energy services and 
reliance on polluting energy sources further impede the progress of 
Africa in addressing environmental degradation and climate change34. 
Our results suggest that RPV development could provide substantial 
energy and environmental benefits in most African countries, serving 
as a key driver of sustainable development. Additionally, our results 
indicate the most influential regions and those most likely to benefit 
from the global effort of broad deployment of RPVs. For example, in 
developing countries with large populations such as China and India, 
the widespread adoption of RPVs not only facilitates their own energy 
transition, but also plays a pivotal role in assisting other regions around 
the globe to combat climate change, especially in regions with high 
latitudes and altitudes or those approaching their tipping points.

The main results of this study focus on the technical potential 
of RPVs and their associated environmental and climate benefits. We 
adopted theoretical assumptions to provide clear and quantifiable 
references. We also documented comparisons of our main results with 
selected studies at global, regional, national and municipal levels, with 
details provided in Supplementary Table 7. Under the same assump-
tions, at the global level, our estimated annual electricity generation 
potential of 19,483 TWh is comparable to the 18,040 TWh estimated by 
ref. 35. For Switzerland, our estimated rooftop area of 320 km2 is similar 
to the 267 ± 71 km2 estimated by ref. 36. For states and counties in the 
United States, our results on rooftop area, electricity generation and 
carbon mitigation are comparable to those reported by Google Project 
Sunroof37. These comparisons with high-resolution, top-down studies 
demonstrate the high accuracy of our main results, falling within the 
range of estimates reported in the current literature.

For global-scale assessments, we used simplified methods with 
globally uniform assumptions to account for complex external factors. 
The impacts of varying rooftop availability and PV panel efficiency on 
the main results are presented in Supplementary Tables 4–6. We sug-
gest that future research investigate local benchmarks when targeting 
various deployment scenarios. Specifically, rising temperatures affect 
the actual efficiency of PV panels and this effect is material-dependent 
(Supplementary Table 8)38. Panel materials with smaller band gaps are 
generally more sensitive to temperature and moisture in the atmos-
phere39. Furthermore, based on IPCC global warming scenarios, by 
2100, the energy output of silicon PV could decrease by 15 kWh kWp−1, 
with some regions experiencing losses of up to 50 kWh kWp−1  
(ref. 40). Additionally, compared with horizontal installation assumed 
in this study, installations with optimal tilt angles, single-axis vertical 
tracking, single-axis horizontal tracking and dual-axis tracking could 
increase the final radiation received by approximately 1.19, 1.22, 1.35 
and 1.39 times, respectively41. Globally, as latitude increases, the advan-
tages of tilted and tracking systems over horizontal installations also 
become more pronounced41. Our study provides a starting point for 
large-scale assessments of RPV potential, which can be expanded in 
future studies by incorporating meteorological simulation and urban 
morphology. This would enhance regional applicability and support 

the development of optimal PV deployment strategies in complex 
urban environments.

Our assessment of the theoretical potential of RPVs highlights 
their substantial climate mitigation benefits. However, realizing this 
potential within the existing energy infrastructure involves complex 
factors. Achieving high PV scenarios requires policies supporting PV 
technological innovation and coordinated plans to accommodate 
large-scale PV power generation. This involves modernizing power 
market regulations, expanding transmission grids and scaling up stor-
age technologies, all while addressing issues related to supply and 
demand balance42,43. In addition, peer effects have been recognized as 
important motivators for installations, as they are critical in influencing 
climate-related decision-making through geographic effects and social 
network effects44. To most effectively expand the use of solar panels, 
policy-makers can increase cumulative use by deploying them in areas 
where they are sparse, thus taking advantage of the proximity effect45. 
Moreover, through a combination of government interventions and 
adaptive business models, racial inclusiveness of PV can be effectively 
realized and the penetration of PV in all communities may be facilitated46.

In summary, our study not only proves the immense potential 
of RPVs in promoting sustainable energy solutions but also suggests 
that fully exploiting their potential can hasten the transition to a more 
climate-resilient world. Although unlocking this potential still requires 
policy-makers and society to overcome future organizational and 
financial challenges, it is expected that RPVs will provide effective clean 
energy solutions in many regions afterwards. Our quantification of the 
substantial climate benefits of RPVs will motivate energy planners to 
capitalize on this opportunity, while also encouraging researchers to 
further explore the potential of other forms of building-integrated PVs 
that seamlessly integrate energy production with urban infrastruc-
ture, thereby expanding the scope and impact of renewable energy 
applications.
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Methods
Two-stage process for global rooftop area estimation
The global rooftop area estimation followed a two-stage process 
(Extended Data Fig. 1): (1) a top-down approach using deep learning 
to quantify the rooftop area in selected representative regions from 
high-resolution remote sensing imagery and (2) a bottom-up approach 
using random forest ensembles and various geospatial datasets to 
extrapolate rooftop area estimates at a global scale.

In the top-down stage, we used the SegFormer model, a state-of-the- 
art Vision Transformer-based deep learning model in computer 
vision47. The choice of this architecture was motivated by its capacity 
to process large datasets and its ability to capture global context while 
handling complex patterns and long-range dependencies—crucial for 
large-scale building identification48. For pretraining, we used publicly 
available benchmark datasets focused on building identification13,49 
(Supplementary Table 1). These datasets, generated by various institu-
tions between 2013 and 2020, cover ~2,500 km2 across diverse regions 
with varying spatial resolutions, ranging from very fine (0.1 m per pixel) 
to coarser (3 m per pixel). The selected datasets represent a wide range 
of global regions and building types, including urban, suburban and 
rural areas, as well as a mix of built-up and natural landscapes. They 
also cover various urban layouts and densities, offering high-resolution 
imagery that captures different architectural styles and building sizes. 
This broad representation ensures that the model is trained across 
diverse environments, enhancing its ability to generalize to different 
geographic contexts.

For fine-tuning the deep learning model, we used high-resolution 
Google Earth imagery with a consistent spatial resolution of 1.2 m. 
Google Earth imagery is obtained through the Google Static Map API, 
which applies rigorous sifting and preprocessing to produce cloud-free, 
high-quality images50. The imagery is sourced from a combination of 
airborne and satellite platforms, including WorldView, QuickBird, 
IKONOS, GeoEye-1, Pleiades, SuperView-1 and Kompsat-3A, resulting in 
harmonized imagery51. Further details on the SegFormer architecture, 
along with the pretraining and fine-tuning processes, are provided in 
Supplementary Note 3.

We applied the trained deep learning model to quantify roof-
top area in 1,724 cities, where ‘city’ refers to administrative divisions 
sourced from the database of global administrative areas (Extended 
Data Fig. 4). These regions were strategically selected using a spatial 
sampling scheme, with cities treated as sample units. The objective was 
to maximize the distance between samples to ensure representative-
ness, optimized using a simulated annealing algorithm52. To further 
enhance the geographic and environmental diversity of the selected 
regions, we first stratified the global grids using K-means clustering, 
based on natural and human characteristics of each grid (Supple-
mentary Fig. 6 and Supplementary Table 2). The optimal number of 
clusters for the K-means algorithm was determined using silhouette 
coefficients. After stratification, spatial sampling was performed within 
each stratum.

In the bottom-up stage, we collected multi-source geospatial data-
sets and aggregated them as statistical variables—such as built-up pro-
portion, night-time light intensity, road length, population, tree-cover 
proportion, terrain elevation, terrain slope and geographical coordi-
nates (Supplementary Fig. 2 and Supplementary Table 2)—into global 
discrete spatial grids. These variables are strong predictors of roof-
top areas because they capture both human activity and the physical 
characteristics of the environment9,10. For instance, night-time light 
intensity is often correlated with urbanization and building density, 
while terrain elevation and slope can influence building placement 
and rooftop orientation. Each spatial grid covered an area of 1 km2 and 
was based on the world Mollweide equal area projection (EPSG: 6933). 
To model the nonlinear relationship between the rooftop area and 
these geospatial variables, we aggregated the rooftop area determined 
in the selected regions into the corresponding grids. Grids lacking 

high-resolution remote sensing imagery were excluded, resulting in 
8.5 million grid samples. The rooftop area was treated as the depend-
ent variable in these samples, while the other statistical variables were 
used as independent variables.

Considering the spatial heterogeneity of grid cell variables and 
addressing the long-tail regression modelling issue, we developed both 
regression- and classification-oriented random forest models at both 
continental and global scales. The trained random forest ensembles 
were then applied to estimate the global rooftop area using a set of 
global independent variables. Further details on the random forest 
ensemble can be found in Supplementary Note 4. In the postprocessing 
stage, a water map was used to refine the initial estimates by assigning 
a rooftop area of 0 m2 to grids that were 100% water-covered based on 
land use and land cover data.

Evaluation of estimated global rooftop area
The evaluation involved assessing the accuracy of the deep learning 
model in the top-down stage and the random forest ensemble in the 
bottom-up stage using independent test datasets. Additionally, the 
quality of the global rooftop area estimates was evaluated through 
qualitative and quantitative comparisons with reference datasets.

To evaluate the performance of the deep learning model, we cre-
ated 386 plots, each covering an area of 1 km2 (Extended Data Fig. 2b). 
These plots were selected to ensure global representation, with two 
plots randomly distributed within the built-up areas of each country. 
High-resolution remote sensing images were obtained for all 386 plots 
and each was manually labelled to identify rooftop areas. The average 
rooftop area across the plots was 0.14 ± 0.10 km2 (mean ± s.d.), with a 
maximum of 0.53 km2. These plots span different countries and geo-
graphic regions, encompassing a wide range of building distributions 
and densities, providing a comprehensive evaluation. The plots were 
further divided into 2,951 image patches, each processed to match the 
size and colour bands of the training images used for the deep learning 
model, ensuring consistency in the validation process (examples in 
Supplementary Fig. 1). This test dataset was kept independent from 
the training data to prevent bias in the performance assessment of 
the model.

Against the labelled image patches, the deep learning model suc-
cessfully identified 76% of the rooftops (true-positive rate), with a 
2.7% false-positive rate where non-rooftop objects were mistakenly 
identified as rooftops. This level of performance is acceptable for 
building identification at a global scale: we compared the MBF and 
GBF—currently state-of-the-art building footprint datasets—against 
our test dataset. MBF had a true-positive identification rate of 61.6% 
and a false-positive rate of 4%, while GBF had a true-positive rate of 
66.5% and a false-positive rate of 3.8%.

Additionally, we compared the rooftop area quantified by the 
deep learning model with the manually labelled rooftop area for each 
image patch. Overall, the predictions of the model showed a strong 
correlation with the actual data, with an r2 value of 0.93 and a slope 
of 1.04 across all test samples (Extended Data Fig. 3a). However, we 
observed variations in prediction accuracy across different macrore-
gions (Extended Data Fig. 3b–u): the model performed with greater 
accuracy in economically developed regions, where r2 values exceeded 
0.95. In contrast, accuracy decreased in less economically developed 
regions, with r2 values around 0.9. These discrepancies could be due 
to the varying ability of the model to recognize landscapes that differ 
notably across regions.

To evaluate the accuracy of the global rooftop area estimation 
by the random forest ensemble, we randomly selected 16,000 grids 
across various macroregions (800 grid samples per macroregion). 
These grids were not part of the training process of the random forest 
model. We used deep learning and high-resolution remote sensing 
imagery to quantify the rooftop area within these grids. The roof-
top area determined from the images was then compared with the 
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estimates generated by the random forest ensemble. Our results 
demonstrated a high level of accuracy, with an r2 value of 0.89 and a 
slope of 0.87 (Extended Data Fig. 5), indicating strong consistency 
between the estimated and observed rooftop area, although with a 
slight underestimation.

However, the results also indicated a drop in accuracy for the 
Pacific Islands (r2 = 0.61, bias error = 55%; Extended Data Fig. 5c) and 
Western Asia (r2 = 0.67, bias error = 24%; Extended Data Fig. 5k). This 
suggests potential limitations in capturing relevant factors in these 
regions, probably due to a lack of local data in the training set, especially 
in areas where high-resolution remote sensing imagery is scarce. The 
bias error here is defined as the relative bias, normalized by the absolute 
value of the sum of the observed rooftop areas and is calculated using 
the following equation53:

bias =
||∑N (Yobs − Ypred)||

||∑N Yobs||
(1)

We also compared the estimated and observed rooftop area by 
identifying deviations (residuals) across the 16,000 test grids. The 
results revealed a correlation between rooftop area and residuals: 
grids with larger rooftop area tended to exhibit greater residuals. 
Specifically, for grids with rooftop area ranging from 0.01 to 1 km2, the 
variation in residuals was substantial, showing a slight underestimation 
(Extended Data Fig. 6a). Residuals demonstrated a bell-shaped normal 
distribution, with most clustering between ±5,000 m2 (Extended Data 
Fig. 6b). Further examination of the global distribution of estimated 
rooftop area revealed that most 1-km2 grids had rooftop area <0.4 km2 
(Extended Data Fig. 7a). This consistent pattern of rooftop area distri-
bution was evident across various scales (Extended Data Fig. 7b–u).

To assess the quality of our global rooftop area estimates, we com-
pared them with several reference datasets, including GBF, MBF, GHSL 
and WSF3D. The qualitative characteristics of these reference datasets 
are described in Supplementary Table 10. While GBF and MBF represent 
advanced building footprint products, their coverage is incomplete, 
omitting extensive areas across multiple continents (Supplementary 
Fig. 7). For example, aggregated GBF lacks large portions of North 
America, Europe, East Asia and Australia, while MBF lacks coverage 
over China, Russia and parts of Europe. Compared with these datasets, 
our estimates provide globally seamless coverage, produced through 
the two-stage method. By incorporating natural and human-related 
datasets from 2020, our estimates capture current urban development 
and building areas, with the exception of the digital elevation model 
from SRTM v.4 (collected in the 2000s), which remains appropriate 
given the relatively stable nature of global terrain over time.

For the quantitative comparison, we conducted a detailed 
grid-level and continental-level analysis. Owing to the limited cover-
age and potential spatial completeness issues in the GBF and MBF 
datasets, we restricted our comparison to grids that contain building 
areas in both datasets. For comparisons with GHSL and WSF3D, we 
used global grids. The results of these grid comparisons are shown in 
Extended Data Fig. 8, where our global rooftop area estimates exhibit 
high correlations with the reference datasets. However, our estimates 
tend to be lower than those of the reference datasets, as reflected by 
the slopes of the linear fits, all of which are <1 (0.71 for GBF, 0.83 for 
MBF, 0.58 for GHSL and 0.72 for WSF3D). This underestimation trend is 
consistent with our test dataset results, which also produced a slope of 
0.87. Among the reference datasets, the comparison with GHSL shows 
the largest discrepancies, with an r2 value of 0.76 and a bias error of 37%. 
We attribute this to the tendency of GHSL to overestimate rooftop areas 
by including impervious surfaces.

We also evaluated the estimates across different macroregions. 
The grid-level analysis shows high correlations with both GHSL and 
WSF3D (Supplementary Figs. 8 and 9). However, in less economically 
developed regions—such as the Pacific Islands, Central Asia and various 

regions of Africa (Eastern, Southern, Western and Middle Africa)—we 
observed relatively lower r2 values and higher biases. Furthermore, the 
comparison of total rooftop area across macroregions, summarized 
in Supplementary Table 11, shows that WSF3D and our estimates are 
generally consistent, while the total area of GHSL is substantially higher. 
This trend persists in less economically developed regions, where our 
estimates are typically lower. The potential underestimation could be 
due to geographic variations in building identification accuracy, as 
previously discussed. At the global level, our estimates closely align 
with those of WSF3D, although the totals of WSF3D are slightly higher. 
In contrast, the global area of GHSL is substantially larger, probably 
indicating overestimation. Compared with a previous study that esti-
mated a total global rooftop area of 193,875 km2 (which was noted for 
systematic underestimation)9, our estimates (286,393 km2) demon-
strate improved alignment with reference datasets. Although slight 
underestimation remains in our results, we have mitigated many of 
the issues identified in earlier studies.

Assessment of electricity generation and carbon mitigation 
potential
Unified assumptions were applied to the RPV systems in this study. On 
the basis of the current technical level of the PV industry54, the scale 
and performance parameters of PV applications were determined 
(Supplementary Tables 12 and 13), including a PV panel conversion 
efficiency of 20%, an overall PV system efficiency of 0.8 and a rated 
power of 200 W m−2. All the PV panels in the system were assumed to 
be fixed horizontally. The available installed capacity of RPVs, essen-
tial to determine their potential for electricity generation and carbon 
mitigation, was calculated by converting the total rooftop area into 
the available rooftop area using a scaling factor. The factor typically 
considers a range of geographical constraints for RPV system installa-
tion, such as the societal function, rooftop slope, orientation, shadows 
and obstacles of the building. On the basis of a literature review (Sup-
plementary Table 3), the scaling factor used in the main results was 
assumed to be 30%.

The potential installed capacity, Pinstalled, was calculated using 
equation (2) as follows:

Pinstalled = Prated × Srooftop × Cscaling (2)

where Prated is the rated power of the PV panel, Srooftop is the total rooftop 
area obtained from the global rooftop area estimation and Cscaling is the 
scaling factor for calculating the available rooftop area for RPV 
installation.

The potential electricity generation Ppower of the RPVs was esti-
mated using equation (3):

Ppower = Srooftop × Cscaling × GHI × CPV × K (3)

where GHI is the global horizontal irradiance received by the surface. 
We took the average values from 2010 to 2018 to represent the general 
radiation conditions at different assessment times. CPV is the conver-
sion efficiency of the PV panel and K is the overall efficiency of the 
RPV system.

In this study, our focus was on the electricity generation stage of 
RPV systems, excluding consideration of other life-cycle stages. This 
decision stems from the considerably lower life-cycle carbon emissions 
of RPV systems compared with the emissions mitigated during the 
operational stage55 (Supplementary Table 14). We followed the baseline 
methodology56 proposed by the United Nations Framework Conven-
tion on Climate Change (UNFCCC) to measure the environmental 
benefits of renewable energy projects. The baseline methodology 
provides a simplified analytical framework and facilitates a uniform 
comparison across different projects, thereby promoting the develop-
ment of related policies. The carbon emissions mitigated by RPV power 
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replacing grid power were calculated using the baseline emission fac-
tors of the national grid57,58. The baseline emission factors included the 
operating margin (OM) and build margin (BM). While OM represents 
the cohort of existing power plants most affected (reduced) by the 
project (generally high-emission or high-cost power plants), BM rep-
resents the cohort of prospective/future power plants whose construc-
tion and operation could be affected by renewable energy projects, 
based on an assessment of planned and expected new generation 
capacity. The combined margin (CM), obtained from the weighted 
average of the OM and BM, represents the overall impact of both 
aspects, and reflects the existing carbon intensity of the national grid. 
Because the electricity generated through RPVs is considered clean 
energy, the CM factor, EFgrid,CM, can be used as the carbon mitigation 
factor, EFPV,mitigation, of the RPV system. The calculations were conducted 
using equation (4) as follows:

EFPV,mitigation = EFgrid,CM = EFgrid,OM ×WOM + EFgrid,BM ×WBM (4)

where EFgrid,OM is the OM factor and EFgrid,BM is the BM factor. WOM is the 
weight of the OM factor and WBM is the weight of the BM factor. The 
values for PV projects were set to 0.75 and 0.25, respectively, based on 
the UNFCCC methodologies58.

According to the carbon mitigation factors of the RPV system for 
different power grids, carbon mitigation, Pcarbon,mitigation, was calculated 
according to equation (5):

Pcarbon,mitigation = Ppower × EFPV,mitigation (5)

The selected baseline emission factors reflect the average condi-
tions of national grids in recent years and are updated at least every 
2 years (ref. 58). For assessment purposes, we designated 2020 as the 
base year. Future baseline emission factors are subject to alterations 
in the power structure of each country. We assume that this change is 
consistent with the trend in grid carbon intensity projected by the 
International Energy Agency for 2020–205059. On the basis of this 
assumption, we obtained future changes in the EFPV,mitigate under three 
climate policy scenarios: STEPS, SDS and NZE (Supplementary Notes 
1 and 2 and Supplementary Fig. 4).

In this study, the energy assessment relied on conversion factors, 
such as rooftop area availability and PV panel efficiency, using har-
monized global reference values. We acknowledge the importance of 
examining these factors at the regional level. However, such a detailed 
analysis was beyond the scope of this study. Sensitivity analyses were 
included to mitigate this limitation and provide an initial understand-
ing of how variations in these factors could affect our main results 
(Supplementary Tables 4–6).

Assessment of global and regional warming mitigation potential
The relationship between global warming and cumulative carbon 
emissions was established using the well-documented TCRE metric. 
TCRE is estimated as the change in global surface air temperature per 
cumulative CO2 emissions60. It considers both physical climate pro-
cesses and the dynamics of land and ocean carbon sinks, presumed to 
be constant over time and independent of emission pathways61. The 
relationship between regional climate warming and carbon emissions 
was established using the RTCRE, which describe changes on a regional 
scale. In this study, the TCRE was scaled to a regional scale to gener-
ate an RTCRE using simple pattern scaling62. According to a previous 
study27, RTCRE can be calculated using equation (6):

RTCRE(m, x, t) = ∆T(m, x, t)
E(m, t) (6)

where ∆T(m, x, t) is the temperature change simulated by the mth model 
in the ensemble, for the spatial domain x at time t. Parameter E(m, t) is 

the diagnostic value of the cumulative CO2 emissions (calculated as 
the sum of the annual changes in atmospheric CO2 concentration and 
the CO2 uptake by ocean and land carbon sinks) of the model.

We used the 1pctCO2 simulations from nine ESMs with dynamic 
carbon cycle from the CMIP6 archive. The ensemble comprised 
ACCESS-ESM1.5, BCC-CSM2-MR, CanESM5, CESM2, IPSL-CM6A-LR, 
MIROC-ES2L, MPI-ESM1.2-LR, NorESM2-LM and UKESM1-0-LL. We 
followed the standard method63 for calculating ∆T(m, x, t), averaging 
over a 20-yr window (years 60–79) centred on the year of the CO2 dou-
bling (year 70). We applied this calculation to the spatial temperature 
fields from each model and then calculated the ensemble mean of the 
nine models. We considered the ensemble mean as the best estimate 
of the RTCRE values and represented the uncertainty range using one 
standard deviation of the model responses.

After obtaining the RTCRE, the warming mitigation potential, 
Pwarming,mitigate of RPVs were calculated according to equation (7):

Pwarming,mitigate = Pcarbon,mitigate × RTCRE (7)

While the concept of TCRE simplifies the relationship between CO2 
emissions and global warming into a linear model, this relationship is 
fraught with uncertainties owing to numerous complex factors, such 
as the effects of permafrost melting and non-CO2 GHGs64. Land surface 
changes caused by PV panels could also impact the regional climate to 
some extent by redistributing surface energy, water fluxes and even 
atmospheric circulation65; however, global climate change mitigation 
should be dominated by carbon emission reductions. In addition, 
future solar energy generation could be modulated by climate change 
to some extent66. Future climate change impacts should be considered 
for finer assessments.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The estimation results67 of global rooftop area in our study are available 
via National Tibetan Plateau and Third Pole Environment Data Center 
at https://doi.org/10.11888/HumanNat.tpdc.302010. Source data are 
provided in Methods and Supplementary Information.

Code availability
The code used to manipulate the data and generate the results is avail-
able via Zenodo at https://doi.org/10.5281/zenodo.14749963 (ref. 68).
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Extended Data Fig. 1 | Overview of the two-stage method for global rooftop 
area estimation. The top-down stage involves applying a deep learning model 
to high-resolution remote sensing imagery to quantify rooftop areas in selected 
representative regions. The bottom-up stage uses an ensemble of random forest 

models to model the non-linear relationship between the rooftop areas identified 
in the first stage and various geospatial variables, enabling the extrapolation of 
rooftop area estimates at a global scale.
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Extended Data Fig. 2 | Overview of training and test sites for deep learning 
development and evaluation. a, A total of 1,600 sites were randomly selected 
from all United Nations member countries to train the deep learning models. 
Half of the sites were built-up (urban) areas, and the other half were non-built-up 
(rural or natural) areas, with each site covering an area of 1 km². The number of 
sites selected from each country was based on the logarithmic scale of the land 

area of each country. b, Spatial distribution of the test sites, covering a total of 
386 km², for evaluating deep learning models. Each site had an area of 2 km² and 
was randomly selected from the built-up areas of each United Nations member 
country. This approach ensured a wide and representative sample for evaluating 
the accuracy of our models across various global regions.
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Extended Data Fig. 3 | Evaluation of rooftop area quantification using deep 
learning. This figure evaluates the prediction accuracy of our deep learning 
model, which quantified rooftop area compared with manually labelled data in 
an independent test dataset. This comparison was conducted using randomly 
selected image patches, each measuring 512 × 512 pixels. a, Overview of all test 
image patches (total number = 2,951). b-u, Breakdown of test image patches by 
geographic region, showing the specific number of patches evaluated in each 
area. b, Australia and New Zealand (36 patches). c, Pacific Islands (136 patches).  

d, Caribbean (173 patches). e, Northern America (36 patches). f, Central America  
(99 patches). g, South America (164 patches). h, Eastern Asia (87 patches).  
i, South-Eastern Asia (129 patches). j, Southern Asia (127 patches). k, Western Asia 
(266 patches). l, Central Asia (90 patches). m, Northern Africa (101 patches).  
n, Eastern Africa (206 patches). o, Southern Africa (74 patches). p, Western Africa 
(182 patches). q, Middle Africa (96 patches). r, Northern Europe (306 patches). 
s, Eastern Europe (220 patches). t, Southern Europe (252 patches). u, Western 
Europe (171 patches).
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Extended Data Fig. 4 | Mapping building rooftops in selected global regions. Orange patches represent 1,724 cities across various continents and cover an extensive 
area of 20 million km2. These regions were strategically selected for the development of predictive models aimed at estimating global rooftop area.
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Extended Data Fig. 5 | Evaluation of rooftop area estimation accuracy. 
These plots present the accuracy assessments of our random forest models for 
estimating rooftop area compared with the actual observed rooftop area from 
our independent test dataset. A set of 16,000 randomly selected grid samples 
was used. The primary aspect of this comparison is the predictive confusion 
matrix, which categorizes the estimated rooftop area into 20 bins, allowing for a 
detailed comparison between the predictions of our model and the real rooftop 

area. a, Overview of all test grids used in this study. b-u, The test grids were 
broken down into specific geographic regions, with each region represented by 
800 grids. b, Australia and New Zealand. c, Pacific Islands. d, Caribbean.  
e, Northern America. f, Central America. g, South America. h, Eastern Asia.  
i, South-Eastern Asia. j, Southern Asia. k, Western Asia. l, Central Asia. m, Northern 
Africa. n, Eastern Africa. o, Southern Africa. p, Western Africa. q, Middle Africa.  
r, Northern Europe. s, Eastern Europe. t, Southern Europe. u, Western Europe.
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Extended Data Fig. 6 | Analysis of residuals in rooftop area estimation.  
a, Residual analysis of rooftop areas at different scales using boxplots. To enhance 
visual clarity, the first four box plots are locally magnified. was used. In these 
boxplots, the lines from top to bottom represent the maximum, third quartile 
(upper quartile), median (middle value), first quartile (lower quartile), and 

minimum value. Points scattered outside the boxplots are considered outliers, 
indicating values that are different from the rest. The light gray line represents a 
residual equal to 0. b, an analysis of the distribution of residuals using a histogram. 
This method visually represents the frequency of the residual values. Both analyses 
in parts a and b are based on a set of 16,000 randomly selected grid samples.
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Extended Data Fig. 7 | Analysis of rooftop area distribution. a, Overview 
of global rooftop area distribution (132,799,422 grid samples). b-u. Provides 
detailed breakdown of the rooftop area distributions in specific regions. b, 
Australia and New Zealand (7,931,395 grid samples). c, Pacific Islands (535,745 
grid samples). d, Caribbean (224,661 grid samples). e, Northern America 
(20,876,408 grid samples). f, Central America (2,447,734 grid samples). g, South 
America (17,573,960 grid samples). h, Eastern Asia (11,563,371 grid samples). i, 
South-Eastern Asia (4,384,788 grid samples). j, Southern Asia (6,573,259 grid 

samples). k, Western Asia (4,492,910 grid samples). l, Central Asia (3,914,862 
grid samples). m, Northern Africa (7,604,272 grid samples). n, Eastern Africa 
(6,838,522 grid samples). o, Southern Africa (2,662,056 grid samples). p, Western 
Africa (6,030,223 grid samples). q, Middle Africa (6,528,310 grid samples). r, 
Northern Europe (1,753,492 grid samples). s, Eastern Europe (18,462,618 grid 
samples). t, Southern Europe (1,305,571 grid samples). u, Western Europe 
(1,095,265 grid samples).
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Extended Data Fig. 8 | Quantitative comparison of global rooftop area 
estimates with reference datasets. a, Grid-level comparison with Google 
Building Footprints (GBF), based on 17,497,097 overlapping grid cells. b, Grid-
level comparison with Microsoft Building Footprints (MBF), based on 20,303,584 
overlapping grid cells. c, Grid-level comparison with Global Human Settlement 
Layer (GHSL), based on 132,799,408 overlapping grid cells. d, Grid-level 
comparison with World Settlement Footprint 3D (WSF3D), based on 24,834,895 
overlapping grid cells. Due to the limited coverage and potential spatial 

completeness issues in the GBF and MBF datasets, we restricted our comparison 
to grids that contain building areas in both datasets. For comparisons with GHSL 
and WSF3D, we used global overlapping grids. The plots show the correlation 
between our estimated rooftop areas and the corresponding areas from the 
reference datasets at the grid level. Dashed lines represent the 1:1 relationship.  
e, Grid-level correlation matrix between the different reference datasets and our 
estimates, highlighting the strong correlations between our global rooftop area 
estimates and these reference datasets.
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Extended Data Fig. 9 | Resource endowment for RPV development. a. potential installed capacity, b. surface solar radiation, and c. grid emission intensity.
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Extended Data Fig. 10 | Global distribution of RTCRE. a. RTCRE, b. intermodal spread.
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