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UrbanEV: an Open Benchmark 
Dataset for Urban Electric Vehicle 
Charging Demand Prediction
Han Li1,4, Haohao Qu2,4, Xiaojun tan1, Linlin You  1 ✉, Rui Zhu  3 & Wenqi Fan2

The recent surge in electric vehicles (EVs), driven by a collective push to enhance global environmental 
sustainability, has underscored the significance of exploring EV charging prediction. To catalyze 
further research in this domain, we introduce UrbanEV — an open dataset showcasing EV charging 
space availability and electricity consumption in a pioneering city for vehicle electrification, namely 
Shenzhen, China. UrbanEV offers a rich repository of charging data (i.e., charging occupancy, duration, 
volume, and price) captured at hourly intervals across an extensive six-month span for over 20,000 
individual charging stations. Beyond these core attributes, the dataset also encompasses diverse 
influencing factors like weather conditions and spatial proximity. Comprehensive experiments have 
been conducted to showcase the predictive capabilities of various models, including statistical, deep 
learning, and transformer-based approaches, using the UrbanEV dataset. This dataset is poised to 
propel advancements in EV charging prediction and management, positioning itself as a benchmark 
resource within this burgeoning field.

Background & Summary
In recent times, there has been a notable surge in the popularity of electric vehicles (EVs), driven by the goals of 
diminishing reliance on fossil fuels, ameliorating air quality, addressing global warming concerns, and advancing 
the United Nations’ Sustainable Development Goals pertaining to carbon neutrality1,2. The Global EV Outlook 
for 2024, as documented by the International Energy Agency (IEA)3, highlights a persistent increase in electric 
car sales, projecting a potential volume of approximately 17 million units by 2024. This figure would constitute 
over one-fifth of the total global car sales. Despite the manifold advantages associated with the electrification of 
vehicles, this widespread adoption presents formidable obstacles to the dependability and robustness of urban 
power grids and transportation infrastructures. Amongst these limited charging spaces, particularly in dense 
cities, creates the most anxiety for EV users, resulting in critical problems such as long parking cruising time and 
additional traffic congestion4. Another illustration lies in the unbalanced electricity consumption caused by reg-
ular EV charging behaviors5,6. This fluctuation in demand during rush hour can impact the stability of the grid, 
potentially causing voltage fluctuations, frequency variations, and other issues that may affect the reliability of 
the power supply7,8. Given the ongoing expansion of EV charging infrastructure and the limited sustainability of 
relying solely on electricity to address associated challenges, many intelligent services have surfaced to manage 
EV charging demand9–12. These services include dynamic pricing mechanisms13, collaborative charging resource 
allocation strategies14,15, and parking guidance systems16.

The prediction of electric vehicle charging demand, which serves as a cornerstone for enabling intelligent 
EV services, has garnered growing attention from academic and industrial communities17–19. Accurate pre-
dictions of regional EV charging demand can enable the provision of tailored parking suggestions to drivers 
in transit, alleviating range anxiety concerns, while regulatory bodies can implement dynamic pricing strat-
egies to enhance energy efficiency. To achieve accurate prediction, related studies have attempted to leverage 
advanced data analysis techniques and predictive modeling to forecast the future charging demand for elec-
tric vehicles18,20. It typically involves analyzing historical charging data, considering factors such as the num-
ber of electric vehicles, their charging patterns, infrastructure availability, and external variables like weather 
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conditions and time of day21. For example, a recent study investigated the performance of three conventional 
machine learning models, namely Long Short-Term Memory, Auto-Regressive Moving Average, and Multiple 
Layer Perceptron, in short-term EV charging forecasting22. Another in-depth research explored the effect of 
electricity price on electric vehicle charging demand by conducting correlation tests and estimating its price 
elasticity23. More recently inspired by the success of incorporating spatial information with temporal patterns in 
traffic prediction, spatial-temporal EV charging demand prediction has emerged as an attractive research topic 
in the literature. Representative examples include HSTGCN-EV24 and ChatEV25: The former one incorporated 
two heterogeneous graphs (i.e., a demand-based graph and a geographic graph) to improve predictive precision, 
while the latter one unified spatial and temporal factors within natural language and harnessed Large Language 
Models (LLMs) for regional EV charging prediction.

Although relevant research continues to expand, a well-structured open-source benchmark dataset that 
includes a wide array of features and establishes standardized comparison settings for predicting EV charging 
demand is still absent. Existing studies face several critical limitations with their data. Table 1 illustrates the 
comparison of representative publicly available datasets from various aspects. Firstly, most of them rely solely 
on charging data or consider only a limited number of factors, neglecting a comprehensive assessment of other 
potential influences26–29. Secondly, although numerous temporal patterns crucial for EV charging demand pre-
diction have been identified, the current datasets are insufficient for delving into spatial analysis in EV charging 
behaviors30–33. Lastly, the diverse settings observed across studies introduce substantial variations, hindering a 
fair comparison of new techniques, frameworks, and models within relevant research19. These limitations hinder 
the advancements of EV charging prediction and related intelligent services in the era of big data.

To fill the gap, we present UrbanEV, an open dataset of EV charging in Shenzhen, China. The dataset 
compiles comprehensive information for a total of 1,682 public charging stations with 24,798 charging piles, 
shown in Fig. 1. After applying various data processing techniques, we refine the dataset to encompass 1,362 
charging stations with 17,532 public charging piles, making them well-suited for charging demand prediction. 
Specifically, it provides three charging data (i.e., occupancy, duration, and volume), four dynamic factors (i.e., 
electricity price, service price, weather conditions, and time of day), three spatial attributes (i.e., adjacency, 
distance, and coordinates), and four static coefficients (i.e., point of interest, area, pile number, and station 
number). Moreover, our dataset covers the period from 1 September 2022 to 28 February 2023, encompassing 
six months with hourly granularity. This level of detail enables the exploration of short-, mid-, and long-term 
forecasting scenarios. Lastly, based on the station-level information, we further group the data into traffic zones, 
offering a new perspective on exploring regional EV charging patterns. As shown in Fig. 2, stations located in 
a specific traffic zone are integrated, and an adjacency matrix among neighboring zones can be built corre-
spondingly to represent the spatial relationship. Making this dataset publicly accessible is intended to equip 
researchers, policymakers, and industry practitioners with the essential information needed for the effective 
and sustainable management of EV charging. This initiative aligns with national priorities and contributes to the 
overarching global sustainability objectives.

Methods
To build a comprehensive and reliable benchmark dataset, we conduct a series of rigorous processes from data 
collection to dataset evaluation. The overall workflow sequentially includes data acquisition, data processing, 
statistical analysis, and prediction assessment. As follows please see detailed descriptions.

Study area and data acquisition. Shenzhen, a pioneering city in global vehicle electrification, has been 
selected for this study with the objective of offering valuable insights into electric vehicle (EV) development that 
can serve as a reference for other urban centers. This study encompasses the entire expanse of Shenzhen, where 
data on public EV charging stations distributed around the city have been meticulously gathered. Specifically, 
EV charging data was automatically collected from a mobile platform used by EV drivers to locate public charg-
ing stations. Through this platform, users could access real-time information on each charging pile, including 
its availability (e.g., busy or idle), charging price, and geographic coordinates. Accordingly, we recorded the 
charging-related data at five-minute intervals from September 1, 2022, to February 28, 2023. This data collection 
process was fully digital and did not require manual readings. Furthermore, to delve into the correlation between 
EV charging patterns and environmental elements, weather data (i.e., air temperature Ta, atmospheric pressure 
P, and relative humidity h) for Shenzhen city were acquired from two meteorological observatories situated in 

Dataset Time Span Granularity Scope #EVSEs Additional Factors*

High-resolution EV Data33 Nov. 2014‐Oct. 2015 1hour / 105 stations User Habit, Location Type

Perth and Kinross27 Sep. 2016‐Aug. 2019 1min County / /

ACN-Data28 Sep. 2018‐Dec 2019 15min Site 112 piles /

One-Year EV Charging Fleet29 May 2018‐Jul. 2020 10min Site 30 piles /

Multi-faceted EV Charging30 Sep. 2021‐Sep. 2022 15min / 2,119 piles Location Type

UrbanEV39 Sep. 2022‐Feb. 2023 5min/1hour Urban 17,532 piles Price, Weather, POI, Geo-Data

Table 1. Comparison of representative open datasets associated with electric vehicle charging, where “#” 
denotes the number of certain headers, “/” denotes that the item is not specified, and EVSE refers to Electric 
Vehicle Supply Equipment. * The “Additional Factors” item outlines the feature set provided beyond the 
charging data itself.
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the airport and central regions, respectively. These meteorological data are publicly available on the Shenzhen 
Government Data Open Platform. Thirdly, point of interest (POI) data was extracted through the Application 

Fig. 1 Spatial distribution of 1,682 public charging stations and 24,798 charging piles in the UrbanEV dataset.
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Fig. 2 Data visualization of the filter areas. (a) illustrates the distribution of charging piles at the regional level. 
(b) provides an enlarged view of the CBD dynamic pricing areas. (c) depicts the node graph derived from the 
enlarged view, showcasing the center node of the enlarged region, its 1-hop and 2-hop neighbors, as well as their 
adjacency relationships. (d) presents the distance matrix (in meters) of the 1-hop neighbors of the center node 
in the enlarged region.
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Programming Interface Platform of AMap.com, along with three primary types: food and beverage services, busi-
ness and residential, and lifestyle services. Lastly, the spatial and static data were organized based on the traffic 
zones delineated by the sixth Residential Travel Survey of Shenzhen34. The collected data contains detailed spati-
otemporal information that can be analyzed to provide valuable insights about urban EV charging patterns and 
their correlations with meteorological conditions.

processing raw information into well-structured data. To streamline the utilization of UrbanEV 
dataset, we harmonize heterogeneous data from various sources into well-structured data with aligned temporal 
and spatial resolutions. An overview of the descriptive statistics of the processed data is presented in Table 2. This 
process can be segmented into two parts: the reorganization of EV charging data and the preparation of other 
influential factors.

EV charging data. The raw charging data, obtained from publicly available EV charging services, pertains to 
charging stations and predominantly comprises string-type records at a 5-minute interval. To transform this raw 
data into a structured time series tailored for prediction tasks, we implement the following three key measures: 

•	 Initial Extraction. From the string-type records, we extract vital information for each charging pile, such 
as availability (designated as “busy” or “idle”), rated power, and the corresponding charging and service fees 
applicable during the observed time periods. First, a charging pile is categorized as “active charging” if its 
states at two consecutive timestamps are both “busy”. Consequently, the occupancy within a charging station 
can be defined as the count of in-use charging piles, while the charging duration is calculated as the product 
of the count of in-use piles and the time between the two timestamps (in our case, 5 minutes). Moreover, the 
charging volume in a station can correspondingly be estimated by multiplying the duration by the piles’ rated 
power. Finally, the average electricity price and service price are calculated for each station in alignment with 
the same temporal resolution as the three charging variables.

•	 Error Detection and Imputation. Data quality is crucial for decision-making, advanced analytics, and 
machine learning. Inaccuracies, often referred to as dirty data, can significantly undermine the reliability 
of analysis or modeling efforts35. To improve the quality of our charging data, we identified several errors, 
notably negative values for charging fees and inconsistencies between counts of occupied, idle, and total 
charging piles. Records containing these anomalies were removed and treated as missing data. A two-step 
imputation process was employed for missing values: forward filling replaced missing values using preceding 
timestamps, followed by backward filling to fill gaps at the beginning of each time series. Additionally, out-
liers, which could significantly impact prediction performance, were detected using the interquartile range 
(IQR) method36 for metrics such as charging volume (v), charging duration (d), and the rate of active charging 
piles (o). To retain more original data and minimize the impact of outlier correction, we set the coefficient 
to 4, instead of the default 1.5. Each outlier was then replaced with the mean of its adjacent valid values. This 
preprocessing pipeline transformed the raw data into a structured and analyzable dataset.

Feature Max Mean Median Min Q1 Q3 Std

EV

Day

o (%) 1 0.24 0.21 0 0.14 0.31 0.17

d (hour) 175.83 9.64 5.00 0.00 1.50 12.50 12.78

v (kWh) 13637.50 180.61 37.62 0.00 10.50 111.42 593.53

pe (CNY) 1.80 0.98 0.99 0.23 0.86 1.10 0.18

ps (CNY) 1.45 0.70 0.76 0.00 0.70 0.76 0.15

Night

o (%) 1.00 0.30 0.26 0.00 0.16 0.40 0.19

d (hour) 207.58 13.58 6.00 0.00 1.92 16.58 19.54

v (kWh) 16732.50 275.72 46.08 0.00 12.25 147.00 968.24

pe (CNY) 1.80 0.93 0.94 0.23 0.79 1.06 0.23

ps (CNY) 1.45 0.73 0.76 0.00 0.74 0.76 0.14

Weather

Ta (°C) 34.70 21.18 21.40 8.30 16.40 26.30 5.92

P (mmHg) 773.80 762.49 762.40 751.10 759.90 765.50 4.18

h (%) 97.00 69.33 72.00 21.00 58.00 82.00 16.49

Others

Number of Piles 373.00 63.75 48.00 4.00 24.00 84.00 56.63

Distance (meter) 78680.32 21972.31 20476.39 0.00 12184.82 29764.97 12721.15

Number of Neighbors 10.00 4.36 4.00 0.00 3.00 6.00 1.82

Table 2. Data statistics of the UrbanEV Dataset. This table presents data across three dimensions: EV, Weather, 
and Others. First, UrbanEV provides EV charging-related data, i.e., occupancy ratio (o), charging duration 
(d), charging volume (v), and charging price (including electricity price pe and service fee ps), with statistics at 
the traffic zone level. In the weather dimension, it offers three representative features that have the potential 
to influence charging behaviors, namely air temperature (Ta), atmospheric pressure (P), and relative humidity 
(h) across the entire study area. Lastly, information on pile number, adjacency, and distance within or between 
traffic zones is also incorporated into the dataset.
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•	 Aggregation and Filtration. Building upon the station-level charging data that has been extracted and 
cleansed, we further organize the data into a region-level dataset with an hourly interval providing a new per-
spective for EV charging behavior analysis. This is achieved by two major processes: aggregation and filtration. 
First, we aggregate all the charging data from both temporal and spatial views: a. Temporally, we standardize 
all time-series data to a common time resolution of one hour, as it serves as the least common denominator 
among the various resolutions. This aims to establish a unified temporal resolution for all time-series data, 
including pricing schemes, weather records, and charging data, thereby creating a well-structured dataset. 
Aggregation rules specify that the five-minute charging volume (v) and duration (d) are summed within each 
interval (i.e., one hour), whereas the occupancy (o), electricity price (pe), and service price (ps) are assigned 
specific values at certain hours for each charging pile. This distinction arises from the inherent nature of these 
data types: volume (v) and duration (d) are cumulative, while (o), (pe), and (ps) are instantaneous variables. 
Compared to using the mean or median values within each interval, selecting the instantaneous values of (o), 
(pe), and (ps) as representatives preserves the original data patterns more effectively and minimizes the influ-
ence of human interpretation. b. Spatially, stations and piles are aggregated based on the traffic zones delin-
eated by the sixth Residential Travel Survey of Shenzhen34. After aggregation, the resulting dataset includes 
331 regions (also referred to as traffic zones) and 4344 timestamps. Variance tests and zero-value filtering 
were then applied to exclude regions with negligible or no variation in charging data. Specifically, regions 
with an occupancy variance below 0.001 or with more than 30% zero values were removed. As a result, 275 
traffic zones, comprising 1,362 charging stations and 17,532 charging piles, were retained for further analysis, 
as depicted in Fig. 2.

Other influential factors. Apart from the EV charging data, we also constructed a set of variables that might 
influence charging behaviors37,38. These variables can be categorized into three classes, namely temporal factors, 
spatial attributes, and static features. First and foremost, the temporal factors include three weather conditions: 
air temperature (Ta), relative humidity (h), and atmospheric pressure (P). The raw weather data is collected from 
two meteorological observatories located in the airport and central regions of Shenzhen, and they were further 
organized into numeric data with the same hourly interval as the structured charging data. Notably, weather 
data is shared across all charging stations and traffic zones. Spatial information, including the adjacency matrix 
and distances, is computed using ArcGIS tools. Specifically, adjacency is determined by evaluating whether two 
traffic zones share a boundary, based on the distance between their geometric centers. Additionally, UrbanEV 
provides static features, such as Points of Interest (POI), area, and road length for each traffic zone. Only those 
relevant to charging activities within the 275 selected zones, aligned with the structured charging data, are 
retained.

Data Records
To enable further in-depth predictive analyses by researchers, the 1-hour resolution region-level dataset is pro-
vided as the primary dataset, with the 5-minute resolution version also made available in the Dryad repository39, 
offering comprehensive access to time-series data at varying granularities. For consistency, all data are stored 
as comma-separated value (.csv) files along with their corresponding header descriptions stored in .txt files. 
Moreover, this dataset provides the geometry information of the studied areas in ArcGIS format (e.g., .shp, shx, 
and .dbf files). Lastly, we have developed a benchmarking code framework for EV charging forecasting, compris-
ing program files or scripts written in Python (.py). Here is a detailed overview of these files: 

•	 (occupancy.csv, duration.csv, and volume.csv) provide the EV charging occupancy ratio, duration, and volume, 
in the studied areas, measured in %, hours, and kWh, respectively. The volume in volume.csv is derived from 
the rated power of charging piles and may deviate from actual charging volumes. Nevertheless, it serves as the 
foundation for validation in subsequent analyses, with volume-11kW.csv providing a vehicle-side estimation 
as an alternative.

•	 (e_price.csv, s_price.csv) describe the electricity price and service fee, respectively, with a granularity of hour. 
Both of them are units in Yuan/hour.

•	 (weather_central.csv and weather_airport.csv) store the weather data obtained from two different meteorolog-
ical stations located in the central area and the airport of Shenzhen city, respectively. Their header informa-
tion is presented in the file titled weather_header.txt.

•	 (Shenzhen.shp, Shenzhen.shx, Shenzhen.dbf) store geographic information in Shenzhen city in ArcGIS format, 
using the WGS 1984 Albers projected coordinate system.

•	 (adj.csv, distance.csv) depict the adjacency relationships between traffic zones, along with their respective dis-
tances. The distances are computed as the Euclidean distance between the centroids of the zones, measured in 
meters. In the adjacency file, a value of 1 indicates that two traffic zones are adjacent, otherwise 0.

•	 (inf.csv) contains several basis information for each zone, including pile capacity, longitude, latitude, the area 
and perimeters of the zone (in meters).

•	 (poi.csv) contains information about Points of Interest throughout the studied city, collected in December 
2022.

•	 (volume-11kW.csv) provides an alternative vehicle-side estimation of charging volume to mitigate potential 
overestimation in volume.csv. Specifically, for direct current charging stations, the volume is calculated using 
the standard power of the most commonly used electric vehicle, Tesla Model Y (11kW), instead of the rated 
power of the charging pile.

•	 (main.py, models.py, utils.py, preprocessing.py) are the code files used in this work.
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technical Validation
In order to validate UrbanEV’s efficacy in EV charging demand prediction, we are conducting a comprehensive 
benchmarking test covering forecasting methods specifically designed for EV charging demand as well as meth-
ods supporting general time-series forecasting tasks. It is noted that the validation relies on a one-hour resolu-
tion dataset. Through a thorough comparison and analysis of these baselines, we seek to address three crucial 
questions: First, Q1: Does the dataset effectively capture the temporal patterns in EV charging behaviors? Second, 
Q2: Can UrbanEV accurately depict the spatial interplay among different areas? Finally, Q3: Are the identified 
correlated factors instrumental in enhancing prediction accuracy?

In this validation, we compare three traditional forecasting methods, five deep learning models, and two 
state-of-the-art Transformer-based predictors. The three conventional models include the last observation (LO), 
Auto-regressive (AR), and Auto-regressive Integrated Moving Average(ARIMA) model. The six deep learning 
models are listed as follows: a fully connected neural network (FCNN) is a classical network that has been used 
to capture the non-linearity in time series; Long Short-Term Memory (LSTM), a representative recurrent neural 
network, has been recently utilized for predicting electric vehicle charging demand22,40; Graph Convolutional 
Network (GCN), a typical graph learning model, has also been employed for electric vehicle (EV) forecast-
ing tasks24. Expanding on the aforementioned achievements, there has been a recent integration of graph and 
recurrent models to enhance predictive performance for EV charging demand. Accordingly, GCN-LSTM41 as 
a hybrid model is included in the evaluation. Moreover, one advanced time-series forecasting method, namely 
the Attention-Based Spatial-Temporal Graph Convolutional Network (ASTGCN)42, is utilized as well in our 
study. Lastly, we evaluate two Transformer-based forecasting Models in our investigation, i.e., TimeNet43, and 
TimeXer44. Comparing and analyzing the performance of these baselines can assist us in evaluating whether 
UrbanEV can act as a competitive benchmark dataset for EV charging prediction tasks. This validation employed 
time-series cross-validation to address the temporal characteristics of a six-month dataset, which, accordingly, 
supports a six-fold approach. Specifically, each fold incrementally included one additional month of data, with 
80% allocated to training and the remaining 20% equally divided between validation and testing sets. Model per-
formance was assessed using four complementary metrics45,46: 1) Root Mean Squared Error (RMSE), 2) Mean 
Absolute Percentage Error (MAPE), 3) Relative Absolute Error (RAE), and 4) Mean Absolute Error (MAE). 
Finally, the evaluation objective is established as the distribution prediction (spatial-temporal prediction) for 
EV charging data, supplemented by experiments on node prediction to answer, and insights gained from the 
factorial experiment.

Distribution prediction. The results presented in Table 3 reveal several key observations regarding the pre-
dictive performance across different models. The performance can be categorized into three distinct categories, 
consistent with the baseline model classification.

1) Statistical Models: This category includes models such as LO, AR, and ARIMA, which rely on simple 
linear transformations to capture temporal dynamics. These models are computationally efficient due to their 
simplicity but exhibit limited predictive accuracy compared to more advanced approaches. Their inability to 
model complex nonlinear patterns in the data constrains their utility in scenarios requiring high precision.

2) Conventional Deep Learning Models: The second category encompasses models like Fully Connected 
Neural Networks (FCNN), Long Short-Term Memory (LSTM) networks, and Graph Convolutional Networks 
(GCN). These models incorporate nonlinear temporal modeling capabilities, leading to significant improve-
ments in predictive accuracy over statistical methods. Additionally, leveraging spatial information-such as 
using the charging demand from surrounding regions-further enhances prediction performance. Models like 
GCN-LSTM and ASTGCN demonstrate the benefits of joint spatiotemporal feature modeling, achieving supe-
rior results by capturing complex dependencies across both dimensions.

3) Transformer-Based Models: Representing the highest-performing category, Transformer-based architec-
tures dynamically capture intricate spatiotemporal interactions, effectively addressing limitations observed in 
other methods. By leveraging attention mechanisms, these models exhibit a transformative potential for spatio-
temporal prediction tasks, delivering state-of-the-art performance. Their ability to adaptively focus on relevant 
temporal and spatial features provides a robust framework for capturing the nuanced dynamics of EV charging 
demand.

These findings underscore the pivotal role of accurately extracting temporal and spatial features to enhance 
forecasting accuracy. More importantly, the results demonstrate that the dataset exhibits pronounced spati-
otemporal characteristics, and the application of nonlinear modeling techniques proves effective in predict-
ing EV charging-related metrics. Compared to independently modeling temporal or spatial features, the joint 
modeling of spatiotemporal features significantly improves predictive performance. However, the performance 
differences among various spatiotemporal prediction models highlight the inherent complexity of the dataset’s 
spatiotemporal characteristics. This complexity necessitates the design of specialized models tailored to capture 
these intricate patterns effectively. Hence, we advocate for a deeper investigation into spatiotemporal forecasting 
models to unveil the underlying patterns in EV charging behaviors within the UrbanEV dataset.

Node prediction. The results presented in Table 4 highlight the performance of various models across three 
key metrics-charging occupancy (o), duration (d), and volume (v). First, the Transformer-based model, TimeXer, 
demonstrates superior performance among the models evaluated, achieving the lowest RMSE, MAPE, RAE, and 
MAE values across all metrics. Specifically, it achieves an RMSE of 0.07 for o, 2.73 for d, and 43.66 for v, signif-
icantly outperforming traditional statistical models (e.g., LO, AR, ARIMA) and deep learning methods (e.g., 
FCNN, LSTM). Second, the recurrent model, LSTM, shows competitive results to TimeXer for charging duration 
d and volume v and outperforms other compared models in most cases. These two observations indicate that the 
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UrbanEV dataset can serve as a suitable and trustworthy benchmark dataset for EV charging prediction, as the 
compared models are appropriately ranked: namely, TimeXer > LSTM > others.

Factorial experiment. To investigate the influence of the five features mentioned above both individ-
ually and in combination, we conducted factorial experiments in various feature groups, including pairwise 

Model

RMSE(×10−2) MAPE(%)

3h 6h 9h 12h Average 3h 6h 9h 12h Average

LO 9.75 12.52 14.65 15.45 13.09 25.39 39.07 50.92 56.70 43.02

AR 13.08 13.00 12.89 12.67 12.91 58.30 59.12 60.93 61.74 60.02

ARIMA 13.76 13.88 13.44 12.79 13.47 58.63 58.89 59.56 59.10 59.05

FCNN 9.47 10.74 10.95 9.79 10.24 40.59 50.12 52.67 46.22 47.40

LSTM 9.37 10.96 11.05 9.74 10.28 36.17 46.44 49.81 43.54 43.99

GCN 8.91 10.63 10.93 10.08 10.14 39.93 50.32 51.76 46.92 47.23

GCNLSTM 8.41 9.67 10.65 9.39 9.53 35.96 45.01 50.12 43.26 43.59

ASTGCN 9.15 10.61 10.92 9.83 10.13 35.67 46.02 49.37 47.52 44.64

TimesNet 9.00 9.59 9.92 9.64 9.54 31.65 35.19 37.58 36.37 35.20

TimeXer 8.32 9.38 9.89 9.39 9.24 26.13 33.20 36.47 35.14 32.74

Model

RAE( × 10−2) MAE( × 10−2)

3h 6h 9h 12h Average 3h 6h 9h 12h Average

LO 36.62 54.05 68.08 74.05 58.20 4.91 7.26 9.17 9.98 7.83

AR 67.54 67.07 66.66 65.65 66.73 8.99 8.98 8.96 8.83 8.94

ARIMA 70.82 70.90 69.21 65.78 69.18 9.46 9.52 9.31 8.84 9.28

FCNN 45.62 54.62 56.02 49.08 51.34 6.11 7.33 7.54 6.62 6.90

LSTM 43.51 54.57 55.85 48.27 50.55 5.82 7.32 7.52 6.50 6.79

GCN 45.61 55.69 57.34 52.64 52.82 6.11 7.48 7.73 7.11 7.11

GCNLSTM 41.79 50.13 55.86 48.12 48.97 5.59 6.73 7.52 6.48 6.58

ASTGCN 42.70 52.90 55.32 49.91 50.21 5.71 7.10 7.45 6.73 6.75

TimesNet 40.78 45.05 47.28 45.86 44.74 5.48 6.03 6.31 6.12 5.99

TimeXer 35.01 42.24 46.43 44.12 41.95 4.71 5.66 6.20 5.89 5.61

Table 3. Performance comparison of representative forecasting methods on the spatial-temporal occupancy 
prediction task using the UrbanEV dataset. The result showcases that models incorporating both spatial and 
temporal patterns can achieve superior predictive accuracy. This observation suggests that the UrbanEV dataset 
exhibits pronounced spatiotemporal dependencies within EV charging data. The best and second best results in 
each column are marked by Bold and underlined, respectively.

Model

RMSE MAPE

o d v o d v

LO 0.10 4.35 68.53 0.41 0.57 0.58

AR 0.08 5.60 74.29 0.11 0.89 0.88

ARIMA 0.13 5.86 76.41 0.59 0.89 0.89

FCNN 0.11 3.62 55.52 0.54 0.56 0.57

LSTM 0.09 3.20 45.14 0.46 0.52 0.52

TimeXer 0.07 2.73 43.66 0.29 0.55 0.66

Model

RAE MAE

o d v o d v

LO 0.79 0.78 0.78 0.07 3.17 51.71

AR 1.06 1.07 1.07 0.07 4.51 59.18

ARIMA 1.10 1.09 1.09 0.10 4.67 63.81

FCNN 1.05 0.78 0.79 0.09 2.89 44.44

LSTM 0.92 0.72 0.71 0.07 2.48 34.12

TimeXer 0.76 0.70 0.71 0.05 2.04 33.81

Table 4. Performance comparison of six representative forecasting methods in node prediction. It is evident 
that the Transformer-based model, TimeXer, and the RNN-based model, LSTM, stand out with superior 
performance. This observation indicates that the charging data offered by UrbanEV encompasses ample 
temporal features. The best and second best results in each column are marked by Bold and underlined, 
respectively.
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combinations (i.e., P + ps, Ta + pe, h + Ta, and ps + pe) to assess whether joint factors affect charging occupancy. 
Additionally, we integrated all five features to explore whether the collective effect of external factors exhibits 
consistent influences on o. First, as presented in Table 5, it indicates that the inclusion of individual features yields 
minimal improvement in predicting EV charging demand and, in some cases, even deteriorates the prediction 
accuracy. However, combinations of features prove to be significantly more effective in enhancing demand fore-
casting. Notably, pairings that include pe and ps, such as Ta + pe and ps + pe, demonstrate the strongest auxiliary 
effects on prediction accuracy. This suggests that external factors like temperature and current charging costs 
influence users’ charging decisions. For example, extreme temperatures-whether hot or cold-reduce the likeli-
hood of travel, subsequently lowering the demand for charging. Similarly, elevated electricity prices or service fees 
may prompt users to either seek alternative charging stations or forgo charging altogether.

Second, it can be observed that the combination of pe and ps is particularly impactful, as these factors col-
lectively represent the total cost incurred during charging. The interplay between these two features effectively 
captures the influence of charging costs on user behavior, which cannot be fully captured by either feature alone. 
Consequently, the joint variation of pe and ps reflects users’ sensitivity to charging costs, making it a superior 
predictor compared to single-factor variations.

Finally, integrating all five features to assist in predicting o does not necessarily improve the prediction accu-
racy. Although these features encompass various dimensions, such as weather conditions and price fluctuations, 
providing diverse information, the prediction performance can deteriorate if the model fails to effectively pro-
cess these inputs. This highlights the importance and potential of developing advanced prediction models capa-
ble of handling multidimensional auxiliary information to further enhance forecasting accuracy.

Code availability
Our code used in this paper for the dataset setup, data analysis, and experiments can be found in a GitHub 
repository at (https://github.com/IntelligentSystemsLab/UrbanEV).
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Model

RMSE(×10−2) MAPE(%)

FCNN LSTM ASTGCN TimeXer Average FCNN LSTM ASTGCN TimeXer Average

None 9.47 9.37 9.15 7.95 8.99 40.59 36.17 35.67 24.81 34.31

P 9.59 9.25 8.96 8.41 9.05 39.24 35.77 32.57 26.19 33.44

Ta 9.48 9.28 8.87 8.47 9.02 36.32 34.88 32.41 27.06 32.67

h 9.44 9.23 8.98 8.48 9.03 38.70 34.62 32.41 26.97 33.18

pe 9.80 9.19 8.91 8.50 9.10 39.19 35.68 33.08 27.77 33.93

ps 9.86 9.21 8.97 8.69 9.18 39.80 35.75 32.20 28.39 34.04

P + ps 9.23 9.03 9.03 8.47 8.94 37.25 34.08 32.86 26.45 32.66

Ta + pe 9.12 9.03 8.88 8.51 8.88 36.07 34.16 33.29 26.46 32.50

h + Ta 9.20 9.09 9.04 8.59 8.98 36.58 33.42 34.78 26.57 32.84

ps + pe 9.24 9.02 8.93 8.49 8.92 38.05 35.26 33.22 26.60 33.28

all 9.12 9.11 9.22 8.63 9.02 36.87 36.21 39.09 27.44 34.91

Model

RAE(×10−2) MAE(×10−2)

FCNN LSTM ASTGCN TimeXer Average FCNN LSTM ASTGCN TimeXer Average

None 45.62 43.51 42.70 32.53 41.09 6.11 5.82 5.71 4.37 5.50

P 46.08 42.76 40.81 35.51 41.29 6.17 5.72 5.46 4.78 5.53

Ta 45.06 43.16 40.22 35.65 41.02 6.04 5.77 5.38 4.80 5.50

h 45.07 42.37 40.64 35.58 40.92 6.03 5.67 5.43 4.81 5.49

pe 47.41 42.83 40.75 35.31 41.57 6.34 5.73 5.45 4.78 5.58

ps 47.58 42.96 40.59 36.15 41.82 6.37 5.74 5.43 4.90 5.61

P + ps 43.84 41.64 41.43 36.01 40.73 5.87 5.57 5.54 4.85 5.46

Ta + pe 43.01 41.80 41.04 35.96 40.45 5.75 5.59 5.49 4.84 5.42

h + Ta 43.52 41.65 41.62 36.04 40.71 5.82 5.58 5.57 4.87 5.46

ps + pe 44.18 41.92 41.03 34.86 40.50 5.91 5.61 5.49 4.72 5.43

all 43.37 43.18 46.13 35.92 42.15 5.80 5.78 6.17 4.86 5.65

Table 5. Results of factorial experiments with ten factorial groups on EV charging demand. Utilizing the 
occupancy ratio in each traffic zone as the target data, our analysis indicates that individual features make 
a minimal contribution to prediction accuracy, and may even hinder performance in certain scenarios. 
In contrast, the combination of features, notably air temperature (Ta) and electricity price (pe), can lead to 
significant enhancements. The best and second best results in each column are marked by Bold and underlined, 
respectively.
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