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ARTICLE INFO ABSTRACT
Keywords: The rapid rise of electric vehicles (EVs) requires efficient detection and planning of urban roadside charging piles
Roadside charging piles (RCPs) (RCPs) to support sustainable urban management. This study proposes a novel framework to optimize urban

Sustainable urban management
SDG 7

Street view images

Smart city planning

RCPs, integrating geospatial knowledge-assisted small object detection and Sustainable Development Goal 7
(SDG 7)-driven planning. We developed RCPs-YOLO, a tailored model that leverages geospatial knowledge to
improve small object detection, achieving 89.8 % precision and 77.4 % mAP@0.5 in detecting RCPs from street
view images, and a multi-line-of-sight method for precise geographic localization. Based on the EVs roadside
charging demand across Nanjing Central Districts (NCDs) in year 2024, we suggest that the RCPs could support
up to 301,537 kWh/day in NCDs. We develop four SDG 7-driven planning scenarios, including business-as-usual,
equity-oriented, efficiency-oriented, and balanced development. Under these scenarios, the potential annual
roadside charging capacity in NCDs by 2030 is approximately 85.8 GWh, 153.5 GWh, 103.2 GWh, and 148.3
GWHh, respectively. Our findings suggest prioritizing the development of RCPs in newly developed downtown
areas to promote equitable access and enhance energy efficiency. This approach offers a scalable, data-driven
solution for urban planners aiming to advance progress toward SDG 7 and the development of smart cities.

the majority of these vehicles (IEA, 2024), underscores the urgent need
for expanded charging infrastructure. It is anticipated that 3.5 million
EV charging stations will be installed in China by the end of 2024
(Xinhua, 2024). This rapid expansion underscores the critical role of
charging infrastructure in facilitating the global transition to electric
mobility and achieving sustainable urban development.

Effective planning of RCPs requires accurate data on their existing
locations. However, public image datasets of RCPs are often lacking for
urban infrastructure management (Bibri & Krogstie, 2017). This data
gap hinders the equitable planning of new RCPs. The detection of RCPs
is crucial, but their small size and widespread distribution pose chal-
lenges. While methods such as unmanned aerial vehicles (UAVs) and
infrared imaging are often costly and inaccurate (Outay et al., 2020),
street view images offer a cost-effective solution with broad coverage.
We created the first city-scale RCP street-view dataset through manual
annotation, which provides a foundational resource for RCP detection
and planning.

1. Introduction

Urban power systems require secure and efficient operations to
support the development of smart cities and to meet the increasing
electricity demands (Qiu et al., 2024). Charging piles, a critical
component of urban power infrastructure, can be installed in various
locations, including roadside parking spaces (Charly et al., 2023).
Although early electric vehicle (EV) infrastructure primarily consisted of
centralized stations (Ji & Huang, 2018; Li et al., 2022a), these facilities
often do not adequately address the needs of drivers requiring imme-
diate charging during short-term parking (Ma & Fan, 2020). Roadside
charging piles (RCPs) address this by providing accessible charging in
existing parking spaces, thereby reducing land-use conflicts (Pu et al.,
2025), and contributing to Sustainable Development Goal 7 (SDG 7) by
facilitating the transition to clean energy. The projected growth of the
global EV fleet to 17 million by 2024, with China expected to account for
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Nomenclature

EVs Electric vehicles

RCPs Roadside charging piles
SDG Sustainable Development Goal
MLOS Multi-line-of-sight

BAU Business-as-Usual

EQ Equity-Oriented

EF Efficiency-Oriented

BD Balanced Development
NCDs Nanjing central districts
BSV Baidu street view

LOS line-of-sight

While the spatial optimization of public EV charging infrastructure
has been extensively researched, the focus has been on centralized EV
charging stations; the detection and planning of small-scale RCPs remain
underexplored due to their dispersed distribution and data scarcity (Li
et al., 2024). This gap hinders the development of efficient urban
charging infrastructure, particularly in densely populated areas where
space is limited and demand for charging is high. Governments world-
wide are increasingly prioritizing the adoption of eco-friendly trans-
portation and the development of associated infrastructure (He et al.,
2016). SDG 7-driven planning, which integrates clean energy goals,
offers a promising approach for RCP development, promoting equitable
access and operational efficiency.

To fill these research gaps, we advance the RCPs planning efforts in
three aspects, summarized below.

(1) We extend small object detection by incorporating geospatial
knowledge of RCPs, offering a novel approach to urban infra-
structure mapping, which provides a data basis for the planning
of RCPs.

(2) We embed SDG 7 targets into the planning criteria, providing
urban planners with a replicable blueprint for optimizing EV
infrastructure.

(3) We estimate the potential roadside charging capacity of RCPs
under four SDG 7-driven planning scenarios. We provide a
framework for fine-grained planning and charging capacity esti-
mation of RCPs, which is crucial for promoting RCP construction.

2. Literature review
2.1. Small object detection and localization in the power sector

Recent advances in small object detection have demonstrated
transformative potential across critical power sector operations,
including equipment inspection, fault diagnosis, and infrastructure
monitoring (Liu et al., 2022). However, detecting small-scale equip-
ment, such as charging piles, in complex urban environments remains
challenging due to low feature saliency and background interference
(Ou et al., 2023). Deep learning innovations, including improved
Transformer modules (Zhao et al., 2024) and multiscale feature fusion
and attention mechanisms (Xu et al., 2024), have improved detection
accuracy. However, despite these advancements, challenges remain,
including limitations in image resolution and high costs of specialized
data acquisition systems (McEnroe et al., 2022).

Street view imagery is a cost-effective alternative that provides fine-
grained spatial detail for urban detection (Han et al., 2023). To address
challenges such as low feature saliency and background interference,
innovations such as attention-enhanced detection and multi-task
learning frameworks (Li et al., 2022a) have been developed, which
improve feature representation and integrate geometric constraints.
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Despite these efforts, detecting and locating small-scale power equip-
ment, such as RCPs, in urban settings continues to be challenging due to
complex backgrounds and occlusion issues. Existing methods often
struggle to achieve robust performance (Li et al., 2024), highlighting the
need for further research to improve detection accuracy in such
environments.

2.2. Optimized allocation of urban charging piles

Optimizing urban EV charging infrastructure requires balancing
spatial, socio-economic and policy factors, especially with the rise of
smart cities and SDG mandates (He et al., 2022). Existing studies have
developed multi-criteria evaluation frameworks that integrate key fac-
tors such as population density, travel patterns, and the distribution of
existing infrastructure. Spatial multi-criteria evaluation frameworks,
combining GIS and AHP, are commonly used for infrastructure suit-
ability analysis (Carra et al., 2022; Erbas et al., 2018). Recent studies
have focused on scenario-based optimization, such as corridor-specific
planning (Erdogan et al, 2022) and adaptive strategies for
high-density areas (He et al., 2022). However, gaps remain in the precise
location of charging piles and sustainable planning. Pu et al. (2025)
employed deep learning segmentation and 3D geometric projection for
charging space estimation but lacked specific location and long-term
sustainability considerations.

2.3. Summary

The literature reveals two primary research gaps that this study aims
to address. First, there is the challenge of accurately detecting and
locating RCPs in complex urban environments due to issues like back-
ground interference and occlusion. Furthermore, there is a need for
more precise and sustainable planning in the optimized allocation of
urban charging infrastructure, addressing limitations in current methods
that lack specific location and long-term sustainability considerations.

3. Materials and methods
3.1. Study area

Nanjing is the capital of Jiangsu Province in eastern China. Ac-
cording to the “Nanjing Territorial Spatial Master Plan (2021-2035)”
(Government, 2024), Nanjing Central Districts (NCDs) include the
Jiangnan downtown and Jiangbei new downtown (Fig. 1).

The NCDs are critical transportation hubs with high traffic volumes
and increasing demand for EV charging infrastructure due to their
strategic location. The local government’s "14th Five-Year Plan for New
Energy Vehicle Industry Development' promotes the installation of
charging piles in roadside parking spaces, driving progress in sustain-
able energy and transportation through the deployment of RCPs. How-
ever, imbalances in RCP spatial distribution persist due to urban
planning constraints, land-use conflicts, traffic dynamics, and uneven
population distribution. Thus, developing robust methodologies for
identifying and planning RCP locations is essential to support Nanjing’s
sustainable development goals.

3.2. Research framework

Given the impact of current RCP distribution on future planning, our
research framework integrates detection and planning methodologies
through four components: (1) street view image collection, (2) a small
object detection model for identifying RCPs, (3) the calculation of
geographic coordinates for RCPs, and (4) SDG 7-driven planning for
RCPs (Fig. 2). The first component involves the collection of street view
images, which are essential for training the RCP detection model. The
second component incorporates geospatial knowledge into a tailored
detection model to address the limitations of conventional approaches in
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Fig. 1. Study area: (a) Nanjing, China. (b) NCDs.

detecting small targets within urban environment from street view im-
ages. The third component applies a MLOS simulation, leveraging the
detection results from the second component to calculate the geographic
locations of existing RCPs. The fourth component involves developing
an SDG 7-driven planning model, establishing objectives and constraints
grounded in the core principles of SDG 7 to determine the optimal
spatial distribution and estimate potential roadside capacity of RCPs.

3.3. Baidu street view images collection

To construct Baidu Street View (BSV) image datasets for training the
RCP detection model, road networks across NCDs were extracted from
OpenStreetMap (OSM, https://www.openstreetmap.org/). These net-
works were then sampled at 15-meter intervals, generating 2213,013
sample points (Fig. 3(a)). Using Baidu Maps API, multi-orientation street
view imagery (including front, back, left, and right views) was retrieved,
along with its associated metadata (Fig. 3(b)). The acquired images
underwent cylindrical equidistant projection to produce standardized
360° panoramas with a resolution of 1024 x 512 pixels (Zhong et al.,
2021). Each panoramic image was oriented so that its central axis
orientation aligned with the corresponding road direction angle (Fig. 3

().

The construction of the RCP dataset posed significant challenges due
to the small size and low occurrence frequency of RCPs in street view
imagery. As small objects, RCPs are widely dispersed in the city (Zhang
et al.,, 2023) and are frequently obscured by vehicles, pedestrians, or
urban clutter in BSV images. Moreover, their sparse distribution neces-
sitated the screening of massive volumes of data. We implemented a
two-stage annotation process: (1) Pre-screening: We prioritized BSV
images near known EV hotspots (e.g., commercial districts, trans-
portation hubs) (Ji & Huang, 2018) to increase the likelihood of finding
RCP-positive samples. (2) Annotation verification: We labeled RCPs
under strict visibility criteria, including bounding box integrity, and the
absence of severe occlusion. We finally collected and constructed a
sample dataset of RCP-containing BSV images and manually screened
706 RCP-containing images from 35,914 BSV images captured between
2020 and 2023 across 14 major Chinese cities (e.g., Beijing, Shanghai,
and Guangzhou).

3.4. RCPs-YOLO model for RCP detection

YOLOv11, while effective for general object detection, struggles with
small-scale RCPs due to redundant deep feature extraction and limited
spatial reasoning. We propose RCPs-YOLO, which introduces a key
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Fig. 2. Framework of detection, locating and SDG 7-driven planning of RCPs.

innovation: the integration of geospatial knowledge to enhance small
object detection. Fig. 4 shows the modifications made to RCPs-YOLO
based on YOLOv11, highlighted with red dashed boxes.

(1) Geospatial

knowledge head (RCPsDetect):

We

replace

YOLOvV11’s default detection head with RCPsDetect, which leverages
a geospatial knowledge graph as a source of prior knowledge. This

graph captures RCPs’ spatial relationships with urban entities (e.g.,
roads, parking spaces) and geometric attributes. RCPsDetect features
two branches, the location-aware branch uses the knowledge graph
to generate confidence maps for likely RCP locations, and the shape-
refinement branch adjusts bounding boxes based on RCP geometric
properties (Fig. 5).
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The knowledge graph is built through a semi-automatic process.
First, we annotate street view images to identify RCPs; next, we define
their spatial relationships and integrate this information into the graph.
The location-aware branch utilizes the knowledge graph to predict high-
probability zones for RCPs, fusing this spatial information with the
feature maps from the backbone network, while the shape-refinement
branch leverages geometric attributes from the knowledge graph to
adjust bounding box predictions, ensuring alignment with typical RCP
dimensions.

(2) Backbone simplification: We simplify the backbone by removing
the P5 layer and fusing the P4, P3, and P2 feature maps. This
modification reduces the number of model parameters while pre-
serving details crucial for small object detection.

(3) CBAM integration: A Convolutional Block Attention Module
(CBAM) is integrated after the SPPF block to improve feature
extraction for small objects in complex scenes.

(4) Swin Transformer integration: Three Swin Transformer modules
are incorporated into each detection head to capture multi-scale
features effectively.

3.5. The calculation of geographic coordinates for RCPs

We performed automatic geographic localization of RCPs using a
MLOS simulation method designed with reference to the adaptive con-
strained Line of Bearing (LOB) localization method proposed by Li et al.
(2022a). Additionally, we introduce a vector cross-product method to
eliminate erroneous MLOS intersections. The main process consists of
three stages: (1) MLOS simulation based on detection results, (2)
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elimination of erroneous intersections occurring behind the LOS, and (3)
LOS calculation using grid partitioning and spatial clustering (Fig. 6).
The MLOS method is based on geometric triangulation principles,
which use multiple viewpoints to determine the latitude and longitude
of charging piles (Li et al., 2022a). After detecting RCPs using the
RCPs-YOLO model, the pixel coordinates of the bottom and top centers
of the bounding box ug, ur are extracted from panoramic images, cor-
responding to the pile’s geographic locations (Fig. 7 (a-c)). Each view-
point generates a LOS using azimuth and elevation angles (6y,6;, ¢y, ¢;)

LOS simulation based on detection results

relative to the principal point h, (Fig. 7 (d-e)). The intersections of
multiple LOSs determine the RCP’s location.

To ensure accuracy, a vector cross-product method is used to remove
erroneous intersections located behind the line of sight, thereby
retaining only valid, forward-facing intersections. This vector cross-
product technique represents an improvement over the LOB method in
(Li et al., 2022a), as it more effectively filters invalid intersections
behind the viewpoints, leading to reduced localization errors in dense
urban settings. The roadway is then divided into grids to reduce
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computational complexity. The MLOS intersections are clustered to
identify RCP locations, and the center of cluster is designated as final
coordinates.

3.6. SDG 7-driven planning for RCPs

The SDG 7-driven planning model integrates the United Nations’
Sustainable Development Goal 7 (SDG 7), which emphasizes affordable
and clean energy, into the spatial planning of RCPs. SDG 7 focuses on
energy equity (SDG 7.1), optimizing energy structure (SDG 7.2), and
enhancing energy efficiency (SDG 7.3). This model maps these sus-
tainability targets to RCP planning by optimizing charging accessibility
and operational efficiency, thereby providing a replicable blueprint for
urban EV infrastructure.

The model leverages governmental EV policies and user charging
behavior to determine demand, ensuring practical applicability. Four
planning scenarios, including Business-as-Usual (BAU), Equity-Oriented
(EQ), Efficiency-Oriented (EF), and Balanced Development (BD), project
RCP allocation from 2025 to 2030, each aligned with SDG 7 objectives.

3.6.1. Demand analysis of RCPs for SDG 7

Demand analysis for RCPs forecasts spatial requirements to support
SDG 7-driven planning, focusing on equitable and efficient charging
infrastructure, we estimate RCP demand by estimating the EV purchase
demand and daily usage demand, driven by population density in urban
China (Ma & Fan, 2020), where limited private chargers increase reli-
ance on public infrastructure (He et al., 2016; Wang et al., 2021). This
correlation establishes population density as a key criterion for projec-
ting EV adoption over a five-year horizon.

To estimate the EV purchase demand (D,), we define the population
count in the i-th region (N;), the driving license ownership ratio (Py.),
and probability of users intending to purchase EVs (P). The value for P is
set to 0.13, based on the findings of He et al. (2022). D, is then calcu-
lated as:

D, = N; x P x Py (@D)]

To estimate the daily utilization demand for RCPs (Dpignning), We
define the daily charging probability for EVs Cy, the probability of users
utilizing RCPs for charging P,,;. Based on prior studies, C; is set to 0.33
(Wang et al., 2021), and Py, is set to 0.5 (He et al., 2022). Dyjanning is then
calculated using the formula from He et al. (2022):

Dplanning = Dp X Cd X Ppub (2)

3.6.2. SDG 7-driven planning scenarios for RCPs

We developed four planning scenarios (BAU, EQ, EF, and BD) to
forecast the spatial allocation of urban RCPs from 2025 to 2030. Each
scenario is defined by a unique configuration of parameters governing
charging accessibility and efficiency, aligning with the sustainability
goals of SDG 7 (see Table 1).

3.6.3. SDG 7-driven planning model for RCPs

The SDG 7-driven planning model optimizes the RCP placement to
minimize charging demand gaps and travel distances, thereby aligning
with SDG 7’s mandate for equitable clean energy access. The study area
is divided into 1 x 1 km grids as the smallest spatial units, with each
grid’s center is designated as a demand point to represent localized
charging needs. The allocation of RCPs requires a comprehensive eval-
uation of surrounding site conditions and traffic patterns. RCP installa-
tion is restricted to roadside parking spaces on residential, secondary,
tertiary, and service roads. This excludes internal community roads and
high-grade roads (e.g., primary roads and expressways) in order to
comply with traffic and zoning regulations.

The parameters utilized in the SDG 7-driven planning model are
listed in Table 2.

The SDG 7-driven planning model is formulated as follows:

Minimize (Zsi + > mydy+ ZQ‘“J‘) 3)

icl icljeJ jeJ

subject to:

n;,s; >0, VieljelJ )
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Table 1
SDG 7-driven planning scenario for RCPs in 2030.
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Scenario Scenario Description Direction of Parameters Adjustment
BAU This scenario represents a continuation of current urban policies and serves asa  Parameters are configured according to existing municipal government
Scenario baseline for comparative analysis. documents and planning guidelines.

EQ Scenario
demand points.

EF Scenario

utilization efficiency.

This scenario creates a synergistic balance among SDGs 7.1 and 7.3 by

coordinating charging equity with efficiency.

BD Scenario

This scenario prioritizes SDG 7.1 by ensuring equitable charging access across all

This scenario focuses on SDG 7.3 by optimizing both accessibility and resource

The primary adjustment is an increase in the total number of RCPs to enhance
coverage.

Adjustments focus on reducing the distance between demand points and RCPs
while enhancing charging efficiency.

Parameters are adjusted to simultaneously improve both RCP accessibility and
operational efficiency.

Table 2
Parameters of the SDG 7-driven planning model.
Parameter  Definition
I Set of demand points i
J Set of candidates charging locations j
Si Charging demand gap at demand point i
h; Estimated number of EV with charging demand at demand point i per
day
ny Number of EVs allocated from demand point i to RCP j
d;j Distance from demand point i to RCP j
Aimax Max distance from demand point i to RCP j
Ji Set of charging locations within the coverage radius of demand point i
H" Number of EVs charged per day by each RCP
e Existing RCPs at location j
aj Additional RCPs to be deployed at site
Kmin Minimum required number of new RCPs
Kimax Maximum required number of new RCPs
Jr Sets of all candidate sites located in residential zones
Je Sets of all candidate sites located in commercial zones
G Maintenance cost for RCP at location j
> nysi=h, Viel (5)
Jjedi

Dng<d ule+a), Vied ©)

iel

1<ag<3 7)

kmin < Zaj < Kmax ®
jeJ

dj < dpax ©

J=J, U J, (10)

The objectives of the model (Eq. (3)) are threefold: to minimize the
charging demand gap, to reduce travel distances to RCPs and to mini-
mize maintenance costs. The primary objective reduces unmet EV
charging demand, while the secondary objective enhances accessibility
by minimizing distances from demand points to RCPs, and the tertiary
objective is to incorporates maintenance costs, which are typically
determined to be 2 % of the construction cost (Chen et al., 2023; Zhang
et al., 2018). Five constraints are incorporated: (1) Demand allocation
constraint: This constraint allocates EV charging demand to RCPs within
a coverage radius (Fig. 8), with unmet demand defining the gap. (2)
Coverage constraint: A service radius is defined based on governmental
guidelines and previous studies. This radius represents the maximum
distance between demand points and RCPs (Guo et al., 2018; He et al.,
2016). (3) This constraint limits charging capacity constraint: Limits
daily EV charging capacity per pile. (4) Quantity constraint: This
constraint restricts each site to 1-3 RCPs to maintain grid stability, per
China’s EV charging standards (StateGrid, 2016). (5) Land-use zoning
constraint: Limits RCP sites to residential and commercial zones, dis-
regarding demand points outside these areas. This is done to comply
with regulations and enhance deployment feasibility (Charly et al.,
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Fig. 8. Schematic diagram of allocating roadside charging demand from a
demand point to RCPs within a specified radius.

2023; Csiszar et al., 2019; Pu et al., 2025). We assume that electricity
grid load is addressed through using charging scheduling on regional
clean energy power supply network management (Zhou et al., 2025),
and using distributed generators to reduce negative impacts on the
electricity grid (Aggarwal et al., 2024). Therefore, electricity grid load is
not considered in the model. This study does not differentiate between
types of RCPs.

3.7. Roadside charging capacity estimation

Based on the EV charging demand D across NCDs, we estimated the
roadside charging capacity based on demand by using the number of EVs
in NCDs (Ngy). For example, we utilized Nanjing’s 2024 government-
reported EV ownership statistics (Nanjing Municipal Bureau of Statis-
tics, 2025) for estimation.

D = Ngy x Cq X Py 1n

The values of Cy4 and Py, are set as specified in Section 3.6.1.

We then estimated the roadside charging capacity based on demand
E, in each district. We established the energy per charging session for
EVS (Echarge) as 48 kWh, based on (Wang et al., 2019).

365
Eq = D X Echarge (12)
i=1

where i represents the day (i = 1,2,3,...,365). We assume that the RCPs
in NCDs exclusively operate in direct current (DC) fast charging mode,
and the initial state of charge of EVs upon arrival at the RCPs is dis-
regarded for calculation simplification.

Given that the planning scenarios and their parameter settings are
derived from the roadside charging demand assumptions in Section
3.6.1, we estimated the potential annual roadside charging capacity E,
in each district utilizing the number of RCPs (Np;,) and the number of EV



Q. Huang et al.

charges per RCP per day (u).

365
Ep = ZNpile X Echarge X U (13)

i=1
4. Results
4.1. Results and analysis of RCPs detection and localization

Following the detection of RCPs in NCDs using the RCPs-YOLO
model, its detection performance was subsequently evaluated. The
evaluation employed four key metrics commonly used in object detec-
tion: precision, recall, Fl-score, and mean average precision (mAP).
Comparative experiments with YOLOv8s and YOLOv11s, conducted on
the same dataset and computing platform with optimized hyper-
parameters, validate RCPs-YOLO’s superior accuracy and efficiency
(Table 3).

According to the results in Table 3, compared to YOLOv11s, RCPs-
YOLO achieves improvements of 2.6 % in precision, 2.8 % in recall, 3
% in Fl-score, and 1.9 % in mAP@O.5, while reducing parameters by
61.7 %. These gains stem from incorporation of the geospatial knowl-
edge head, which leverages prior knowledge of RCP locations and
structures, the CBAM attention module for enhanced feature learning,
and the Swin Transformer’s hierarchical windowing to address occlu-
sions. The reduced parameter count enhances efficiency, making RCPs-
YOLO suitable for resource-constrained environments while maintain-
ing robust detection of small objects like RCPs.

To validate the geographic localization accuracy of our MLOS
method, we refer to the evaluation results reported (Li et al., 2022a).
Our MLOS method is grounded in the rigorously validated adaptive
Line-of-Bearing (LOB) framework, which demonstrated a recall of at
least 88 % and a precision of at least 92 % for detecting pole-shaped
infrastructure (e.g., traffic signs and utility poles) across different
threshold settings. Given that RCPs exhibit physical characteristics
similar to these vertical pole structures and considering the comparable
urban environments of Nanjing and Changzhou in Jiangsu Province, our
approach integrates vector cross-product validation to enhance robust-
ness by eliminating erroneous intersections that indicate
backward-facing orientations. These methodological refinements,
coupled with the benchmark accuracy established by Li et al. (2022a),
demonstrate that the geographic localization accuracy of our MLOS
method is comparable to that reported in their study.

Based on the central pixel positions of the bounding boxes for RCPs
obtained from the detection results, and incorporating the LOS param-
eters, we calculated the MLOS intersection points. Cluster analysis was
then applied to filter eligible viewpoints, leading to the determination of
the geographic locations of RCPs in NCDs.

Fig. 9 shows the spatial distribution of RCPs in NCDs, highlighting
the specific locations of these piles in two representative sites. RCPs
exhibit clustered distribution patterns in Jiangnan downtown (Fig. 9
(a)). The intricate road network and high traffic volumes in Jiangnan
downtown reflect high transportation activity, which directly correlates
with residents’ urgent demand for accessible charging infrastructure.
Emerging urban districts developed in recent years, such as Jiangbei
new downtown and the southeastern sector of Jiangnan downtown,
currently exhibit a scarcity of RCPs, necessitating prioritized deploy-
ment planning in these areas. Furthermore, temporal limitations of
street view images may result in undetected newly installed RCPs in

Table 3

Performance comparison of RCPs-YOLO and other models.
Models Precision Recall Fl-score mAP@0.5 Parameters
YOLOv8s 0.866 0.639 0.73 0.767 111 M
YOLOv11s 0.872 0.603 0.71 0.755 9.4 M
RCPs-YOLO 0.898 0.631 0.74 0.774 3.6 M
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these areas. Future research can integrate multi-source geospatial data
to mitigate this methodological constraint.

Moreover, our findings reveal that RCPs are mainly deployed in
residential roads (Fig. 9(b)) and tertiary roads (Fig. 9(c)), a consequence
of urban planning strategies that primarily allocate charging piles to
high-density residential areas, transportation hubs, and commercial
centers, thereby achieving economies of scale in management and
maintenance. Simultaneously, high-traffic and densely populated areas
naturally emerge as preferred locations for charging pile allocation, as
they accommodate substantial EV user demand.

4.2. SDG 7-driven planning results and analysis of RCPs

4.2.1. Parameter settings of spatial planning model for RCPs

This section details the implementation of the spatial planning model
for RCPs in Nanjing. The population data utilized in the model were
sourced from the 2024 WorldPop gridded population dataset, which has
a 100-meter spatial resolution (https://hub.worldpop.org/). The urban
land use zoning data for Nanjing is sourced from the 2022 urban land
use data provided by Essential Urban Land Use Category-China (EULUC-
China 2.0) (Li et al., 2025). Table 4 presents parameter configurations
for the BAU scenario, which were set based on the actual situation in
NCDs. These parameter values were derived from municipal policy
documents and planning guidelines for public charging infrastructure.

Building upon the BAU baseline, Table 5 compares parameter ad-
justments across three alternative scenarios. Among them, the EQ sce-
nario prioritizes expanding service capacity by increasing daily EV
charging capacity per pile and raising allocation quantity thresholds, the
EF scenario emphasizes intensive resource utilization by reducing the
distance between demand points and RCPs while improving charging
efficiency, and the BD scenario balances accessibility-efficiency trade-
offs through moderate parameter tuning.

4.2.2. Spatial distribution results and analysis of potential RCPs

The model was solved using CPLEX 12.10 and Arcpy 3.0. Optimal
solutions indicate allocations of 1224 (BAU), 2192 (EQ), 1177 (EF), and
1693 (BD) additional RCPs. Fig. 10 illustrates the spatial distribution of
existing and potential RCPs across scenarios. The distribution of po-
tential RCPs is predominantly concentrated in commercial and resi-
dential zones, exhibiting greater allocations in newly developing
districts (e.g., Pukou and Jianye Districts), particularly in high-demand
areas. Conversely, scenic areas (e.g., Xuanwu District) are allocated
fewer RCPs to maintain traffic order.

In the BAU scenario, RCP allocation aligns with Nanjing Municipal
Government planning documents (Fig. 10(a)). However, this scenario
does not adequately address charging equity and efficiency consider-
ations, potentially exacerbating spatial imbalances and posing risks of
service inadequacy in emerging development zones.

The EQ scenario exhibits more equitable RCP distribution across all
regions compared to BAU, characterized by increased allocations in
established urban areas (e.g., Gulou District) (Fig. 10(b)). This pattern
stems from a deliberate emphasis on spatial equity, resulting in addi-
tional RCPs in high-traffic commercial districts, transportation hubs,
and newly developed urban areas. While improving accessibility, this
may strain grid infrastructure without targeted upgrades for charging
technology, challenging SDG 7.3.

The EF scenario shows minimal RCP expansion, emphasizing effi-
cient utilization (Fig. 10(c)), characterized by the fewest deployments
across three sample districts. This outcome reflects a strategy focused on
optimizing energy use and reducing waste, aligning closely with SDG
7.3. However, the limited expansion is driven by prioritizing efficiency
over broader coverage, which may risk inadequate service provision in
growing areas, potentially compromising SDG 7.1.

Compared to BAU, the BD scenario demonstrates moderate RCP
growth (Fig. 10(d)). Older districts (e.g., predominantly residential
Gulou District) receive allocations that address charging difficulties in
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Table 4
Parameter settings in the BAU scenario.

Parameter Value  Basis for Parameter Values

dmax (km) 0.9 This is consistent with the planning scheme “13th Five-Year
Plan for Electric Vehicle Charging Infrastructure” issued by
the Nanjing Municipal Transportation Bureau.

u (EVs/ 4 Based on empirical EV charging patterns, private EV users

day) typically require <5 h per charging session (Wang et al.,

2021), enabling each RCP to service no fewer than 4 EVs per
day.

Kmin (EVs) 1200 Following Nanjing’s Implementation Plan for Large-Scale

kinax (EVs) 1700 Equipment Renewal and Consumer Goods Replacement
(2024-2027), which targets 5000 new public charging
piles, we assume that RCPs will constitute 30 %40 % of the
total allocation targets through 2025-2030.

Table 5
Parameter settings in four scenarios.

Scenario diax (km) p (EVs/day) kmin (EVS) kmax (EVS)

BAU Scenario 0.9 4 1200 1700

EQ Scenario 1.0 4 1400 2200

EF Scenario 0.5 5 500 1200

BD Scenario 0.7 5 1400 1700

aging neighborhoods. Furthermore, more RCPs are allocated to Jiangbei
new downtown to align with the Nanjing government’s priority of
developing Jiangbei new downtown. This balanced network avoids
over-centralization, concurrently supporting SDG 7.1 and 7.3. Incorpo-
rating renewable energy into RCP operations could further align with
SDG 7.2, contingent on implementation details.

These scenarios impose varying grid and investment demands.

10

Nanjing is advised to align RCP strategies with developmental priorities
by 2030. We recommend the BD scenario for its balanced approach:
ensuring equitable access and promoting sustainable energy use.
Implementation should prioritize sufficient coverage in high-density
areas and new downtowns to advance both charging equity and sus-
tainable urban growth.

4.3. Estimation results of roadside charging capacity

To estimate the roadside charging capacity, we formulate assump-
tions based on the current status of EVs adoption and RCPs deployment
in NCDs, with parameter settings tailored to this specific context. Based
on the roadside charging demand, the RCPs in NCDs are estimated to
support a charging demand of approximately 301,537 kWh per day,
which equates to 110.1 GWh per year, consisting of approximately in
86.4 GWh Jiangnan downtown and 23.7 GWh in Jiangbei new
downtown.

Based on the four SDG 7-driven planning scenarios, the additional
RCPs under the BAU, EQ, EF and BD scenarios are projected to support a
potential annual charging capacity of approximately 85.8 GWh, 153.5
GWh, 103.2 GWh, and 148.3 GWh in the NCDs by 2030. Among these,
50.6 GWh, 79.8 GWh, 51.2 GWh and 68.0 GWh in Jiangnan downtown,
and 35.2 GWh, 73.7 GWh, 52.0 GWh and 80.3 GWh in Jiangbei new
downtown, respectively. The findings suggest that the BAU scenario
prioritizes a greater provision of potential roadside charging capacity in
Jiangnan downtown than in Jiangbei new downtown. If NCDs expands
RCP deployment by 2030 based solely on existing policy and planning
guidance, it will exacerbate service inadequacy in emerging develop-
ment zones. The EQ scenario offers the highest available potential
roadside charging capacity in Jiangbei new downtown and Jiangnan
downtown, attributed to the largest number of newly added RCPs. While
EF scenario maximizes the use of roadside charging resources, it also
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provides the lowest potential roadside charging capacity outside of the
BAU scenario and faces significant challenges regarding equipment
maintenance and technology upgrades. The BD scenario is optimal for
the development of RCPs, as it provides greater potential roadside
charging capacity in Jiangbei new downtown, ensuring alignment with
planning guidelines and promoting the construction of RCPs in new
urban areas.

5. Discussion

5.1. A cost-effective and accurate approach for detecting and locating
urban RCPs

Different from recent studies that focus on small object detection and
localization in the power sector (Xu et al., 2024), this research integrates
street view imagery with geospatial knowledge-assisted detection al-
gorithms and MLOS simulation to enhance the accuracy of urban RCPs
localization and facilitate the precise calculation of their geographic
coordinates. Our RCPs-YOLO model demonstrates an accuracy of 89.8 %
and mAP of 77.4 % in detecting RCPs, revealing clustering in Nanjing’s
central urban zones attributed to higher population density and EV
usage. This finding underscores the need for strategic urban planning to
optimize RCP placement (Carra et al., 2022).

Our framework also accommodates various data sources, while
initially developed with Baidu Street View, it can be transferred to other
platforms like Google Street View, enhancing its global applicability. It
provides precise geographic data for maintenance and supports sus-
tainable urban development with the expansion of electric mobility.

5.2. Sensitivity analysis of SDG 7-driven planning model

To assess the robustness of the SDG 7-driven planning model, we
conducted a sensitivity analysis on key parameters, including the
maximum distance dp and the daily EV charging capacity per RCP u.
This analysis evaluates how variations in these parameters affect the
model’s outputs, such as the spatial distribution of RCPs and overall
accessibility.

We tested perturbations of +10 % around the baseline values for
dmax and p in the BAU scenario (dpax=0.9 km, y=4), while holding other
parameters constant. For each perturbation, we recorded changes in the
total number of allocated RCPs, the average travel distance to RCPs, and
the unmet demand gap.

The results indicate that the model is relatively insensitive to small
variations in dpe within the tested range, reinforcing its stability for
urban planning applications. Conversely, when y changes by 10 %, total
RCPs and demand gap change by approximately 5-10 %, indicate that u
emerges as a key lever for optimizing demand coverage: increasing
charging efficiency per RCP reduces demand gap with minimal impact
on total RCPs or mean travel distance. This finding aligns with SDG 7
objectives by enabling more efficient use of existing infrastructure.
Urban planners can thus prioritize capacity enhancements over exten-
sive spatial adjustments when addressing demand shortfalls.

5.3. Policy implications for urban infrastructure management of
sustainable development

Another contribution of this study is the proposal of an SDG 7-driven
planning model for RCPs. It integrates urban planning with sustain-
ability principles, ensuring that EV charging piles align with both local
urban needs and SDG 7. The model emphasizes both charging accessi-
bility and operational efficiency.

For NCDs, the BD scenario is recommended to prioritize the alloca-
tion of new RCPs toward new downtown development by 2030. Planned
RCP installations could be implemented through phased deployment.
This strategic focus is essential as these areas are projected to experience
significant growth in electric vehicle adoption, necessitating robust
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charging infrastructure to support sustainable urban mobility. Our
model indicates that under the BD scenario, this allocation would opti-
mize both accessibility and efficiency, ensuring equitable distribution
while maximizing usage rates. The planned installation of new RCPs can
be implemented through a phased deployment strategy. Initially, high-
demand zones identified in our geospatial analysis should be priori-
tized, such as commercial hubs and residential clusters with limited
existing infrastructure. Subsequent phases would extend coverage to less
densely populated areas, ensuring comprehensive city-wide access.

Currently, the integration of renewable energy sources into RCPs
remains underdeveloped in Nanjing, largely due to insufficient policy
support and infrastructure. Future efforts should prioritize incorporating
renewable sources such as solar-powered charging piles (Huang et al.,
2019) to advance SDG 7.2 alignment and reduce electricity grid load.
Government subsidies for green infrastructure will be crucial to facili-
tate this transition. By providing financial incentives for the installation
of solar panels on RCPs, policymakers can make renewable energy
integration more economically feasible for operators. Additionally, such
measures would support Nanjing’s local sustainability objectives,
including reducing carbon emissions and promoting clean energy, while
contributing to global climate commitments.

5.4. Future applicability and limitations

This study offers a replicable framework for enhancing EV infra-
structure that can be adopted in diverse urban contexts. The city-scale
RCP street-view dataset reduces the need for manual annotation in
other settings, thereby improving RCP detection and planning effi-
ciency. It also supports advanced automation strategies, such as active or
transfer learning, to minimize human intervention and enhance scal-
ability. The SDG 7-driven planning model is designed for adaptability
across diverse urban contexts through its flexible parametric structure.
Parameters such as service radii and utilization rates can be tailored to
local EV adoption patterns and charging behaviors. For instance, cities
with high EV penetration may require smaller service radii to support
denser charging networks.

The limitation of this study stems from the temporal and spatial
constraints associated with street view imagery. The findings on RCP
distribution in Nanjing rely on existing BSV images, which may be
outdated; consequently, newly installed RCPs may not be captured in
the dataset. Incomplete coverage on minor roads and occlusions from
vehicles can also reduce detection accuracy (Campbell et al., 2019; Ma
et al., 2025). Future implementations could address these issues by
integrating iterative recapture technologies, such as backpack photo-
grammetric devices (e.g., Google Trekker) (Zhang et al., 2024), wear-
able cameras (Li et al., 2022b; Zhang et al., 2021) and the generation of
street view images using satellite imagery (Qian et al., 2025), enabling
annual updates to track RCP deployment and improve spatial-temporal
completeness.

The SDG 7-driven planning model operates at a strategic level and
thus does not directly incorporate the dynamics of electricity grid load.
Our model proceeds on the assumption that impacts of electricity grid
load at the selected sites can be mitigated through complementary
strategies, such as using charging scheduling on regional clean energy
power supply network management (Zhou et al., 2025), and using
distributed generators to reduce negative impacts on the electricity grid
(Aggarwal et al., 2024). Consequently, micro-level impacts of electricity
grid load studies would be a valuable next step to enhance the model’s
applicability to real-world urban energy systems.

6. Conclusion

This study proposes a framework for locating and planning RCPs,
aiming to estimate the potential roadside charging capacity. A case
study was conducted in NCDs, where we identified and geolocated
existing RCPs and evaluated potential allocation sites under SDG 7-
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driven planning scenarios. This empirical application verified the
feasibility and practicality of the proposed framework. The study
revealed that RCPs in NCDs exhibit a clustering pattern, particularly
with a concentration in Jiangnan downtown. Based on roadside
charging demand, the RCPs can support up to 86.4 GWh in Jiangnan
downtown and 23.7 GWh in Jiangbei new downtown. Guided by SDG 7,
we proposed and evaluated four planning scenarios to project the spatial
distribution and potential annual roadside charging capacity by 2030,
with estimated capacities of 85.8 GWh, 153.5 GWh, 103.2 GWh, and
148.3 GWh, respectively. The results provide valuable insights for urban
power management, public facility planning, and high-precision infra-
structure mapping.

This study holds significant implications for urban management and
smart city development. It recommends prioritizing BD scenarios, which
emphasize the balance between accessibility and charging efficiency,
and the prioritization of solar-powered RCPs to enhance renewable
energy integration. The framework’s adaptability, supported by its
flexible parametric structure and compatibility with diverse data sour-
ces like Google Street View.

Future research should incorporate backpack photogrammetric de-
vices, wearable cameras, and satellite imagery for updating street view
imagery and integrate electricity grid load constraints alongside
renewable energy sources. Such advancements would enhance the
framework’s precision, scalability, and alignment with SDG 7, thereby
further supporting sustainable urban development and smart city ini-
tiatives globally.
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