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A B S T R A C T

The rapid rise of electric vehicles (EVs) requires efficient detection and planning of urban roadside charging piles 
(RCPs) to support sustainable urban management. This study proposes a novel framework to optimize urban 
RCPs, integrating geospatial knowledge-assisted small object detection and Sustainable Development Goal 7 
(SDG 7)-driven planning. We developed RCPs-YOLO, a tailored model that leverages geospatial knowledge to 
improve small object detection, achieving 89.8 % precision and 77.4 % mAP@0.5 in detecting RCPs from street 
view images, and a multi-line-of-sight method for precise geographic localization. Based on the EVs roadside 
charging demand across Nanjing Central Districts (NCDs) in year 2024, we suggest that the RCPs could support 
up to 301,537 kWh/day in NCDs. We develop four SDG 7-driven planning scenarios, including business-as-usual, 
equity-oriented, efficiency-oriented, and balanced development. Under these scenarios, the potential annual 
roadside charging capacity in NCDs by 2030 is approximately 85.8 GWh, 153.5 GWh, 103.2 GWh, and 148.3 
GWh, respectively. Our findings suggest prioritizing the development of RCPs in newly developed downtown 
areas to promote equitable access and enhance energy efficiency. This approach offers a scalable, data-driven 
solution for urban planners aiming to advance progress toward SDG 7 and the development of smart cities.

1. Introduction

Urban power systems require secure and efficient operations to 
support the development of smart cities and to meet the increasing 
electricity demands (Qiu et al., 2024). Charging piles, a critical 
component of urban power infrastructure, can be installed in various 
locations, including roadside parking spaces (Charly et al., 2023). 
Although early electric vehicle (EV) infrastructure primarily consisted of 
centralized stations (Ji & Huang, 2018; Li et al., 2022a), these facilities 
often do not adequately address the needs of drivers requiring imme
diate charging during short-term parking (Ma & Fan, 2020). Roadside 
charging piles (RCPs) address this by providing accessible charging in 
existing parking spaces, thereby reducing land-use conflicts (Pu et al., 
2025), and contributing to Sustainable Development Goal 7 (SDG 7) by 
facilitating the transition to clean energy. The projected growth of the 
global EV fleet to 17 million by 2024, with China expected to account for 

the majority of these vehicles (IEA, 2024), underscores the urgent need 
for expanded charging infrastructure. It is anticipated that 3.5 million 
EV charging stations will be installed in China by the end of 2024 
(Xinhua, 2024). This rapid expansion underscores the critical role of 
charging infrastructure in facilitating the global transition to electric 
mobility and achieving sustainable urban development.

Effective planning of RCPs requires accurate data on their existing 
locations. However, public image datasets of RCPs are often lacking for 
urban infrastructure management (Bibri & Krogstie, 2017). This data 
gap hinders the equitable planning of new RCPs. The detection of RCPs 
is crucial, but their small size and widespread distribution pose chal
lenges. While methods such as unmanned aerial vehicles (UAVs) and 
infrared imaging are often costly and inaccurate (Outay et al., 2020), 
street view images offer a cost-effective solution with broad coverage. 
We created the first city-scale RCP street-view dataset through manual 
annotation, which provides a foundational resource for RCP detection 
and planning.
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While the spatial optimization of public EV charging infrastructure 
has been extensively researched, the focus has been on centralized EV 
charging stations; the detection and planning of small-scale RCPs remain 
underexplored due to their dispersed distribution and data scarcity (Li 
et al., 2024). This gap hinders the development of efficient urban 
charging infrastructure, particularly in densely populated areas where 
space is limited and demand for charging is high. Governments world
wide are increasingly prioritizing the adoption of eco-friendly trans
portation and the development of associated infrastructure (He et al., 
2016). SDG 7-driven planning, which integrates clean energy goals, 
offers a promising approach for RCP development, promoting equitable 
access and operational efficiency.

To fill these research gaps, we advance the RCPs planning efforts in 
three aspects, summarized below. 

(1) We extend small object detection by incorporating geospatial 
knowledge of RCPs, offering a novel approach to urban infra
structure mapping, which provides a data basis for the planning 
of RCPs.

(2) We embed SDG 7 targets into the planning criteria, providing 
urban planners with a replicable blueprint for optimizing EV 
infrastructure.

(3) We estimate the potential roadside charging capacity of RCPs 
under four SDG 7-driven planning scenarios. We provide a 
framework for fine-grained planning and charging capacity esti
mation of RCPs, which is crucial for promoting RCP construction.

2. Literature review

2.1. Small object detection and localization in the power sector

Recent advances in small object detection have demonstrated 
transformative potential across critical power sector operations, 
including equipment inspection, fault diagnosis, and infrastructure 
monitoring (Liu et al., 2022). However, detecting small-scale equip
ment, such as charging piles, in complex urban environments remains 
challenging due to low feature saliency and background interference 
(Ou et al., 2023). Deep learning innovations, including improved 
Transformer modules (Zhao et al., 2024) and multiscale feature fusion 
and attention mechanisms (Xu et al., 2024), have improved detection 
accuracy. However, despite these advancements, challenges remain, 
including limitations in image resolution and high costs of specialized 
data acquisition systems (McEnroe et al., 2022).

Street view imagery is a cost-effective alternative that provides fine- 
grained spatial detail for urban detection (Han et al., 2023). To address 
challenges such as low feature saliency and background interference, 
innovations such as attention-enhanced detection and multi-task 
learning frameworks (Li et al., 2022a) have been developed, which 
improve feature representation and integrate geometric constraints. 

Despite these efforts, detecting and locating small-scale power equip
ment, such as RCPs, in urban settings continues to be challenging due to 
complex backgrounds and occlusion issues. Existing methods often 
struggle to achieve robust performance (Li et al., 2024), highlighting the 
need for further research to improve detection accuracy in such 
environments.

2.2. Optimized allocation of urban charging piles

Optimizing urban EV charging infrastructure requires balancing 
spatial, socio-economic and policy factors, especially with the rise of 
smart cities and SDG mandates (He et al., 2022). Existing studies have 
developed multi-criteria evaluation frameworks that integrate key fac
tors such as population density, travel patterns, and the distribution of 
existing infrastructure. Spatial multi-criteria evaluation frameworks, 
combining GIS and AHP, are commonly used for infrastructure suit
ability analysis (Carra et al., 2022; Erbaş et al., 2018). Recent studies 
have focused on scenario-based optimization, such as corridor-specific 
planning (Erdoğan et al., 2022) and adaptive strategies for 
high-density areas (He et al., 2022). However, gaps remain in the precise 
location of charging piles and sustainable planning. Pu et al. (2025)
employed deep learning segmentation and 3D geometric projection for 
charging space estimation but lacked specific location and long-term 
sustainability considerations.

2.3. Summary

The literature reveals two primary research gaps that this study aims 
to address. First, there is the challenge of accurately detecting and 
locating RCPs in complex urban environments due to issues like back
ground interference and occlusion. Furthermore, there is a need for 
more precise and sustainable planning in the optimized allocation of 
urban charging infrastructure, addressing limitations in current methods 
that lack specific location and long-term sustainability considerations.

3. Materials and methods

3.1. Study area

Nanjing is the capital of Jiangsu Province in eastern China. Ac
cording to the “Nanjing Territorial Spatial Master Plan (2021–2035)” 
(Government, 2024), Nanjing Central Districts (NCDs) include the 
Jiangnan downtown and Jiangbei new downtown (Fig. 1).

The NCDs are critical transportation hubs with high traffic volumes 
and increasing demand for EV charging infrastructure due to their 
strategic location. The local government’s "14th Five-Year Plan for New 
Energy Vehicle Industry Development" promotes the installation of 
charging piles in roadside parking spaces, driving progress in sustain
able energy and transportation through the deployment of RCPs. How
ever, imbalances in RCP spatial distribution persist due to urban 
planning constraints, land-use conflicts, traffic dynamics, and uneven 
population distribution. Thus, developing robust methodologies for 
identifying and planning RCP locations is essential to support Nanjing’s 
sustainable development goals.

3.2. Research framework

Given the impact of current RCP distribution on future planning, our 
research framework integrates detection and planning methodologies 
through four components: (1) street view image collection, (2) a small 
object detection model for identifying RCPs, (3) the calculation of 
geographic coordinates for RCPs, and (4) SDG 7-driven planning for 
RCPs (Fig. 2). The first component involves the collection of street view 
images, which are essential for training the RCP detection model. The 
second component incorporates geospatial knowledge into a tailored 
detection model to address the limitations of conventional approaches in 

Nomenclature

EVs Electric vehicles
RCPs Roadside charging piles
SDG Sustainable Development Goal
MLOS Multi-line-of-sight
BAU Business-as-Usual
EQ Equity-Oriented
EF Efficiency-Oriented
BD Balanced Development
NCDs Nanjing central districts
BSV Baidu street view
LOS line-of-sight
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detecting small targets within urban environment from street view im
ages. The third component applies a MLOS simulation, leveraging the 
detection results from the second component to calculate the geographic 
locations of existing RCPs. The fourth component involves developing 
an SDG 7-driven planning model, establishing objectives and constraints 
grounded in the core principles of SDG 7 to determine the optimal 
spatial distribution and estimate potential roadside capacity of RCPs.

3.3. Baidu street view images collection

To construct Baidu Street View (BSV) image datasets for training the 
RCP detection model, road networks across NCDs were extracted from 
OpenStreetMap (OSM, https://www.openstreetmap.org/). These net
works were then sampled at 15-meter intervals, generating 2213,013 
sample points (Fig. 3(a)). Using Baidu Maps API, multi-orientation street 
view imagery (including front, back, left, and right views) was retrieved, 
along with its associated metadata (Fig. 3(b)). The acquired images 
underwent cylindrical equidistant projection to produce standardized 
360◦ panoramas with a resolution of 1024 × 512 pixels (Zhong et al., 
2021). Each panoramic image was oriented so that its central axis 
orientation aligned with the corresponding road direction angle (Fig. 3
(c)).

The construction of the RCP dataset posed significant challenges due 
to the small size and low occurrence frequency of RCPs in street view 
imagery. As small objects, RCPs are widely dispersed in the city (Zhang 
et al., 2023) and are frequently obscured by vehicles, pedestrians, or 
urban clutter in BSV images. Moreover, their sparse distribution neces
sitated the screening of massive volumes of data. We implemented a 
two-stage annotation process: (1) Pre-screening: We prioritized BSV 
images near known EV hotspots (e.g., commercial districts, trans
portation hubs) (Ji & Huang, 2018) to increase the likelihood of finding 
RCP-positive samples. (2) Annotation verification: We labeled RCPs 
under strict visibility criteria, including bounding box integrity, and the 
absence of severe occlusion. We finally collected and constructed a 
sample dataset of RCP-containing BSV images and manually screened 
706 RCP-containing images from 35,914 BSV images captured between 
2020 and 2023 across 14 major Chinese cities (e.g., Beijing, Shanghai, 
and Guangzhou).

3.4. RCPs-YOLO model for RCP detection

YOLOv11, while effective for general object detection, struggles with 
small-scale RCPs due to redundant deep feature extraction and limited 
spatial reasoning. We propose RCPs-YOLO, which introduces a key 

Fig. 1. Study area: (a) Nanjing, China. (b) NCDs.
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innovation: the integration of geospatial knowledge to enhance small 
object detection. Fig. 4 shows the modifications made to RCPs-YOLO 
based on YOLOv11, highlighted with red dashed boxes. 

(1) Geospatial knowledge head (RCPsDetect): We replace 
YOLOv11’s default detection head with RCPsDetect, which leverages 
a geospatial knowledge graph as a source of prior knowledge. This 

graph captures RCPs’ spatial relationships with urban entities (e.g., 
roads, parking spaces) and geometric attributes. RCPsDetect features 
two branches, the location-aware branch uses the knowledge graph 
to generate confidence maps for likely RCP locations, and the shape- 
refinement branch adjusts bounding boxes based on RCP geometric 
properties (Fig. 5).

Fig. 2. Framework of detection, locating and SDG 7-driven planning of RCPs.
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The knowledge graph is built through a semi-automatic process. 
First, we annotate street view images to identify RCPs; next, we define 
their spatial relationships and integrate this information into the graph. 
The location-aware branch utilizes the knowledge graph to predict high- 
probability zones for RCPs, fusing this spatial information with the 
feature maps from the backbone network, while the shape-refinement 
branch leverages geometric attributes from the knowledge graph to 
adjust bounding box predictions, ensuring alignment with typical RCP 
dimensions. 

(2) Backbone simplification: We simplify the backbone by removing 
the P5 layer and fusing the P4, P3, and P2 feature maps. This 
modification reduces the number of model parameters while pre
serving details crucial for small object detection.

(3) CBAM integration: A Convolutional Block Attention Module 
(CBAM) is integrated after the SPPF block to improve feature 
extraction for small objects in complex scenes.
(4) Swin Transformer integration: Three Swin Transformer modules 
are incorporated into each detection head to capture multi-scale 
features effectively.

3.5. The calculation of geographic coordinates for RCPs

We performed automatic geographic localization of RCPs using a 
MLOS simulation method designed with reference to the adaptive con
strained Line of Bearing (LOB) localization method proposed by Li et al. 
(2022a). Additionally, we introduce a vector cross-product method to 
eliminate erroneous MLOS intersections. The main process consists of 
three stages: (1) MLOS simulation based on detection results, (2) 

Fig. 3. Schematic diagram of BSV images collection: (a) Acquired BSV images using sample points (b) BSV images obtained from four directions at the yellow 
sampling point (c) Corresponding 360◦ panorama image (Source from: OpenStreetMap, https://www.openstreetmap.org/).

Fig. 4. Architecture of the RCPs-YOLO network.
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elimination of erroneous intersections occurring behind the LOS, and (3) 
LOS calculation using grid partitioning and spatial clustering (Fig. 6).

The MLOS method is based on geometric triangulation principles, 
which use multiple viewpoints to determine the latitude and longitude 
of charging piles (Li et al., 2022a). After detecting RCPs using the 
RCPs-YOLO model, the pixel coordinates of the bottom and top centers 
of the bounding box uB, uT are extracted from panoramic images, cor
responding to the pile’s geographic locations (Fig. 7 (a-c)). Each view
point generates a LOS using azimuth and elevation angles (θb,θt ,ϕb,ϕt) 

relative to the principal point hp (Fig. 7 (d-e)). The intersections of 
multiple LOSs determine the RCP’s location.

To ensure accuracy, a vector cross-product method is used to remove 
erroneous intersections located behind the line of sight, thereby 
retaining only valid, forward-facing intersections. This vector cross- 
product technique represents an improvement over the LOB method in 
(Li et al., 2022a), as it more effectively filters invalid intersections 
behind the viewpoints, leading to reduced localization errors in dense 
urban settings. The roadway is then divided into grids to reduce 

Fig. 5. Schematic diagram of RCPsDetect head architecture. (a) Geospatial knowledge graph of RCPs (b) Two specialized branches in RCPsDetect.

Fig. 6. Flowchart for automatic geographic localization of RCPs.
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computational complexity. The MLOS intersections are clustered to 
identify RCP locations, and the center of cluster is designated as final 
coordinates.

3.6. SDG 7-driven planning for RCPs

The SDG 7-driven planning model integrates the United Nations’ 
Sustainable Development Goal 7 (SDG 7), which emphasizes affordable 
and clean energy, into the spatial planning of RCPs. SDG 7 focuses on 
energy equity (SDG 7.1), optimizing energy structure (SDG 7.2), and 
enhancing energy efficiency (SDG 7.3). This model maps these sus
tainability targets to RCP planning by optimizing charging accessibility 
and operational efficiency, thereby providing a replicable blueprint for 
urban EV infrastructure.

The model leverages governmental EV policies and user charging 
behavior to determine demand, ensuring practical applicability. Four 
planning scenarios, including Business-as-Usual (BAU), Equity-Oriented 
(EQ), Efficiency-Oriented (EF), and Balanced Development (BD), project 
RCP allocation from 2025 to 2030, each aligned with SDG 7 objectives.

3.6.1. Demand analysis of RCPs for SDG 7
Demand analysis for RCPs forecasts spatial requirements to support 

SDG 7-driven planning, focusing on equitable and efficient charging 
infrastructure, we estimate RCP demand by estimating the EV purchase 
demand and daily usage demand, driven by population density in urban 
China (Ma & Fan, 2020), where limited private chargers increase reli
ance on public infrastructure (He et al., 2016; Wang et al., 2021). This 
correlation establishes population density as a key criterion for projec
ting EV adoption over a five-year horizon.

To estimate the EV purchase demand (Dp), we define the population 
count in the i-th region (Ni), the driving license ownership ratio (Plic), 
and probability of users intending to purchase EVs (P). The value for P is 
set to 0.13, based on the findings of He et al. (2022). Dp is then calcu
lated as: 

Dp = Ni × P × Plic (1) 

To estimate the daily utilization demand for RCPs (Dplanning), we 
define the daily charging probability for EVs Cd, the probability of users 
utilizing RCPs for charging Ppub. Based on prior studies, Cd is set to 0.33 
(Wang et al., 2021), and Ppub is set to 0.5 (He et al., 2022). Dplanning is then 
calculated using the formula from He et al. (2022): 

Dplanning = Dp × Cd × Ppub (2) 

3.6.2. SDG 7-driven planning scenarios for RCPs
We developed four planning scenarios (BAU, EQ, EF, and BD) to 

forecast the spatial allocation of urban RCPs from 2025 to 2030. Each 
scenario is defined by a unique configuration of parameters governing 
charging accessibility and efficiency, aligning with the sustainability 
goals of SDG 7 (see Table 1).

3.6.3. SDG 7-driven planning model for RCPs
The SDG 7-driven planning model optimizes the RCP placement to 

minimize charging demand gaps and travel distances, thereby aligning 
with SDG 7′s mandate for equitable clean energy access. The study area 
is divided into 1 × 1 km grids as the smallest spatial units, with each 
grid’s center is designated as a demand point to represent localized 
charging needs. The allocation of RCPs requires a comprehensive eval
uation of surrounding site conditions and traffic patterns. RCP installa
tion is restricted to roadside parking spaces on residential, secondary, 
tertiary, and service roads. This excludes internal community roads and 
high-grade roads (e.g., primary roads and expressways) in order to 
comply with traffic and zoning regulations.

The parameters utilized in the SDG 7-driven planning model are 
listed in Table 2.

The SDG 7-driven planning model is formulated as follows: 

Minimize

(
∑

i∈I
si +

∑

i∈I,j∈J
nijdij +

∑

j∈J
Cjaj

)

(3) 

subject to: 

nij, si ≥ 0, ∀i ∈ I, j ∈ J (4) 

Fig. 7. Schematic diagram of the bounding box for RCP: (a) Street view images (b) Bounding box (c) Image enlargement (d) Obtain LOS parameters from street view 
images (e) Corresponding spherical coordinates.
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∑

j∈Ji

nij + si = hi, ∀i ∈ I (5) 

∑

i∈I
nij ≤

∑
μ
(
ej + aj

)
, ∀j ∈ J (6) 

1 ≤ aj ≤ 3 (7) 

kmin ≤
∑

j∈J
aj ≤ kmax (8) 

dij ≤ dmax (9) 

J = Jr ∪ Jc (10) 

The objectives of the model (Eq. (3)) are threefold: to minimize the 
charging demand gap, to reduce travel distances to RCPs and to mini
mize maintenance costs. The primary objective reduces unmet EV 
charging demand, while the secondary objective enhances accessibility 
by minimizing distances from demand points to RCPs, and the tertiary 
objective is to incorporates maintenance costs, which are typically 
determined to be 2 % of the construction cost (Chen et al., 2023; Zhang 
et al., 2018). Five constraints are incorporated: (1) Demand allocation 
constraint: This constraint allocates EV charging demand to RCPs within 
a coverage radius (Fig. 8), with unmet demand defining the gap. (2) 
Coverage constraint: A service radius is defined based on governmental 
guidelines and previous studies. This radius represents the maximum 
distance between demand points and RCPs (Guo et al., 2018; He et al., 
2016). (3) This constraint limits charging capacity constraint: Limits 
daily EV charging capacity per pile. (4) Quantity constraint: This 
constraint restricts each site to 1–3 RCPs to maintain grid stability, per 
China’s EV charging standards (StateGrid, 2016). (5) Land-use zoning 
constraint: Limits RCP sites to residential and commercial zones, dis
regarding demand points outside these areas. This is done to comply 
with regulations and enhance deployment feasibility (Charly et al., 

2023; Csiszár et al., 2019; Pu et al., 2025). We assume that electricity 
grid load is addressed through using charging scheduling on regional 
clean energy power supply network management (Zhou et al., 2025), 
and using distributed generators to reduce negative impacts on the 
electricity grid (Aggarwal et al., 2024). Therefore, electricity grid load is 
not considered in the model. This study does not differentiate between 
types of RCPs.

3.7. Roadside charging capacity estimation

Based on the EV charging demand D across NCDs, we estimated the 
roadside charging capacity based on demand by using the number of EVs 
in NCDs (NEV). For example, we utilized Nanjing’s 2024 government- 
reported EV ownership statistics (Nanjing Municipal Bureau of Statis
tics, 2025) for estimation. 

D = NEV × Cd × Ppub (11) 

The values of Cd and Ppub are set as specified in Section 3.6.1.
We then estimated the roadside charging capacity based on demand 

Ed in each district. We established the energy per charging session for 
EVs (Echarge) as 48 kWh, based on (Wang et al., 2019). 

Ed =
∑365

i=1
D × Echarge (12) 

where i represents the day (i = 1,2,3,…,365). We assume that the RCPs 
in NCDs exclusively operate in direct current (DC) fast charging mode, 
and the initial state of charge of EVs upon arrival at the RCPs is dis
regarded for calculation simplification.

Given that the planning scenarios and their parameter settings are 
derived from the roadside charging demand assumptions in Section 
3.6.1, we estimated the potential annual roadside charging capacity Ep 

in each district utilizing the number of RCPs (Npile) and the number of EV 

Table 1 
SDG 7-driven planning scenario for RCPs in 2030.

Scenario Scenario Description Direction of Parameters Adjustment

BAU 
Scenario

This scenario represents a continuation of current urban policies and serves as a 
baseline for comparative analysis.

Parameters are configured according to existing municipal government 
documents and planning guidelines.

EQ Scenario This scenario prioritizes SDG 7.1 by ensuring equitable charging access across all 
demand points.

The primary adjustment is an increase in the total number of RCPs to enhance 
coverage.

EF Scenario This scenario focuses on SDG 7.3 by optimizing both accessibility and resource 
utilization efficiency.

Adjustments focus on reducing the distance between demand points and RCPs 
while enhancing charging efficiency.

BD Scenario This scenario creates a synergistic balance among SDGs 7.1 and 7.3 by 
coordinating charging equity with efficiency.

Parameters are adjusted to simultaneously improve both RCP accessibility and 
operational efficiency.

Table 2 
Parameters of the SDG 7-driven planning model.

Parameter Definition

I Set of demand points i
J Set of candidates charging locations j
si Charging demand gap at demand point i
hi Estimated number of EV with charging demand at demand point i per 

day
nij Number of EVs allocated from demand point i to RCP j
dij Distance from demand point i to RCP j
dmax Max distance from demand point i to RCP j
Ji Set of charging locations within the coverage radius of demand point i
μ Number of EVs charged per day by each RCP
ej Existing RCPs at location j
aj Additional RCPs to be deployed at site
kmin Minimum required number of new RCPs
kmax Maximum required number of new RCPs
Jr Sets of all candidate sites located in residential zones
Jc Sets of all candidate sites located in commercial zones
Cj Maintenance cost for RCP at location j

Fig. 8. Schematic diagram of allocating roadside charging demand from a 
demand point to RCPs within a specified radius.
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charges per RCP per day (μ). 

Ep =
∑365

i=1
Npile × Echarge × μ (13) 

4. Results

4.1. Results and analysis of RCPs detection and localization

Following the detection of RCPs in NCDs using the RCPs-YOLO 
model, its detection performance was subsequently evaluated. The 
evaluation employed four key metrics commonly used in object detec
tion: precision, recall, F1-score, and mean average precision (mAP). 
Comparative experiments with YOLOv8s and YOLOv11s, conducted on 
the same dataset and computing platform with optimized hyper
parameters, validate RCPs-YOLO’s superior accuracy and efficiency 
(Table 3).

According to the results in Table 3, compared to YOLOv11s, RCPs- 
YOLO achieves improvements of 2.6 % in precision, 2.8 % in recall, 3 
% in F1-score, and 1.9 % in mAP@0.5, while reducing parameters by 
61.7 %. These gains stem from incorporation of the geospatial knowl
edge head, which leverages prior knowledge of RCP locations and 
structures, the CBAM attention module for enhanced feature learning, 
and the Swin Transformer’s hierarchical windowing to address occlu
sions. The reduced parameter count enhances efficiency, making RCPs- 
YOLO suitable for resource-constrained environments while maintain
ing robust detection of small objects like RCPs.

To validate the geographic localization accuracy of our MLOS 
method, we refer to the evaluation results reported (Li et al., 2022a). 
Our MLOS method is grounded in the rigorously validated adaptive 
Line-of-Bearing (LOB) framework, which demonstrated a recall of at 
least 88 % and a precision of at least 92 % for detecting pole-shaped 
infrastructure (e.g., traffic signs and utility poles) across different 
threshold settings. Given that RCPs exhibit physical characteristics 
similar to these vertical pole structures and considering the comparable 
urban environments of Nanjing and Changzhou in Jiangsu Province, our 
approach integrates vector cross-product validation to enhance robust
ness by eliminating erroneous intersections that indicate 
backward-facing orientations. These methodological refinements, 
coupled with the benchmark accuracy established by Li et al. (2022a), 
demonstrate that the geographic localization accuracy of our MLOS 
method is comparable to that reported in their study.

Based on the central pixel positions of the bounding boxes for RCPs 
obtained from the detection results, and incorporating the LOS param
eters, we calculated the MLOS intersection points. Cluster analysis was 
then applied to filter eligible viewpoints, leading to the determination of 
the geographic locations of RCPs in NCDs.

Fig. 9 shows the spatial distribution of RCPs in NCDs, highlighting 
the specific locations of these piles in two representative sites. RCPs 
exhibit clustered distribution patterns in Jiangnan downtown (Fig. 9
(a)). The intricate road network and high traffic volumes in Jiangnan 
downtown reflect high transportation activity, which directly correlates 
with residents’ urgent demand for accessible charging infrastructure. 
Emerging urban districts developed in recent years, such as Jiangbei 
new downtown and the southeastern sector of Jiangnan downtown, 
currently exhibit a scarcity of RCPs, necessitating prioritized deploy
ment planning in these areas. Furthermore, temporal limitations of 
street view images may result in undetected newly installed RCPs in 

these areas. Future research can integrate multi-source geospatial data 
to mitigate this methodological constraint.

Moreover, our findings reveal that RCPs are mainly deployed in 
residential roads (Fig. 9(b)) and tertiary roads (Fig. 9(c)), a consequence 
of urban planning strategies that primarily allocate charging piles to 
high-density residential areas, transportation hubs, and commercial 
centers, thereby achieving economies of scale in management and 
maintenance. Simultaneously, high-traffic and densely populated areas 
naturally emerge as preferred locations for charging pile allocation, as 
they accommodate substantial EV user demand.

4.2. SDG 7-driven planning results and analysis of RCPs

4.2.1. Parameter settings of spatial planning model for RCPs
This section details the implementation of the spatial planning model 

for RCPs in Nanjing. The population data utilized in the model were 
sourced from the 2024 WorldPop gridded population dataset, which has 
a 100-meter spatial resolution (https://hub.worldpop.org/). The urban 
land use zoning data for Nanjing is sourced from the 2022 urban land 
use data provided by Essential Urban Land Use Category-China (EULUC- 
China 2.0) (Li et al., 2025). Table 4 presents parameter configurations 
for the BAU scenario, which were set based on the actual situation in 
NCDs. These parameter values were derived from municipal policy 
documents and planning guidelines for public charging infrastructure.

Building upon the BAU baseline, Table 5 compares parameter ad
justments across three alternative scenarios. Among them, the EQ sce
nario prioritizes expanding service capacity by increasing daily EV 
charging capacity per pile and raising allocation quantity thresholds, the 
EF scenario emphasizes intensive resource utilization by reducing the 
distance between demand points and RCPs while improving charging 
efficiency, and the BD scenario balances accessibility-efficiency trade
offs through moderate parameter tuning.

4.2.2. Spatial distribution results and analysis of potential RCPs
The model was solved using CPLEX 12.10 and Arcpy 3.0. Optimal 

solutions indicate allocations of 1224 (BAU), 2192 (EQ), 1177 (EF), and 
1693 (BD) additional RCPs. Fig. 10 illustrates the spatial distribution of 
existing and potential RCPs across scenarios. The distribution of po
tential RCPs is predominantly concentrated in commercial and resi
dential zones, exhibiting greater allocations in newly developing 
districts (e.g., Pukou and Jianye Districts), particularly in high-demand 
areas. Conversely, scenic areas (e.g., Xuanwu District) are allocated 
fewer RCPs to maintain traffic order.

In the BAU scenario, RCP allocation aligns with Nanjing Municipal 
Government planning documents (Fig. 10(a)). However, this scenario 
does not adequately address charging equity and efficiency consider
ations, potentially exacerbating spatial imbalances and posing risks of 
service inadequacy in emerging development zones.

The EQ scenario exhibits more equitable RCP distribution across all 
regions compared to BAU, characterized by increased allocations in 
established urban areas (e.g., Gulou District) (Fig. 10(b)). This pattern 
stems from a deliberate emphasis on spatial equity, resulting in addi
tional RCPs in high-traffic commercial districts, transportation hubs, 
and newly developed urban areas. While improving accessibility, this 
may strain grid infrastructure without targeted upgrades for charging 
technology, challenging SDG 7.3.

The EF scenario shows minimal RCP expansion, emphasizing effi
cient utilization (Fig. 10(c)), characterized by the fewest deployments 
across three sample districts. This outcome reflects a strategy focused on 
optimizing energy use and reducing waste, aligning closely with SDG 
7.3. However, the limited expansion is driven by prioritizing efficiency 
over broader coverage, which may risk inadequate service provision in 
growing areas, potentially compromising SDG 7.1.

Compared to BAU, the BD scenario demonstrates moderate RCP 
growth (Fig. 10(d)). Older districts (e.g., predominantly residential 
Gulou District) receive allocations that address charging difficulties in 

Table 3 
Performance comparison of RCPs-YOLO and other models.

Models Precision Recall F1-score mAP@0.5 Parameters

YOLOv8s 0.866 0.639 0.73 0.767 11.1 M
YOLOv11s 0.872 0.603 0.71 0.755 9.4 M
RCPs-YOLO 0.898 0.631 0.74 0.774 3.6 M
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aging neighborhoods. Furthermore, more RCPs are allocated to Jiangbei 
new downtown to align with the Nanjing government’s priority of 
developing Jiangbei new downtown. This balanced network avoids 
over-centralization, concurrently supporting SDG 7.1 and 7.3. Incorpo
rating renewable energy into RCP operations could further align with 
SDG 7.2, contingent on implementation details.

These scenarios impose varying grid and investment demands. 

Nanjing is advised to align RCP strategies with developmental priorities 
by 2030. We recommend the BD scenario for its balanced approach: 
ensuring equitable access and promoting sustainable energy use. 
Implementation should prioritize sufficient coverage in high-density 
areas and new downtowns to advance both charging equity and sus
tainable urban growth.

4.3. Estimation results of roadside charging capacity

To estimate the roadside charging capacity, we formulate assump
tions based on the current status of EVs adoption and RCPs deployment 
in NCDs, with parameter settings tailored to this specific context. Based 
on the roadside charging demand, the RCPs in NCDs are estimated to 
support a charging demand of approximately 301,537 kWh per day, 
which equates to 110.1 GWh per year, consisting of approximately in 
86.4 GWh Jiangnan downtown and 23.7 GWh in Jiangbei new 
downtown.

Based on the four SDG 7-driven planning scenarios, the additional 
RCPs under the BAU, EQ, EF and BD scenarios are projected to support a 
potential annual charging capacity of approximately 85.8 GWh, 153.5 
GWh, 103.2 GWh, and 148.3 GWh in the NCDs by 2030. Among these, 
50.6 GWh, 79.8 GWh, 51.2 GWh and 68.0 GWh in Jiangnan downtown, 
and 35.2 GWh, 73.7 GWh, 52.0 GWh and 80.3 GWh in Jiangbei new 
downtown, respectively. The findings suggest that the BAU scenario 
prioritizes a greater provision of potential roadside charging capacity in 
Jiangnan downtown than in Jiangbei new downtown. If NCDs expands 
RCP deployment by 2030 based solely on existing policy and planning 
guidance, it will exacerbate service inadequacy in emerging develop
ment zones. The EQ scenario offers the highest available potential 
roadside charging capacity in Jiangbei new downtown and Jiangnan 
downtown, attributed to the largest number of newly added RCPs. While 
EF scenario maximizes the use of roadside charging resources, it also 

Fig. 9. Spatial distribution of RCPs in NCDs: (a) Distribution of charging piles in NCDs (b) Details of the first site marked in the figure (c) Details of the second site 
marked in the figure.

Table 4 
Parameter settings in the BAU scenario.

Parameter Value Basis for Parameter Values

dmax (km) 0.9 This is consistent with the planning scheme “13th Five-Year 
Plan for Electric Vehicle Charging Infrastructure” issued by 
the Nanjing Municipal Transportation Bureau.

μ (EVs/ 
day)

4 Based on empirical EV charging patterns, private EV users 
typically require ≤5 h per charging session (Wang et al., 
2021), enabling each RCP to service no fewer than 4 EVs per 
day.

kmin (EVs) 1200 Following Nanjing’s Implementation Plan for Large-Scale 
Equipment Renewal and Consumer Goods Replacement 
(2024–2027), which targets 5000 new public charging 
piles, we assume that RCPs will constitute 30 %–40 % of the 
total allocation targets through 2025–2030.

kmax (EVs) 1700

Table 5 
Parameter settings in four scenarios.

Scenario dmax (km) μ (EVs/day) kmin (EVs) kmax (EVs)

BAU Scenario 0.9 4 1200 1700
EQ Scenario 1.0 4 1400 2200
EF Scenario 0.5 5 500 1200
BD Scenario 0.7 5 1400 1700
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Fig. 10. Spatial distribution of existing and potential RCPs in NCDs under four scenarios: (a) BAU scenario (b) EQ scenario (c) EF scenario (d) BD scenario.
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provides the lowest potential roadside charging capacity outside of the 
BAU scenario and faces significant challenges regarding equipment 
maintenance and technology upgrades. The BD scenario is optimal for 
the development of RCPs, as it provides greater potential roadside 
charging capacity in Jiangbei new downtown, ensuring alignment with 
planning guidelines and promoting the construction of RCPs in new 
urban areas.

5. Discussion

5.1. A cost-effective and accurate approach for detecting and locating 
urban RCPs

Different from recent studies that focus on small object detection and 
localization in the power sector (Xu et al., 2024), this research integrates 
street view imagery with geospatial knowledge-assisted detection al
gorithms and MLOS simulation to enhance the accuracy of urban RCPs 
localization and facilitate the precise calculation of their geographic 
coordinates. Our RCPs-YOLO model demonstrates an accuracy of 89.8 % 
and mAP of 77.4 % in detecting RCPs, revealing clustering in Nanjing’s 
central urban zones attributed to higher population density and EV 
usage. This finding underscores the need for strategic urban planning to 
optimize RCP placement (Carra et al., 2022).

Our framework also accommodates various data sources, while 
initially developed with Baidu Street View, it can be transferred to other 
platforms like Google Street View, enhancing its global applicability. It 
provides precise geographic data for maintenance and supports sus
tainable urban development with the expansion of electric mobility.

5.2. Sensitivity analysis of SDG 7-driven planning model

To assess the robustness of the SDG 7-driven planning model, we 
conducted a sensitivity analysis on key parameters, including the 
maximum distance dmax and the daily EV charging capacity per RCP μ. 
This analysis evaluates how variations in these parameters affect the 
model’s outputs, such as the spatial distribution of RCPs and overall 
accessibility.

We tested perturbations of ±10 % around the baseline values for 
dmax and μ in the BAU scenario (dmax=0.9 km, μ=4), while holding other 
parameters constant. For each perturbation, we recorded changes in the 
total number of allocated RCPs, the average travel distance to RCPs, and 
the unmet demand gap.

The results indicate that the model is relatively insensitive to small 
variations in dmax within the tested range, reinforcing its stability for 
urban planning applications. Conversely, when μ changes by 10 %, total 
RCPs and demand gap change by approximately 5–10 %, indicate that μ 
emerges as a key lever for optimizing demand coverage: increasing 
charging efficiency per RCP reduces demand gap with minimal impact 
on total RCPs or mean travel distance. This finding aligns with SDG 7 
objectives by enabling more efficient use of existing infrastructure. 
Urban planners can thus prioritize capacity enhancements over exten
sive spatial adjustments when addressing demand shortfalls.

5.3. Policy implications for urban infrastructure management of 
sustainable development

Another contribution of this study is the proposal of an SDG 7-driven 
planning model for RCPs. It integrates urban planning with sustain
ability principles, ensuring that EV charging piles align with both local 
urban needs and SDG 7. The model emphasizes both charging accessi
bility and operational efficiency.

For NCDs, the BD scenario is recommended to prioritize the alloca
tion of new RCPs toward new downtown development by 2030. Planned 
RCP installations could be implemented through phased deployment. 
This strategic focus is essential as these areas are projected to experience 
significant growth in electric vehicle adoption, necessitating robust 

charging infrastructure to support sustainable urban mobility. Our 
model indicates that under the BD scenario, this allocation would opti
mize both accessibility and efficiency, ensuring equitable distribution 
while maximizing usage rates. The planned installation of new RCPs can 
be implemented through a phased deployment strategy. Initially, high- 
demand zones identified in our geospatial analysis should be priori
tized, such as commercial hubs and residential clusters with limited 
existing infrastructure. Subsequent phases would extend coverage to less 
densely populated areas, ensuring comprehensive city-wide access.

Currently, the integration of renewable energy sources into RCPs 
remains underdeveloped in Nanjing, largely due to insufficient policy 
support and infrastructure. Future efforts should prioritize incorporating 
renewable sources such as solar-powered charging piles (Huang et al., 
2019) to advance SDG 7.2 alignment and reduce electricity grid load. 
Government subsidies for green infrastructure will be crucial to facili
tate this transition. By providing financial incentives for the installation 
of solar panels on RCPs, policymakers can make renewable energy 
integration more economically feasible for operators. Additionally, such 
measures would support Nanjing’s local sustainability objectives, 
including reducing carbon emissions and promoting clean energy, while 
contributing to global climate commitments.

5.4. Future applicability and limitations

This study offers a replicable framework for enhancing EV infra
structure that can be adopted in diverse urban contexts. The city-scale 
RCP street-view dataset reduces the need for manual annotation in 
other settings, thereby improving RCP detection and planning effi
ciency. It also supports advanced automation strategies, such as active or 
transfer learning, to minimize human intervention and enhance scal
ability. The SDG 7-driven planning model is designed for adaptability 
across diverse urban contexts through its flexible parametric structure. 
Parameters such as service radii and utilization rates can be tailored to 
local EV adoption patterns and charging behaviors. For instance, cities 
with high EV penetration may require smaller service radii to support 
denser charging networks.

The limitation of this study stems from the temporal and spatial 
constraints associated with street view imagery. The findings on RCP 
distribution in Nanjing rely on existing BSV images, which may be 
outdated; consequently, newly installed RCPs may not be captured in 
the dataset. Incomplete coverage on minor roads and occlusions from 
vehicles can also reduce detection accuracy (Campbell et al., 2019; Ma 
et al., 2025). Future implementations could address these issues by 
integrating iterative recapture technologies, such as backpack photo
grammetric devices (e.g., Google Trekker) (Zhang et al., 2024), wear
able cameras (Li et al., 2022b; Zhang et al., 2021) and the generation of 
street view images using satellite imagery (Qian et al., 2025), enabling 
annual updates to track RCP deployment and improve spatial-temporal 
completeness.

The SDG 7-driven planning model operates at a strategic level and 
thus does not directly incorporate the dynamics of electricity grid load. 
Our model proceeds on the assumption that impacts of electricity grid 
load at the selected sites can be mitigated through complementary 
strategies, such as using charging scheduling on regional clean energy 
power supply network management (Zhou et al., 2025), and using 
distributed generators to reduce negative impacts on the electricity grid 
(Aggarwal et al., 2024). Consequently, micro-level impacts of electricity 
grid load studies would be a valuable next step to enhance the model’s 
applicability to real-world urban energy systems.

6. Conclusion

This study proposes a framework for locating and planning RCPs, 
aiming to estimate the potential roadside charging capacity. A case 
study was conducted in NCDs, where we identified and geolocated 
existing RCPs and evaluated potential allocation sites under SDG 7- 
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driven planning scenarios. This empirical application verified the 
feasibility and practicality of the proposed framework. The study 
revealed that RCPs in NCDs exhibit a clustering pattern, particularly 
with a concentration in Jiangnan downtown. Based on roadside 
charging demand, the RCPs can support up to 86.4 GWh in Jiangnan 
downtown and 23.7 GWh in Jiangbei new downtown. Guided by SDG 7, 
we proposed and evaluated four planning scenarios to project the spatial 
distribution and potential annual roadside charging capacity by 2030, 
with estimated capacities of 85.8 GWh, 153.5 GWh, 103.2 GWh, and 
148.3 GWh, respectively. The results provide valuable insights for urban 
power management, public facility planning, and high-precision infra
structure mapping.

This study holds significant implications for urban management and 
smart city development. It recommends prioritizing BD scenarios, which 
emphasize the balance between accessibility and charging efficiency, 
and the prioritization of solar-powered RCPs to enhance renewable 
energy integration. The framework’s adaptability, supported by its 
flexible parametric structure and compatibility with diverse data sour
ces like Google Street View.

Future research should incorporate backpack photogrammetric de
vices, wearable cameras, and satellite imagery for updating street view 
imagery and integrate electricity grid load constraints alongside 
renewable energy sources. Such advancements would enhance the 
framework’s precision, scalability, and alignment with SDG 7, thereby 
further supporting sustainable urban development and smart city ini
tiatives globally.
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