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A B S T R A C T

In complex urban environments, accurately estimating the shading effects of trees on three-dimensional (3D) 
building surfaces is crucial to facilitate building design and urban greenery implementation. However, there is a 
long-unsolved challenge in efficiently and elaborately modelling trees and simulating spatiotemporally hetero
geneous shading effects of trees on 3D urban envelopes. To overcome the challenge, this study proposes a 
research framework that: (i) employs transfer learning to build a deep learning model for accurately segmenting 
geo-objects in Street View Images (SVIs), (ii) utilizes semantic segmentation results to fit regressions between the 
pixels of specific geo-objects in the SVIs and the corresponding real-world lengths of standard geo-objects, de
velops a 3D space geometric projection model for calculating tree coordinates and 3D geometries, and identifies 
the real spatial relationships between buildings and trees to calibrate errors caused by segmentation inaccuracies 
for subsequent simulations, and (iii) integrates the calibrated 3D tree models with 3D building models to 
construct a unified 3D urban model for estimating the spatiotemporal distribution of sunlight and shading. Using 
Singapore as the study area, we adopted DeepLabV3+, a widely used pre-trained semantic segmentation model, 
to achieve IoU of 91.51 % for buildings and 76.29 % for trees, with F1-scores of 97.93 % and 88.19 % 
respectively. Additionally, data calibration optimized initial tree polygons in 39.03 % of the SVIs, reducing 
outliers and improving modeling accuracy and robustness. The results demonstrate that the proposed framework 
efficiently and accurately models high-density urban environments, providing a practical solution to complex 
shading problems and reducing data acquisition and processing costs.

1. Introduction

1.1. Background

As global environmental problems become increasingly serious, the 
continuous increase in global greenhouse gas emissions has triggered 
frequent extreme climate events, directly threatening the balance of the 
earth’s ecosystem and the living environment of mankind. In this 
context, the international community has reached several consensuses 
and agreements, such as the 2015 Paris Agreement and the 2021 Glas
gow Climate Pact focusing on emission reductions and the shift to 

renewable energy [1,2]. Consequently, promoting renewable energy 
usage and reducing carbon emissions have thus become central issues in 
global economic and environmental policies. To further promote global 
energy transformation, many countries have increased the investment 
and development in renewable energy with unprecedented efforts. 
Among them, solar photovoltaic (PV) technology has become an 
important pillar of global energy transformation with its mature tech
nology, wide application and continuous cost reduction [3]. The 
installation of PV systems has grown rapidly in the past decade. In 2010, 
the global total installed PV capacity was about 40 GW, and by 2022, 
this figure exceeded 770 GW, with an annual growth rate of 18 % [4].
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However, with the acceleration of urbanization, land resources are 
becoming increasingly scarce, and traditional utility-scale PV power 
stations face land restrictions in many countries. To tackle this issue, 
Building-Integrated Photovoltaics (BIPV) as an emerging technology 
that combines PV modules with building structures have been used in a 
wide range of applications, such as rooftop PV tiles and façade PV cur
tain walls [5]. Rooftop PV systems benefit from good lighting conditions 
and optimized tilt angles for maximum solar irradiation, but their scale 
is limited by the available rooftop space. In contrast, façade PV systems 
can make full use of the vertical surface of the building, providing more 
possibilities for achieving energy efficiency and space utilization [6,7]. 
Nevertheless, in high-density urban environments, sunlight on building 
façades can be significantly reduced due to shading from surrounding 
geo-objects, such as trees, and current three-dimensional (3D) city 
models are difficult to be used for a fine-scale solar distribution esti
mation. This issue is particularly prominent in cities where trees are 
densely planted along roads and buildings, such as in some European 
countries [8] and Singapore [9], making an accurate estimation of solar 
distribution on 3D urban surfaces more challenging. To address this, 
shading analysis is crucial, alongside factors such as building orientation 
and tilt, to ensure accurate assessments of solar potential.

In recent years, LiDAR point clouds have been widely used to pro
duce fine modelling of buildings and trees in 3D urban environments 
[10]. Although this technique can generate highly accurate results, it 
presents challenges in large-scale urban applications due to complex 
data processing, high storage demands, and significant costs [11]. 
Therefore, there is an urgent need for alternative solutions. The major 
motivation of this study is to segment trees from Street View Images 
(SVIs) and accurately obtain their geo-coordinates along the road 
network, model their 3D geometries, and estimate their areas to facili
tate solar distribution estimation particularly on façades. The successful 
development of the proposed vision will support efficient and systematic 
solar potential analysis across large urban areas, reducing data costs and 
improving accuracy in assessing the impact of tree shading on BIPV 
systems. Moreover, the proposed framework extends beyond solar po
tential estimation to support the optimization of building energy per
formance. By incorporating detailed shading analyses, it facilitates 
dynamic solar gain management, enhancing strategies for improving 
façade and rooftop solar performance, such as BIPV design and shading 
device optimization. These capabilities enable more accurate assess
ments of solar gain impacts at both the building and urban scale, 
bridging the gap between solar energy modeling and sustainable urban 
planning.

1.2. Semantic segmentation of street view images

In urban environments, semantic segmentation technology for SVIs 
has made significant progress across various geo-objects, with broad 
applications and specific objectives. First, street greening was the most 
common application of this technology. Numerous studies used in
dicators such as the Green View Index (GVI) to evaluate urban greening, 
analyzing its impact on residents’ health, walkability, and sense of safety 
to optimize urban greenery planning [12,13]. Second, street canyon 
studies played a crucial role in microclimate analysis in high-density 
cities. They used semantic segmentation of SVIs to calculate the Sky 
View Factor [14], combined with the morphological characteristics of 
street canyons and GVI, to assess urban heat island effects and solar 
irradiation [15,16]. Third, building façade segmentation was important 
for improving the overall landscape quality of cities [17] and guiding 
urban poverty. Researchers extracted data on the appearance, structure, 
and style of buildings to evaluate the impact of urban design and land
scape planning [18], as well as the openness of buildings to the streets 
[19]. Fourth, with the rise of autonomous driving (AD) technology, 
vehicle and pedestrian detection has become a research hotspot. This 
technology can accurately identify vehicles and pedestrians in complex 
traffic environments, ensuring the safety and reliability of AD systems 

[20]. Additionally, it helped quantify pedestrian and traffic flow 
through other object detection models, contributing to the development 
of intelligent transportation systems [21]. Lastly, socioeconomic factor 
analysis was an emerging application direction. By analyzing vehicle 
types, building appearances, and other information from SVIs, re
searchers can infer socioeconomic attributes such as income levels and 
population distribution in certain areas [22]. In summary, the technol
ogy of semantic segmentation of SVIs has achieved broad application 
and significant progress in multiple fields. Researchers are increasingly 
focusing on addressing practical real-world application issues, such as 
how to more effectively apply segmentation results to urban planning 
and greenery evaluation, improve the management of street spaces and 
buildings, optimize dynamic environmental monitoring, and expand the 
use of SVIs in other areas of analysis.

Semantic segmentation technology for SVIs has demonstrated a 
number of advantages in several areas. First, SVIs typically encompassed 
multiple perspectives, and by combining with semantic segmentation, 
they made it possible to analyze the same geo-object from different 
angles, helping to create a more comprehensive urban model [23]. In 
addition, semantic segmentation efficiently processed SVIs from 
large-scale urban environments, automatically identifying and classi
fying various geo-objects such as buildings and trees, which significantly 
reduced the time and cost required for manual annotation. Moreover, 
SVIs offered high real-time capability and frequent updates, allowing 
them to dynamically analyze constantly changing urban environments, 
whether for short-term or long-term developments, and helping 
decision-makers better respond to the needs of urban management [24]. 
Finally, semantic segmentation technology possessed low environ
mental dependence, high scalability, and repeatability, requiring no 
special sensors or expensive hardware. This technology has adapted to 
various application scenarios and could be reused in different regions, 
maintaining consistent recognition performance [25]. These advantages 
made SVIs suitable for a variety of applications in different geographical 
scenarios worldwide, which can also provide a solid foundation for the 
development of smart cities, giving it broad application prospects in 
urban management, transportation systems, and environmental 
monitoring.

Although semantic segmentation for SVIs has made substantial 
progress, it still faced several challenges in practical applications. One of 
the primary issues was the mutual occlusion of geo-objects such as trees, 
buildings, and vehicles [26], which complicated precise identification 
and reduced segmentation accuracy. Additionally, while this technique 
handled large-scale geo-objects like the sky and roads effectively, it 
struggled with small-scale geo-objects such as road signs and traffic 
lights [27], as details were frequently lost during down-sampling. The 
image resolution also posed a limitation, making it difficult to capture 
the finer details of distant or smaller geo-objects [28]. Finally, 
geographic positioning errors caused inconsistencies between 
segmented geo-objects and their actual locations, particularly in com
plex urban environments where spatial relationships were challenging 
to represent accurately [29]. These limitations restricted the broader 
application of SVI-based segmentation, and enhanced data processing 
and model refinement were still needed in the future to overcome these 
challenges.

1.3. Deep learning based on semantic segmentation

In recent years, significant progress has been made in the research of 
semantic segmentation of SVIs using Deep Learning (DL) models. In 
2015, Long et al. [30] introduced Fully Convolutional Networks (FCN), 
marking a breakthrough in pixel-wise prediction methods and laying the 
foundation for SVI segmentation. Subsequently, Chen et al. [31] 
developed the DeepLab series, enhancing the ability to segment 
multi-scale geo-objects in complex scenes. In 2017, Zhao et al. [32] 
introduced PSPNet, which improved global context capture through 
pyramid pooling modules. In 2018, Chen et al. [33] further expanded 
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DeepLabV3+ by adding an encoder-decoder structure, optimizing the 
segmentation of objects with unclear boundaries. By 2020, Seo et al.’s 
[34] UPSNet unified instance and semantic segmentation, enhancing the 
recognition of geo-objects in complex urban scenes. Meanwhile, Laumer 
et al. [35] and Lumnitz et al. [26] applied CNN-based models to achieve 
efficient tree detection and improve tree segmentation respectively. By 
2023, Transformer-based methods such as Swin Transformers [36] had 
introduced sliding window mechanisms and multi-scale feature extrac
tion, further improving the ability to handle complex street view scenes. 
In addition, many other DL models have been proposed to address 
different challenges, making it crucial to define research objectives 
clearly and select the most suitable model for specific applications. 
Numerous SVI datasets have played a key role in training DL models, 
offering a robust foundation for segmenting complex scenes and various 
geo-objects across urban environments. Popular datasets such as ADE20 
K, and Cityscapes were frequently used for trees, buildings, and sky 
segmentation, while CamVid and KITTI were widely applied in the 
segmentation of vehicles, pedestrians, and traffic signs, particularly in 
autonomous driving and traffic monitoring.

Throughout the development of DL methods in SVI segmentation, 
several advantages have emerged, offering effective solutions to various 
challenges. Recent models have been able to address the following issues 
well. First, they provided high precision in identifying and segmenting 
geo-objects in complex scenes, ensuring the accurate capture of details 
[37]. Secondly, their multi-scale processing capability allowed them to 
handle geo-objects of different sizes, adapting to diverse urban envi
ronments. Furthermore, these models excelled at capturing both global 
and local information, ensuring reliable segmentation even in cases of 
long-distance dependencies or occlusion [38]. Additionally, they 
demonstrated strong adaptability and generalization, maintaining high 
accuracy in different cities and under various weather conditions [39]. 
Finally, they excelled in edge detection, accurately identifying blurred 
boundaries in complex backgrounds, and effectively capturing small 
geo-objects such as traffic signs, thereby improving overall segmenta
tion accuracy [40]. Looking ahead, the next step could focus on trans
lating these segmentation results into practical applications such as 
traffic monitoring and urban management, where they can provide 
concrete benefits for smart city development.

Although DL can well address highly complex problems, it still faces 
several key challenges. First, these models heavily relied on large 
quantities of labeled data. Despite the availability of numerous public 
datasets, the generalization ability of models remained constrained 
when applied to diverse cultural, architectural, and environmental 
contexts. Second, large models such as Transformers demanded sub
stantial computational resources [41], which raised the cost of training 
and inference, especially in resource-limited environments. Third, the 
interpretability of these models was often lacking, making it difficult to 
diagnose topological relationships of segmented geo-objects and correct 
spatial mismatch due to their complex internal mechanisms. Fourth, 
while each model demonstrated its own strengths, no universal model 
had yet emerged that combined all these advantages, limiting their 
application in complex urban environments. Thus, it is imperative to 
develop an adaptive DL model to accurately segment trees from SVIs and 
effectively identify their measurable geometrics with precise 
geo-locations. To address these issues, this study will utilize transfer 
learning to learn the standardization norms of public datasets and 
determine the optimal DL model capable of segmenting various 
street-view geo-objects. This approach will enhance model training 
using the custom SVIs in the study area, improving the recognition ac
curacy of geo-objects presenting in the complex urban environments.

1.4. Solar potential estimation on 3D urban envelopes

Solar irradiation models were used to estimate solar irradiation that 
could be collected at a specific location on the Earth’s surface. However, 
traditional models, such as the Perez model and r.sun model, could only 

run on two-dimensional (2D) raster maps that provided surface eleva
tion data and could not be used to estimate irradiation on vertical sur
faces like building façades [42,43]. To improve accuracy, the v.sun 
model was developed to calculate solar irradiation on a Triangular 
Irregular Network, which essentially represented the 3D world in a 2.5D 
form, making it prone to losing 3D geometric information [44]. Building 
on this, the SOL model computed solar irradiation distribution on ver
tical surfaces by generating super points [45]. Erdélyi et al. [46] 
developed the SORAM model, which ignored reflected irradiance but 
used a high-resolution sky model and ray-tracing methods to detect 
obstructions. In another approach, Liang et al. [47] employed a novel 
GPU ray-casting technique to calculate solar irradiation on building 
envelopes in real time, but due to memory limitations, it could not 
handle large scenes.

Meanwhile, with advances in LiDAR technology and drone data 
acquisition, 3D point clouds data of buildings and other structures in 
urban environments were obtained with higher precision, especially for 
evaluating shading effects from tall buildings in complex urban envi
ronments. Using DSM as the model input, Lindberg et al. [48] developed 
a raster-based shadow calculation method to determine the shading 
effect of surrounding buildings on rooftops and façades, but this type of 
simulation was time-consuming. To address this, Vulkan et al. [49] 
developed a vector-based modeling approach that used 2.5D polygons to 
simplify building models, though this method overlooked some building 
attributes. Moreover, most studies focused only on shading effects be
tween buildings, neglecting obstacles like trees, which could signifi
cantly reduce a building PV energy output [50].

As DL advanced, recent research began to explore different tree 
shading modeling methods, including full point clouds models, fully 
opaque entities, semi-transparent entities and perforated entities, to 
more accurately simulate the shading effects of trees on buildings. For 
example, Tian et al. [51] modeled the solid surfaces of buildings and 
terrain, treated trees as point clouds, and used the Disordered Graph 
Convolutional Neural Network (DGCNN) model for semantic segmen
tation of trees. This produced a hybrid model that outperformed other 
models in accurately predicting the impact of partial tree shading on PV 
performance. In addition, Kurdi et al. [52] introduced a 3D parame
terizable and visualizable mathematical model of individual tree point 
clouds, using a rotational surface to simulate tree geometry, creating a 
layered and segmented structure that was more realistic. The relative 
accuracy of this model ranged from 0.4 % to 17.5 %, making it a simple 
and effective 3D modeling algorithm for individual trees.

Current 3D solar PV potential estimate models exhibited a high level 
of advancement. They can relatively accurately calculate solar irradia
tion distribution on complex geometric shapes, especially on building 
façades and rooftops, making them more reliable for architectural 
design and PV system evaluation. Additionally, they effectively simu
lated building shading effects in high-density urban environments, 
improving the accuracy of solar PV estimation [53]. Moreover, they can 
integrate various data sources to provide detailed environmental 
modeling [54]. However, their drawbacks included high computational 
resource requirements, complexity, and time-consuming modeling 
processes. Furthermore, many models tended to overlook factors such as 
building materials, reflectivity, and the impact of trees and other natural 
obstacles on irradiation, leading to reduced simulation accuracy. To 
overcome these limitations, DL-based semantic segmentation can 
effectively model trees from SVIs and integrated them into 3D solar 
irradiation models [55,56], which addressed the issue of obstacles 
obstructing buildings, allowing for a more accurate estimation of PV 
potential and enhancing the overall accuracy of the simulations.

1.5. Contribution

This study addressed a critical gap in existing solar potential models, 
which were constrained by limitations in incorporating the complex 
shading effects of surrounding geo-objects, especially trees. To 
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overcome this challenge, we developed a new technique that uses 
standard geo-objects in SVIs as references to establish the relationship 
between pixel length and real-world dimensions. This approach enables 
accurate calculation of the area and location of trees, which are then 
systematically integrated into sunlight and shading models, allowing for 
fast and precise analysis. To the best of our perception, this should be the 
first study to rapidly construct vertical surface sunlight models for 
buildings while accounting for tree shading. It significantly reduces the 
time required to locate and analyze shading effects in urban environ
ments, thereby enhancing the efficiency and accuracy of large-scale 
sunlight and shading potential assessments.

2. Methodology

We proposed a multi-module research framework for a comprehen
sive analysis of trees, buildings, and sunlight and shading distribution in 
the urban environment (Fig. 1). The first module conducts data collec
tion in the study area and generates sampling points on the roads near 
EV charging stations to collect SVIs, for modelling shading effects of 
trees and analyzing the capability of solar charging of EVs. The second 
module: (i) evaluates the performance of datasets and DL models to 
select the optimal segmentation model for semantic segmentation of 
SVIs, (ii) compares the segmentation results with real-world data to fit 
regressions between the pixels of specific geo-objects in the SVIs and the 
corresponding real-world lengths of standard geo-objects [57], and (iii) 
determines the nearest points of buildings and trees relative to the 
camera based on the segmentation results, uses these points as refer
ences to establish the geospatial relationships of buildings and trees in 
the real world, and calibrates inaccurately segmented SVIs to ensure 
more precise 3D positioning of buildings and trees. The third module 
projects the polygonal coordinates of trees into 3D space to form 3D tree 
model, which is integrated with the 3D building model to estimate the 
spatiotemporal distribution of sunlight and shading on the 3D urban 
envelopes. The workflow is presented in Fig. 2.

2.1. Study area

Singapore is in southeast Asia, close to the equator, which provides 

Singapore sufficient sunshine throughout the year, with an abundant 
annual land-surface solar irradiation about 1580 kWh/m² [58]. While 
due to the limited land resources, dense buildings and a trend towards 
high-rise buildings in Singapore, the government has actively promoted 
the development of green buildings with the integration of BIPV tech
nology. An effective penetration of solar energy requires an accurate 
estimation of PV potential on 3D building envelopes, affected by solar 
azimuth, elevation, and shadows from surrounding buildings and 
geo-objects such as trees. Singapore is known for its image as a “garden 
city” with a green coverage rate of more than 50 %, which presents both 
challenges and opportunities to the design and application of BIPV 
systems. Combining BIPV systems with EV charging stations not only 
provides clean energy for charging EVs, but also significantly improves 
the energy efficiency of buildings, optimizes space utilization, reduces 
energy losses, and reduces dependence on the power grid. Therefore, 
Singapore is an ideal study area for studying sunlight and shading dis
tribution in a complex urban environment.

2.2. Data description and collection

2.2.1. Data sources
Road network information was obtained through OpenStreetMap. 

Road directions and SVIs were collected from Google Maps Platform via 
the purchased Directions API and Street View Static API respectively. 
Building data, including building height, location, and shape, were ob
tained from a private sector. EV charging station data were from a public 
data portal.

2.2.2. Generation of sampling points
We selected the vicinity of EV charging stations as the experimental 

area, drew a 100-meter buffer around the 252 EV charging station lo
cations collected, and retained all road and building data within the 
buffer to ensure that the analysis covers key areas related to EV charging 
(Fig. 3). The road network was further refined by removing sections 
without SVIs, such as viaducts and internal building roads. Only urban 
streets on the ground were kept for maintaining accuracy and relevance 
for subsequent analysis. Finally, 3739 sampling points were then 
generated every 20 meters along the remaining roads to capture precise 

Fig. 1. Research framework for 3D urban sunlight and shading distribution simulation.
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coordinates.

2.2.3. Collection of SVIs
SVIs were collected on both sides of the road at 90◦ to the road di

rections, which can clearly identify the spatial relationship between the 
position of trees relative to buildings, as well as the shading effect of 
trees on buildings. The size of them is set to 400 pixels × 400 pixels. The 
field of view (FOV) is 90◦, which enables the image to cover a broader 

area and capture a wider range of environmental information by 
encompassing a wide angle across the horizontal plane. The pitch angle 
is 0◦, and the camera is shot in a horizontal position without tilting up or 
down. Among the 7862 SVIs collected, there are 2 images without data, 
126 images collected in the invalid locations, 378 images did not meet 
the requirements due to significant angel deviation, 414 images were 
largely obstructed (Fig. 4), and another 646 images were repeatedly 
collected due to proximity. Finally, 6278 SVIs were retained, accounting 

Fig. 2. Workflow for simulating the distribution of sunlight and shading.

Fig. 3. Map of EV charging station distribution.

Fig. 4. Sample SVIs that were eliminated for the first time. (a) No data. (b) Invalid location. (c) Angle deviation. (d) Large occlusion.
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for 79.85 % of the original images.

2.3. Recognition of geo-objects in SVIs

2.3.1. Semantic segmentation and binarization
We first evaluated the transfer learning effectiveness of the same DL 

model by using two public datasets, ADE20 K and Cityscapes. The results 
showed that the ADE20 K dataset performed more accurately in seg
menting geo-objects, including buildings and trees, and was therefore 
selected as the foundational dataset for this study. Subsequently, we 
evaluated the transfer learning ability of three DL models (FCN [30], 
PSPNet [32], and DeepLabV3+ [33]) with ADE20K. These three models 
are based on CNN architectures. We chose to use them instead of more 
advanced models like Transformer because Transformers excel in 
capturing global features but lack the sensitivity to local details that 
CNNs provide, especially in high-resolution segmentation tasks for SVIs 
[59]. By comparing their performance on different geo-objects in terms 
of metrics such as Recall, Accuracy, Precision, Intersection over Union 
(IoU), and F1-Score, DeepLabV3+ was ultimately identified as the 
best-performing model. To further optimize segmentation performance, 
we adopted the DeepLabV3+ model pre-trained on the ADE20 K dataset 
via the GluonCV platform [60], directly utilizing the trained and vali
dated model parameters. These parameters were optimized through a 
combination of Cross-Entropy Loss and Dice Loss to ensure precision and 
robustness in pixel-level labeling tasks. Validation results demonstrated 
the model’s high generalization capability and outstanding 
performance.

During the testing phase, we collected 100 SVIs in Singapore with as 
much diversity as possible to annotate and divide them into a test set, 
using the test set to comprehensively evaluate its performance in 
handling specific scenarios within real urban environments. This eval
uation helped us understand the model’s segmentation precision and 
generalization capability for different geo-objects.

After performing semantic segmentation on the SVIs, buildings and 
trees were identified as key categories for further investigation. To 
analyze them more accurately, we applied a binarization process to 
separate them from other geo-objects. Specifically, we conducted two 
sets of identifications on the same image: in the first set, trees were 
assigned a pixel value of 1, and all other geo-objects were assigned a 
pixel value of 0; in the second set, buildings were assigned a pixel value 
of 1, with all other geo-objects again assigned a pixel value of 0. 
Consequently, we generated corresponding black-and-white images, 
which clearly highlight the target geo-object and provide a solid foun
dation for subsequent detailed analysis.

2.3.2. Identifying the nearest ground point between the geo-objects and the 
camera

When processing the buildings and trees in the binary image, we first 
needed to determine the nearest ground points of buildings and trees to 
the camera, which typically represented where these geo-objects touch 
the ground in the image. If the SVI was considered as the x-y plane in 3D 
space, this point demonstrated the start of the geo-object’s connection 
with the ground. Using this as a reference point allowed us to accurately 
determine the real-world locations of buildings and trees in a 3D urban 
space and assisted with 3D modelling.

To simplify the calculation and 3D reconstruction process, we define 
the nearest point for each geo-object as the ground point nearest to the 
camera, rather than the true nearest point on the geo-object itself 
(Fig. 5). This choice was made because it provides a clear and fixed 
reference point, enabling a more consistent and efficient mapping of 
pixel data to real-world coordinates. Nevertheless, this assumption does 
not introduce significant errors or deviations because the camera is 
positioned on the road and is at least 5 meters away from the building. 
Assuming a camera height of 2 meters, the actual nearest distance error 
is only about 0.3 meters. As the building moves farther from the camera, 
this error decreases.

Theoretically, to estimate the shading of a tree on building envelopes 
from SVIs, the tree had to be closer to the camera than buildings. To 
ensure the accuracy of the results, we conducted a second round of 
image filtering. First, we selected the images which contain both 
buildings and trees. Second, we excluded situations where the 
arrangement of trees and buildings made it difficult to determine their 
front-back spatial relationship subject to the viewpoint of the camera, 
such as at intersections and T-junctions (Fig. 6). As a result, we deleted 
669 and 1154 images during the two consecutive filtering, and the 
remaining 4455 valid images were used for subsequent calculations.

2.3.3. Tree position adjustment after segmentation
After eliminating objective interferences, to ensure accurate differ

entiation between trees and buildings, we compared the nearest points 
to the camera for buildings and trees in each SVI as described in Section 
2.3.2. Theoretically, the distance value for trees should have been 
smaller than that for buildings. Thus, if a tree’s value was greater than or 
equal to that of a building, it generally suggested errors in the seg
mentation results. In this case, we recalculated the tree’s new reference 
point based on urban greening regulations and moved the tree 3 meters 
in front of the building [61]. It is important to note that this adjustment 
relied on the process of mapping pixel coordinates to real-world co
ordinates. We need convert the pixel coordinates to their corresponding 
geographic locations in the real-world coordinate system, calculate the 

Fig. 5. The nearest ground point in SVIs using a 2D to 3D perspective.
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3-meter offset in the real-world coordinate system, and then convert this 
offset back to the pixel coordinate system. The specific calculation of this 
mapping process will be discussed further in Section 2.4. Additionally, 

in the camera optical system, the vanishing point typically aligns with 
the camera’s optical axis, which is the line from the center of the lens to 
the center of the image plane, usually pointing toward the image center. 

Fig. 6. Sample segmentation images that were eliminated for the second time. (a) (b) (c) No buildings or trees or both. (d) Crossroad.

Fig. 7. Flowchart for tree location calibrations. The brown solid line represents the lowest detected building position, the green solid line represents the lowest 
detected tree position, and the green dotted line represents the calibrated tree position.
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In the SVI collection standards we established, the camera’s FOV was 
perfectly symmetrical, so all perspective projections converged toward 
the center. As a result, the vanishing point of the horizon should be 
located at the center of each SVI, and the ground contact points of 
geo-objects (e.g., buildings or trees), should have appeared below the 
vanishing point in the lower half of SVI. Although perspective distortion 
can affect the shape of objects, it does not affect the position of the 
vanishing point in the perspective projection. The vanishing point 
generated by the perspective projection is determined by the geometric 
relationship between the geo-object’s spatial position and the camera, 
independent of distortion. Considering that the size of SVIs was 400 ×
400 pixels, the nearest ground points of buildings and trees to the 
camera should not have exceeded 200 pixels [62].

In the segmentation results, we processed them according to the 
positional relationship between tree and building and different situa
tions in each SVI, and the specific steps is shown in Fig. 7. When the 
nearest ground point of the tree to the camera did not exceed 200 pixels, 
firstly, if the tree’s distance value was smaller than the building’s dis
tance value, the segmentation result was considered correct (Fig. 7(a)), 
and it aligned with the expected geometric relationship according to 
perspective. Secondly, if the tree’s distance value was greater than or 
equal to the building’s distance value, and moving the tree 3 meters in 
front of the building would have caused it to be outside the image frame, 
this usually indicated that other nearby geo-objects had been incorrectly 
identified as buildings. In this case, we retained its original value, as 
shown in Fig. 7(b). Thirdly, if the tree’s distance value was greater than 
or equal to the building’s distance value, and moving the tree 3 meters in 
front of the building was feasible, this indicated that the building was 
correctly identified, but the tree trunk was recognized incompletely. We 
moved the tree to the correct position (Fig. 7(c)).

When the nearest ground point of the tree to the camera exceeded 
200 pixels, fourthly, if the tree was complete but the tree trunk was not 
recognized and the building was correctly identified, similar to the 
previous case, we moved the tree to the correct position (Fig. 7(d)). 
Fifthly, if the tree was complete but the tree trunk was not recognized 
and the nearby geo-object was incorrectly identified as a building, we 
could not find the correct reference for the building. In this case, we 
moved the tree to its furthest possible growth position, which was the 
center of the image, at the 200th pixel, as shown in Fig. 7(e). Sixthly, for 
incomplete trees where only the tip appeared in the image, and their 
planting points were actually outside the image frame, regardless of 
whether the building was correctly identified, we moved the tree’s new 
reference point uniformly to a position 1 pixel grid from the bottom of 
the image. This adjustment ensured that the tree remained in the image, 
but when only a very small part was visible, it was not enough to cast a 
noticeable shadow (Fig. 7(f)). Through this calibration method, we were 
able to process and analyze the trees and buildings in the SVI more 
accurately, thus improving the practical application value of the model.

2.3.4. Pre-processing of tree area and location
Since we aimed to precisely extract the trees in the foreground of 

buildings from SVIs, including their area and location, additional 

processing steps were required for the trees in the images. To accurately 
quantify the area, it is necessary to calculate the number of pixels in the 
binary image of the trees, providing essential pixel data for estimating 
the coverage area. Simultaneously, to accurately determine the trees’ 
locations, we needed to identify their polygonal outlines. After detecting 
the full outlines of the tree areas in the images, these outlines were 
converted to polygons determined by refined vertices. This process 
preserved the basic shape and characteristics of the trees while reducing 
computational complexity, providing a clear and accurate outline for 
subsequent spatial analysis and 3D modeling (Fig. 8).

2.4. Estimating 3D coordinates of the segmented geo-objects

2.4.1. Fitting of 3D coordinate equations
To project segmented geo-objects from 2D images into 3D space, we 

can use the real-world distance of known geo-objects from the camera 
and their pixel dimensions in the image. For example, a curb, a sidewalk, 
or even a building that can be fully visible in the image. Similar ap
proaches have been conducted in several studies to address the tree 
dimension estimation measurement problem [63,64]. The 3D space had 
three axes: x, y, and z. If a geo-object is at the d-th pixel from the bottom 
edge of the SVI, the horizontal size in the x direction and the vertical size 
in the z direction for one pixel at this position can be directly calculated 
using the real-world width or height of the geo-object as displayed in the 
image based on Eqs. (1) and (2): 

Pixelwidth =
wreal

wpixel
(1) 

Pixelheight =
hreal

hpixel
(2) 

where wreal and hreal represent the real width and height of the geo- 
object respectively, wpixel and hpixel represent the total number of pixels 
that the geo-object occupies in the horizontal and vertical direction at 
the d-th pixel from the bottom edge of the SVI. Therefore, Pixelwidth and 
Pixelheight represent the real width and height of one pixel at the d-th 
pixel from the bottom edge of the SVI. In fact, d is a variable, and at 
different pixel positions d in the same SVI, the total number of pixels 
occupied by the same geo-object may be different. Thus, we can use 
Pixelwidth and Pixelheight as dependent variables to establish a fitting 
relationship with respect to d. Based on both theoretical and practical 
considerations, we selected non-linear fitting to represent the relation
ship between pixel positions and real-world dimensions. The inherent 
perspective projection in a fixed camera setup with a horizontal FOV of 
90◦ leads to non-linear scaling of pixel dimensions across the image. 
Specifically, as the distance from the image center increases, the real- 
world dimensions corresponding to each pixel expand non-linearly. 
Numerous studies have shown that nonlinear distortions in photo
graphs captured by cameras, such as perspective distortion, can be 
effectively modeled using polynomials. In simpler scenarios, such as 
with a 90-degree FOV, retaining only the lower-order terms in the 
polynomial is sufficient to achieve the required accuracy [65,66]. 

Fig. 8. The process of converting trees into polygonal outlines. (a) Binary image. (b) Complex outlines. (c) Suitable outlines.
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Furthermore, compared to polynomials, the power-law function in
volves fewer parameters, making it equally suitable for simpler sce
narios and helping to reduce the risk of overfitting. For this reason, we 
compared three types of low-order polynomials and a power-law func
tion using the same dataset for fitting in the x, y, and z directions. 
Table 1. shows the coefficient of determination (R2) values for each 
fitting method.

As demonstrated, the power-law function provides significantly 
better performance than the low-order polynomial function. On this 
basis, we can fit them and derive Eqs. (3) and (4): 

xd = ax × dbx + cx (3) 

zd = az × dbz + cz (4) 

where xd and zd represent Pixelwidth and Pixelheight at different pixel po
sitions d respectively. During the formula fitting process, 80 % of the 
collected data are fitted and 20 % are tested. Due to x increases with the 
increase of d, when d = 0, x > 0, the fitted equations require ax > 0, bx >

0, cx > 0. Likewise, az > 0, bz > 0, cz > 0. The calculation for the y di
rection is relatively complicated. The real distance to the camera is 
determined by the focal length and FOV, which can be calculated in Eq. 
(5): 

fy =
Pixelimage

2 × tan
(

fov
2

) = 200 (px) (5) 

where fy is the focal length, which helps to determine the proportional 
relationship of the image (Fig. 9(a)). Assuming we know the real length 
of a geo-object in the image l, and the length of the pixel it occupies in 
the image w, we can use the principle of similar triangles (Fig. 9(b)) to 
calculate the real distance from the camera to the geo-object Y, as pre
sented in Eq. (6): 

l
Y
=

w
fy

(6) 

In addition to the calculation based on the above method, the real 
distance Y from a known building to the camera, that is, the sampling 
point, can be measured directly in ArcGIS Pro. Meanwhile, we know the 
pixel position d, Y and d then be fitted in Eq. (7): 

Yd = ay × dby + cy (7) 

where Yd represents the real distance from the camera to the geo-object 
when it is at d. Note that the increasing rate of Yd is getting faster 
nonlinearly with the increase of d. Therefore, the fitting parameter here 
needs ay > 0, by > 1, cy > 0. To get the varying distance of a single pixel 
on the y, further calculation is required based on Eqs. (8) and (9): 

Yd+1 = ay × (d + 1)by + cy (8) 

yd = Yd+1 − Yd (9) 

2.4.2. Calculation of tree area
Assume that the coordinates of the nearest location of the tree to the 

camera in the image is (u, v), the calculation method for the real area of 
the tree is designed using Eqs. (10)-(12): 

Pixelw0 = ax × vbx + cx (10) 

Pixelh0 = az × vbz + cz (11) 

Area = Pixelw0 × Pixelh0 × Npixel (12) 

where Pixelw0 and Pixelh0 represent the width and the height of a single 
pixel of the tree respectively when it is located at v. Npixel is the total 
number of pixels of trees in the image. Since the tree’s scale is stan
dardized based on a fixed reference point in the image (here is v), all 
pixels of the tree in the same image are calibrated using the same scaling 
factor, which makes the area of a unit pixel constant for the entire tree, 
without needing to account for variations in pixel area due to positional 
changes.

2.4.3. Calculation of tree polygonal coordinates
Assume that the 2D polygonal coordinates of the outline of the tree in 

an image are [(x1, y1), (x2, y2), …, (xn, yn), (x1, y1)] and the 3D 
polygonal coordinates of the real tree location relative to the camera 
location in the geographical coordinate system are [(X1, Y1, Z1), (X2, Y2, 
Z2), …, (Xn, Yn, Zn), (X1, Y1, Z1)]. The calculation of the tree polygonal 
coordinates is proposed according to Eq. (13): 
⎧
⎨

⎩

Xn = (xn − 200) × Pixelw0

Yn = ay × vby + cy n ∈ Z+, n > 2
Zn = (yn − v) × Pixelh0

(13) 

where X1 is based on the camera location, that is, the coordinates of the 
midpoint of the image. When X1 < 0, this point is on the left side of the 
sample point, and when X1 > 0, this point is on the right side of the 
sampling point. Y1 is a fixed value because the trees always lie on the 
same y-axis plane. Z1 is based on the shortest distance of the tree to the 
camera, and its height is calculated from the ground v (Fig. 10).

2.5. 3D modeling of sunlight and shading distribution on building 
envelopes introducing tree shade

We selected the districts of Bishan and Toa Payoh in central 
Singapore as the study area because of their central location and diverse 
urban characteristics. These areas feature a wide range of building types, 
including high-rise public housing (HDB), private condominiums, and 
commercial buildings, providing diverse scenarios and data for analysis. 
In addition, the functional zoning in these regions is well-defined, 
encompassing residential areas, commercial zones, educational in
stitutions, parks, and other open spaces, fully reflecting the complexity 
of real urban environments. This diversity not only supports multidi
mensional analysis but also enhances the robustness of the 3D modeling 
framework, making it more applicable to complex, high-density urban 
contexts. We conducted detailed 3D modeling of the environment within 
a 100-meter radius surrounding seven EV charging stations (Fig. 11). 
Within this selected area, we identified and simulated 49 buildings and 
69 sampling points corresponding to trees. These polygons were inte
grated into our 3D urban model, allowing us to perform precise simu
lations and analyses of sunlight and shading distribution.

3. Results

3.1. Street view images segmentation results

Table 2. presents the semantic segmentation testing results of the 
DeepLabV3+ model on the Singapore SVI dataset. The five key metrics 
collectively evaluate the model’s performance across different cate
gories. The results show that the model performs excellently when 
segmenting large geo-objects such as buildings, houses, cars, and roads. 
In contrast, Recall declines when segmenting more complex structures 
like skyscrapers and trees, where the geometry and complexity of these 

Table 1 
Comparison of R2 results for different fitting equations.

x Y z

2nd-degree polynomial 0.7447 0.7311 0.8996
4th-degree polynomial 0.9509 0.8502 0.9286
6th-degree polynomial 0.9594 0.8491 0.9117
Power-law 0.9630 0.8610 0.9301
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categories pose challenges to the model’s segmentation ability. While 
the model shows weaker performance when handling smaller geo- 
objects or those with rich details, such as persons, bins and fences, 
with segmentation results significantly inferior to those of large geo- 
objects. Overall, the model demonstrates high reliability in segment
ing large geo-objects, including buildings and trees, which builds a solid 
foundation for this study on fitting formulas for calculating real dis
tances from the camera to trees in SVIs.

3.2. Equation fitting results

3.2.1. Estimation of the distance in the x and z direction
In the x-direction, we selected 100 SVIs to calculate the horizontal 

distance represented by a pixel at different vertical pixel positions. These 
images included 50 pedestrian walkway grids and 50 roadway edge 
grids. Here, we randomly selected 80 images (80 %) for training and the 
remaining 20 images (20 %) for testing, which were used to build an 
empirically non-linear regression, as presented in Eq. (14): 

xd = 7.6400 × 10− 14 × d5.2955 + 0.0149 (m) (14) 

The final fitting and test results are shown in Fig. 12. The model has a 
mean absolute error (MAE) of 0.0020 m, a mean absolute percentage 
error (MAPE) of 0.11, and an R2 of 0.96. These results indicate a high 
accuracy of fitting, demonstrating strong explanatory power of the 
model, which can be used to effectively predict the relationship between 

pixels and real distances.
Similarly, in the z-direction, we also used 100 SVIs to estimate the 

vertical distance represented by a pixel at a given position. These images 
included 50 ones showing the heights of roadway edges and another 50 
ones showing the heights of buildings that were fully visible within the 
image. From these, we randomly selected 80 % for training and the rest 
20 % for testing and fitted a model expressed by Eq. (15): 

zd = 2.4754 × 10− 14 × d5.5840 + 0.0131 (m) (15) 

The final fitting and test results are shown in Fig. 13. The MAE is 
0.0102 m, MAPE is 0.15, and R2 is 0.94, showing a strong predictive 
capability similar to that observed in the x-direction.

3.2.2. Estimation of the distance in the y direction
The y-direction proved more complex. We utilized 180 SVIs featuring 

fully identifiable building bases. Each image’s building base pixel po
sition was paired with its real-world distance from the camera, as 
measured in ArcGIS Pro. To ensure precise curve fitting near zero, 60 
additional datasets from pedestrian walkways were included for fitting 
purposes only. From the 180 building datasets, 144 (80 %) were used for 
training and 36 (20 %) for testing, so we can get the Eq. (16): 

Yd = 1.6199 × 10− 15 × d7.1093 + 3.10 (m) (16) 

To address instances where the building base edges were inaccu
rately identified, we also employed a secondary set of 36 SVIs where the 

Fig. 9. The process of calculating the real distance from the camera to the point in SVI. (a) FOV calculation diagram. (b) Camera imaging diagram.

Fig. 10. Illustration of the transformation of tree coordinates from 2D to 3D.
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building bases were obscured by shrubbery. In these cases, the new base 
position was estimated as the average of the current base and shrubbery 
base to verify the fitting results. The fitting and test results are displayed 
in Fig. 14. The first dataset achieved an MAE of 2.39 m, an MAPE of 
0.14, and an R2 of 0.86. The second dataset showed an MAE of 3.47 m, 
an MAPE of 0.29, and an R2 of 0.76. The deviations observed in the y- 
direction fitting results are larger compared to the x and z directions, 
mainly due to the inherent scale differences, amplifying the perception 
of error in the y-direction. However, the accuracy remains high. The use 
of the same equation form for regression across all three directions en
sures consistency, simplicity, and computational efficiency, especially 
for large-scale urban applications. The first dataset’s test results are 
more accurate compared to the second, as the second dataset experi
ences visual obstructions, which introduce greater inaccuracies and 
variability.

3.3. Tree location calibration results

Based on the equation fitting results, the distance from the bottom of 
the SVI to the camera is 3.10 m. When a geo-object is located at the 
140th pixel vertically from the bottom of the SVI, its distance to the 
camera is 6.03 m. When a building identified in the SVI is at the 140th 
pixel, if trees are moved forward by 3 m, they will not appear in the SVI. 
Therefore, the 140th pixel is used as a judgment line. Among 4455 SVIs, 
when the building location exceeded the 140th pixel, trees in 1595 SVIs 
were moved because they were further from the camera than the 
buildings. When the building location was equal to or less than the 140th 
pixel, trees in 144 images were determined to be out of the SVI because 
the planting point was too far from the ground and were moved to the 
1st pixel from the bottom. Additionally, trees in 370 images remained 
unchanged because their positions are reasonable. A total of 1739 im
ages, accounting for 39.03 %, were calibrated.

Table 3. summarizes the statistical data of pixel position and tree 
area before and after calibration. For pixel position, both the average 
and median values have decreased, and the standard deviation and 
interquartile range have also slightly decreased, indicating an increased 
concentration trend of the data. Moreover, changes in skewness and 
kurtosis suggest that the data distribution has become more left-skewed, 
with more prominent extreme values. In terms of tree area, there has 
been a significant reduction after calibration, the distribution has 
become more concentrated, and the significant reductions in skewness 
and kurtosis indicate a trend towards a more symmetrical and normal 
distribution, with a noticeable decrease in extreme values.

The box plot in Fig. 15(a) clearly shows that there were many outliers 
before calibration, with values significantly higher than other data 
points and a wide distribution range. After calibration, the number of 
outliers is significantly reduced, and the data distribution tends to be 
concentrated in a lower range of values. To quantify the changes in area 
before and after calibration, we calculate the relative change for each 
sampling point using the following formula: 

Fig. 11. Map of experimental region.

Table 2 
Evaluation of the SVIs semantic segmentation using DeepLabV3+.

Category Recall 
(%)

Accuracy 
(%)

Precision 
(%)

IoU 
(%)

F1-Score 
(%)

Building 98.16 90.64 97.71 91.51 97.93
House 97.84 89.55 94.1 89.89 95.93
Car 97.75 87.52 92.26 88.71 94.93
Road 96.46 87.12 92.89 87.86 94.64
Path 95.41 86.17 91.35 87.25 93.34
Sidewalk 93.43 82.52 88.94 85.32 91.13
Skyscraper 91.59 79.36 86.23 78.88 88.83
Tree 91.24 78.86 85.33 76.29 88.19
Streetlight 84.55 74.32 80.84 73.03 82.65
Person 79.79 71.52 78.36 70.46 79.07
Bus 76.73 67.55 73.05 68.77 74.84
Bin 76.85 65.28 72.33 68.23 74.52
Grass 75.25 64.82 72.05 67.36 73.62
Wall 71.84 58.01 65.32 62.36 68.43
Fence 71.5 55.27 62.5 61.45 66.70
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Relative change =
| Amodified − Aoriginal|

Aoriginal
(17) 

Its value ranges from 0 to 1, with values closer to 0 indicating smaller 
changes and values closer to 1 indicating larger adjustments during the 
calibration process. As shown in Fig. 15(b), the distribution of relative 
changes is mostly concentrated in the lower range (0–0.2), indicating 
that the original area calculations were relatively accurate. In contrast, 
more outliers are found in the higher relative changes (0.8–1), sug
gesting they underwent relatively large changes during calibration. This 
indicates an improvement in data quality, aligning more closely with the 
expected distribution range.

3.4. Tree and building information for EV charging station buffer

Based on the recalibrated data for tree area calculations, we allo
cated these data to each sampling point. Each buffer area centralized at 
the locations of EV charging stations contained approximately 10 sam
pling points. By summing up tree areas calculated from the sampling 
points within each buffer, we obtained a rough estimate of the totally 
projected 2D tree area for each region, as illustrated in Fig. 16. The 
eastern and southwestern coastal areas of Singapore had more tree 
cover, whereas the city center and other highly urbanized areas had 
relatively less tree coverage.

Additionally, we calculated the total building surface area and 
average building height within each EV charging station buffer using 
known building data, as shown in Fig. 17. Areas with more EV charging 
stations tend to have higher urbanization, greater building density, and 
larger total building surface areas. However, it’s also important to 
consider that high-density buildings may limit the solar irradiation 

reception area for some buildings. This means that even though there is 
a large building surface area, the actual effective area available for solar 
power generation might be restricted. Comparing buildings and trees, in 
rapidly urbanizing areas, building development generally takes prece
dence over green space conservation. Therefore, building area and 
height are more indicative of urban characteristics, while tree coverage 
is relatively random and much smaller than the building area, with tree 
shading having a greater impact on lower buildings.

3.5. Projecting 2D trees into 3D urban model

First, the latitude and longitude data of the sampling points are 
converted from the geographic coordinate system WGS84 to the pro
jected coordinate system UTM Zone 48 N, representing the x and y co
ordinates in meters. This conversion ensures consistency with the z- 
direction height data, thereby avoiding unit discrepancies between 
different coordinate systems that could affect model accuracy. Next, a 
rotation matrix is constructed using the directional angle and relative 
offset data to calculate the absolute coordinates of tree polygons in 3D 
space, achieving synchronized positioning and height alignment. This 
process ensures that the position and height of trees within the study 
area accurately reflect actual conditions (Fig. 18).

Following this, the 3D tree polygons can be imported into QGIS for 
3D visualization. Concurrently, 3D building models can be generated 
based on location and height data, integrating both tree and building 
models into a unified urban scene. Based on this integrated 3D model, 
sunlight and shading projections of trees on buildings at various times 
are simulated (Fig. 19). The trees appear as 2D planes because we define 
the position of each tree based on the nearest ground point to the 
camera. This means that all the trees in the same image share the same y- 

Fig. 12. Equation fitting in the x axis of the 3D space (referring to Fig. 10). (a) The standard geo-objects (pedestrian walkway grids and roadway edge grids) used for 
fitting spatial width equation. (b) Results of training and test set in fitting.
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axis value, which gives the impression that they are positioned on a 2D 
plane, despite being modeled in 3D.

4. Discussion

This study proposes a novel framework that performs DL-based 
segmentation of SVIs, which efficiently constructs 3D geometries of 
trees by fitting regressions between pixel lengths and real-world lengths 
based on semantic segmentation results, achieving seamless integration 
of 3D tree models and 3D building models on a large urban scale. We 
selected the DeepLabV3+ model for semantic segmentation and opti
mized the adaptability of the original pre-trained model to the SVI of the 
study area through transfer learning. The model demonstrated excellent 
performance, with IoU of 91.51 % for buildings and 76.29 % for trees, 
with F1-scores of 97.93 % and 88.19 %, respectively. Using segmenta
tion results, we identified the nearest ground points of buildings and 
trees relative to the camera to determine their spatial relationships in the 
SVI, and calibrated inaccurate segmentations by adjusting initial tree 
polygons in 39.03 % of the SVIs. Finally, the calibrated tree polygons 
were projected into 3D space to construct tree models, which were in
tegrated with 3D building models to form a unified 3D urban environ
ment and precisely simulate sunlight and shading distribution on 
building envelopes.

By processing SVIs efficiently, this study achieves precise extraction 
of 3D geometric features of trees on a city scale, providing an innovative 
pathway for constructing fundamental geospatial datasets. Unlike con
ventional methods reliant on LiDAR point clouds or field measurements, 
which often involve computationally intensive processes for depth 
estimation and 3D modeling, our approach simplifies the workflow by 
employing deep learning solely for semantic segmentation. This enables 

efficient extraction of trees, while lightweight regression models are 
used to estimate 3D geometric properties, resulting in a comprehensive 
large-scale database of tree distribution and morphology. By minimizing 
computational overhead without sacrificing accuracy, the framework is 
particularly well-suited for large-scale urban applications. Moreover, 
the widespread availability and periodic updates of SVIs further enhance 
the timeliness and adaptability of urban tree monitoring and modeling. 
This ensures the framework remains accessible and scalable, even for 
cities with limited computational infrastructure. By integrating SVI with 
DL-based feature extraction, the study significantly lowers the barriers 
to geospatial data acquisition, offering a more economical, flexible, and 
scalable solution for urban applications. This advancement presents a 
substantial breakthrough from traditional geospatial dataset construc
tion methods and lays a robust foundation for the future design and 
management of smart cities.

Furthermore, our method addresses key challenges in projecting tree 
pixels segmented from 2D SVIs into measurable 3D space through 
equation fitting and calibration. This capability overcomes the limita
tions of traditional remote sensing methods in dense urban environ
ments with complex obstructions and restricted perspectives. It enables 
detailed studies of tree spatial distribution, morphology, and ecological 
impact, which are essential for addressing urban sustainability chal
lenges. For instance, in 3D solar PV potential estimation, the method 
optimizes envelope PV design, enhancing energy utilization efficiency in 
buildings. In urban heat island effect analysis, it enables precise simu
lations of tree shading impacts, providing a scientific basis for micro
climate regulation. In urban greening and spatial planning, precise tree 
coverage data inform policy decisions and promote ecological urban 
development. Overall, through a systematic framework and efficient 
methodological innovations, this study expands the scope of urban 

Fig. 13. Equation fitting in the z axis of the 3D space (referring to Fig. 10). (a) The standard geo-objects (roadway edges and buildings) used for fitting spatial height 
equation. (b) Results of training and test set in fitting.
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spatial analysis, opening new possibilities for addressing complex urban 
challenges and supporting sustainability goals.

Nevertheless, this study has certain limitations and uncertainties that 
warrant discussion. First, various types of errors exist in SVIs, which lead 
us to exclude a portion of the data, retaining only the more accurate and 
research-valuable images. While this filtering process enhanced data 
quality to some extent, it remains constrained by the current coverage 
and quality of available images. If future updates to SVIs could ensure 
higher frequency, improved quality, and comprehensive regional 
coverage, it would significantly strengthen similar research and enable 
further refinement in precision. Second, the estimation of the 3D fea
tures of trees relies solely on the perspective provided by SVIs, rather 
than a full 360-degree 3D reconstruction. This inherent limitation of 
data perspective may affect the completeness of the results, although its 

Fig. 14. Equation fitting in the y axis of the 3D space (referring to Fig. 10). (a) The standard geo-objects (the distance between camera and pedestrian walkway grids, 
buildings not obscured by shrubbery and buildings obscured by shrubbery) used for fitting spatial depth equation. (b) Results of training and test set in fitting.

Table 3 
Comparison of statistical data before and after calibration.

Pixel position Tree area

Before After Before After

Mean 164.46 145.43 314.62 92.26
Median 170 155 90.27 45.89
Std Dev 41.98 40.96 2282.1 141.12
IQR 47 43 190.66 106.56
Skewness − 0.11 − 1.79 28.73 9.01
Kurtosis 2.83 3.63 1016.49 211.72
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Fig. 15. Comparison of before and after calibration. (a) Boxplots of different area ranges. (b) Relative change of tree area for all sampling points.

Fig. 16. Summarized information of total projected 2D tree area in each EV charging station buffer.

Fig. 17. Summarized information of building in each EV charging station buffer. (a) The total building rooftop and façade area. (b) The average building height.
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overall impact on accuracy is minimal, primarily in scenarios with 
substantial spatial occlusions. The method of assuming the nearest 
ground point as the reference point for the tree’s position, while effec
tive, could be optimized in future work. More accurate camera posi
tioning and perspective correction could refine the location estimation 
and further improve the precision of the 3D reconstruction. Lastly, our 
proposed method cannot be directly applied to certain special scenarios 
when vegetations are not rooted on the ground while planted on 
building façades (e.g., vertically greening trees), which will produce 
notable errors due to the mismatch between the referenced spatial scales 
subject to the complexity of 3D model structure. This limitation hampers 
the model’s ability to accurately estimate the spatial configuration and 
height of such trees. Nevertheless, vertically greening trees account for 
only a negligible portion of our dataset (0.34 %), resulting in a minimal 
impact on the overall outcomes. Therefore, despite these limitations, 

considering the robustness of the study’s framework and results, these 
constraints have a limited effect on the findings and conclusions. The 
proposed methodology remains highly credible and holds substantial 
value for practical applications.

5. Conclusion

In conclusion, this study presents an innovative framework that in
tegrates 3D tree models with urban building datasets to simulate sun
light and shading distribution on buildings. The framework uses 
advanced DL techniques and geospatial data to bridge the gap between 
2D imaging and 3D modeling, offering a solution that is accurate, effi
cient, and cost-effective. With its adaptability, the model can be applied 
to various urban contexts globally, contributing to smart city develop
ment and sustainable goals. This study offers valuable perspectives on 

Fig. 18. Calculation of the absolute coordinates of tree polygons.

Fig. 19. Spatiotemporal distributions of sunlight and shading at different times of one day. (a) (b) 7am - 10am. (c) (d) 2pm - 5pm.
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addressing urban sustainability challenges and leveraging technology 
for energy-efficient urban systems.
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