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Abstract— Digital elevation models (DEMs) are essential for
national economic development, disaster management, and
military applications. Multi baseline interferometric synthetic
aperture radar (MB-InSAR) technology has proven to be
an effective method for DEM reconstruction. However, the
presence of atmospheric noise and other residual signals
introduces unavoidable errors in the phase observations, and
most MB-InSAR DEMs are generated using a single empirical
mathematical model that ignores the influence of deformation
factors. To compensate for these limitations, we propose spatial
independent component analysis (sICA) phase separation and
interferometric synthetic aperture radar (InSAR) combinatorial
modeling (CM) InSAR CM (ISCM). The sICA was used for
phase separation, resulting in clear InSAR signals and reducing
atmospheric noise and other residual signal interference; then,
the effects of linear deformation, seasonal deformation, and
environmental factors were considered in the InSAR modeling.
In the experiments, a total of 19 TerraSAR-X images from
San Diego, USA (SD), and 18 PAZ images from Yan’an, China
(YA), were selected to generate DEMs with resolutions of 3 and
6 m, respectively. The accuracy of the DEM generated by ISCM
was evaluated using the photogrammetric DEM, and the root-
mean-square errors (RMSEs) of the elevation are 3.20 m for
SD and 4.41 m for YA, with an improvement of 30.8%–44.9%
and 21.9%–38.4%, respectively, compared to the traditional MB-
InSAR method. In addition, ICESat/GLAS data collected in
YA were used for further validation with an improvement of
13.7%–29.5%. The DEM generated by ISCM has significant
advantages in improving accuracy and preserving terrain
features, providing theoretical support for global high-precision
DEM mapping.
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I. INTRODUCTION

HIGH-PRECISION digital elevation models (DEMs) are
crucial for national economic development, disaster

prevention and control, urban operation and management, and
military applications [1], [2], [3]. It plays an essential role in
geoinformation and remote sensing [4]. However, the freely
available global shuttle radar DEM (SRTM) with a 30-m
resolution was collected in 2000 [5], [6] and cannot
accurately reflect current topographic conditions. Therefore,
the generation of high-precision DEM is important for
research. The most effective methods for DEM generation
include topographic mapping, ground surveying, and light
detection and ranging (LiDAR) [7]. While these techniques
meet the accuracy requirements for DEM generation, their
limited point density, spatial coverage, and temporal resolution
have limited their use in large-scale DEM generation.
Interferometric synthetic aperture radar (InSAR) technology
is an effective method for acquiring high-precision DEM due
to its all-day and all-weather capability, cloud penetration, and
high spatial–temporal resolution [8].

DEM generation using InSAR technology mainly includes
two-pass, multibaseline InSAR (MB-InSAR), and bistatic
InSAR methods. However, the traditional two-pass method is
affected by spatial–temporal decorrelation, atmospheric noise,
and deformation effects, which can significantly degrade the
quality of the DEM [9]. With the continuous development
of high-resolution (HR) satellites on different platforms
and orbits, such as COSMO-SkyMed with better than 3-m
resolution from Italian Space Agency (ASI), and TerraSAR-X
and TanDEM-X with better than 3-m resolution from German
Aerospace Center (DLR), researchers have devoted their
efforts to the study of MB-InSAR. Berardino et al. [10]
introduced the small baseline subset (SBAS), which can
separate the deformation and residual topography from
the InSAR phase. Samsonov et al. [11] proposed an
optimized SBAS approach by adjusting the DEM errors and
deformation rates, which is appropriate for ALOS-PALSAR
data. Zhao et al. [12] improved the accuracy of the DEM
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generated from TerraSAR-X data by introducing a reference
DEM. Subsequently, a new approach based on a polynomial
model (PM) was introduced to estimate the DEM errors after
time series inversion [13]. Building on this, Zhang et al.
[14] proposed a PM model combination with ascending and
descending data to generate DEM over Heifangtai, China.
In terms of bistatic interferometry, Lachaise et al. [15]
proposed a dual-baseline phase unwrapping correction (DB-
PUC) framework, and the experimental results show that
the DB-PUC framework processes TanDEM-X data with
high precision. Dong et al. [16] introduced the cascaded
multibaseline approach to address the issues of perpendicular
baseline sensitivity and phase unwrapping. The bistatic InSAR
effectively improves the accuracy of the DEM [17], but
it still suffers from the difficulty of phase unwrapping
in complex terrain areas and the difficulty of removing
the erroneous fringes caused by baseline errors. The MB-
InSAR technique, as a common method for high-precision
DEM generation, involves the following basic research idea.
By combining the advantages of easy phase unwrapping
with short baselines and high accuracy of topographic mea-
surement from corresponding long baseline interferograms,
the complexity of phase unwrapping is effectively reduced,
leading to improved inversion accuracy for topographic
measurement.

However, DEM generation using MB-InSAR technology
is still limited by the presence of atmospheric noise,
other residual signals, and deformation modeling errors.
Atmospheric noise reduction in the InSAR signal processing
needs to be further addressed, as most methods for handling
the atmosphere and noise require the use of external
atmospheric data and sophisticated atmospheric modeling [18],
[19], [20]. The phase signals acquired by InSAR technology
mainly contain both deformation and elevation information,
and most MB-InSAR DEM generation methods rely on a
single purely mathematical empirical model (i.e., a linear
model (LM) and seasonal model (SM) or PM) and ignore the
influence of deformation factors, which can introduce errors
into the DEM if the deformation phase cannot be accurately
separated from the interferogram [21]. In fact, due to the
large weight of the deformation coefficients and the small
weight of the topography coefficients in the phase equations,
deformation errors in the millimeter range can lead to elevation
errors of several meters or even tens of meters [3].

The independent component analysis (ICA) algorithm, first
explored in the field of neural networks, has the ability
to separate the signal without any prior information. It has
been applied to signal separation and feature extraction [22].
Researchers have attempted to apply ICA technology to InSAR
phase separation and surface deformation extraction [23],
[24]. Peng et al. [25] introduced a spatial–temporal InSAR
prediction model using ICA and long short-term memory
(LSTM). In addition, nonparametric estimation of DEM errors
using the ICA technique is essential to remove residual terrain
phases from interferograms [26]. However, the advantages of
ICA for high-precision DEM generation are unclear, and it
is important to know how to combine the benefits of signal
identification and InSAR modeling.

Based on this analysis, the main challenges in implementing
the combination of ICA and MB-InSAR techniques to produce
high-precision DEMs are as follows: 1) MB-InSAR techniques
are severely limited by the atmospheric noise, other residual
signals, and deformation modeling errors, how to further
understand the characteristics of the signals is the main factors
to improve the phase quality; 2) most of the current studies
ignore the influence of the deformation phase on the terrain
and how to combine the separated phase and the deformation
phase is the key to accurate elevation measurement; and 3)
it is necessary to further optimize ICA separation techniques
and InSAR modeling methods.

In this study, to compensate for these limitations,
we proposed spatial ICA (sICA) phase separation and InSAR
combinatorial modeling (ISCM) to address errors in the MB-
InSAR DEM reconstruction. The sICA was used to separate
the signals according to the spatial and temporal distribution
characteristics of the InSAR phase. Considering the inaccuracy
of ICA separation when deformation and topography phase
are spatially correlated, we remove the atmospheric noise and
other residual signals directly from the phase observations;
then, during the InSAR modeling process, we considered
the effects of linear deformation, seasonal deformation, and
environmental factors, and an ISCM was proposed, which
improves the accuracy of the deformation modeling and the
precision of obtaining the DEM.

II. METHODOLOGY

This article proposes the ISCM method to solve the
problems associated with atmospheric noise, other residual
signals, and inaccurate deformation modeling in MB-InSAR
DEM generation. Specifically, the ISCM method includes
the following steps: 1) InSAR differential interferometric
phase generation; 2) ICA phase separation (IS); 3) InSAR
combinatorial modeling (CM); and 4) high-precision DEM
generation and precision evaluation. The end-to-end workflow
is summarized, as shown in Fig. 1.

A. InSAR Differential Interferometric Phase Generation

During the process of DEM generation by MB-InSAR,
the presence of dense interferometric fringes resulting
from the topography phase can significantly affect the accuracy
of the phase unwrapping. To address this issue, several
researchers have proposed a two-step data processing where
the topography phase can be removed by using a low-
resolution (LR) reference DEM [expressed as href(x, y)], and
then, the phase equation is used to solve the HR residual ele-
vation information 1h(x, y). High-precision surface elevation
can be described as follows [18]:

z(x, y) = href(x, y) + 1h(x, y). (1)

Suppose that N +1 SAR images are acquired over the same
area, resulting in M interferometric pairs. The interferometric
phase δϕm

i at the i th pixel (x, y) in the mth interferogram can
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Fig. 1. End-to-end workflow of the ISCM. Step 1: InSAR phase generation. Step 2: ICA phase separation. Step 3: ISCM. Step 4: high-precision DEM
generation and precision evaluation.

be described as follows [10], [27], [28], [29]:

δϕm
i = δϕi

def + δϕi
topo + δϕi

orbit + δϕi
atm + δϕi

noise + δϕi
hp

≈
4π

λ
1d(x, y) +

4π Bm
⊥

λ R sin θ
1h(x, y) + δϕm

res(x, y) (2)

where δϕi
def is the deformation phase; λ and 1d(x, y)

correspond to the radar wavelength and deformation along
the line-of-sight (LOS) direction, respectively; δϕi

topo is the
topography phase and the contribution related to the residual
elevation, the relationship being directly proportional to the
perpendicular baseline and inversely proportional to the sine
of the angle of incidence; δϕi

orbit is the orbit error, the effects of
which are generally global and systematic in an interferogram,
and the orbital data are used in the interferometric processing
by the refinement and reflattening; and δϕm

res(x, y) is the
residual phase, including atmospheric delay phase δϕi

atm, noise
phase δϕi

noise, and high-pass (HP) deformation phase δϕi
hp.

The residual phase consists mainly of signals that are not
fully fit by the data preprocessing and InSAR modeling [30].
The function between topography phase and height can be
expressed as [12]

δϕi
topo =

4π Bm
⊥

λ R sin θ
1h(x, y) (3)

where Bm
⊥

is the perpendicular baseline, the baseline
represents the spatial distance and direction between two
SAR observations, and the baseline is critical for detecting
changes in topography and resolving the direction of surface
deformation; R is the sensor–target distance; θ is the radar
incidence angle; and 1h(x, y) is the residual elevation,
which represents the difference between HR DEM and
LR DEM.

Fig. 2. ICA time series phase separation.

B. ICA InSAR Phase Separation

The InSAR time series phase of the study area was
used as input and sICA was used to separate the signals
(as shown in Fig. 2). Since ICA can better explore the
spatial–temporal distribution characteristics of signals through
time series, the selected m interferograms are first transformed
into time series according to singular value decomposition
(SVD) [31]. The N + 1 InSAR time series phase can be
represented as

X = AS (4)

where X is the time series mixed signal, which can be
regarded as the time series phase of InSAR; A is the mixing
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matrix, which is the time series of all the independent
components; and S is the source signal, which represents the
combination of the spatial response of all the independent
components. The spatial response represents the variation and
distribution characteristics of the radar signal in the spatial
dimension, reflecting changes in the InSAR phase of the signal
at different geographical locations that may be caused by
surface deformation, topographic changes, atmospheric noise,
and other residual signals. Suppose that a total of C high
coherence points were selected in the YA, the mixed signal X
can be represented as X(N+1)×C = [ϕ1

C ϕ2
C · · · ϕN+1

C ]
T, where

ϕ1
C , ϕ2

C , and ϕN+1
C indicate the phase at different moments.

The mixing matrix A can be represented as A(N+1)×n =

[TS1
N+1 TS2

N+1 · · · TSn
N+1], where TS1

N+1, TS2
N+1, and

TSn
N+1 denote the time series of each independent component

and n represents the number of independent components.
The source signal S (including the deformation phase ϕdef,
topography phase ϕtopo, and atmosphere delay phase ϕatm) can
be expressed as

Sn×C = [ SR1
C SR2

C · · · SRn
C ]

T

=


ϕ1

def ϕ1
topo ϕ1

atm · · · ϕ1
hp

ϕ2
def ϕ2

topo ϕ2
atm · · · ϕ2

hp
· · ·

ϕC
def ϕC

topo ϕC
atm · · · ϕC

hp


T

(5)

where SR1
C , SR2

C , and SRn
C denote the spatial response of each

independent component, and at this point, the InSAR phase
can be described as follows:

X(N+1)×C = A(N+1)×n Sn×C = A(N+1)×n

×


ϕ1

def ϕ1
topo ϕ1

atm · · · ϕ1
hp

ϕ2
def ϕ2

topo ϕ2
atm · · · ϕ2

hp
· · ·

ϕC
def ϕC

topo ϕC
atm · · · ϕC

hp


T

. (6)

The different signal types represented in the InSAR phase are
independent of each other, so the FastICA can be used to
separate the independent components from the time series.
The independent components can be expressed as ICn

=

SRn
× TSn . In principle, the residual elevation could be

obtained directly by using the signals associated with the
topographic phase after phase separation [26], but considering
that the deformation phase and the topography phase may
interfere with each other if they are correlated, the atmospheric
noise and other residual signals were removed. The time series
phases are then transformed into m interferograms based on
the relationship between the phases. Consequently, the phase
after ICA separation and removal of atmospheric noise and
other residual signals δϕm

i IS can be expressed as

δϕm
i IS = SRi

def × TSm
def + SRi

topo × TSm
topo

≈
4π

λ
1d(x, y) +

4π Bm
⊥

λ R sin θ
1h(x, y) + δϕm

res(x, y).

(7)

C. InSAR Combinatorial Modeling

The baseline is a critical parameter in the InSAR DEM
generation. Baseline errors were corrected using the adaptive

polynomial fitting after ICA separation [32], [33], [34].
The phase after the baseline error correction (BC) can be
described as δϕm

i BC. After obtaining accurate InSAR phase
observations, it is crucial to establish a functional model that
relates the differential interferometric phase to topography and
deformation. Du et al. [21] used simulated experiments to test
the accuracy of commonly used InSAR models and showed
that the choice of deformation model has a critical effect
on the residual elevation generation. The surface deformation
associated with seasonal changes can be described as a
combination of linear and seasonal components [35], [36].
Besides, the formation of surface deformation is closely
related to groundwater level fluctuations, which are mainly
influenced by environmental factors [37], [38]. Therefore,
in the process of InSAR DEM generation, we consider the
linear deformation, seasonal deformation, and environmental
factors to generate the residual elevation, which can be
expressed as

ϕi
def =

4π

λ
(1d i

Li + 1d i
Se + 1d i

EF) (8)

where 1d i
Li denotes the linear deformation, 1d i

Se is the
seasonal deformation, and 1d i

EF denotes the environmental
factor deformation. The interferometric phase using the InSAR
combinatorial model can be expressed as

δϕm
i BC

≈
4π

λ

(
tB∑

tA+1

vk(tk − tk−1) + α1

[
sin
(

2π

T
tB

)
− sin

(
2π

T
tA

)]
+ α2

[
cos
(

2π

T
tB

)
− cos

(
2π

T
tA

)]
+e1[Tem(tB) − Tem(tA)] + e2[Pre(tB) − Pre(tA)]

)

+
4π Bm

⊥

λ R sin θ
1h(x, y) + δϕm

res(x, y) (9)

where tB and tA are the acquisition times of the differential
interferogram; vk represents the linear deformation rate
between images; tk and tk−1 are the time corresponding
to the linear deformation rate at different moments and
its previous moment, respectively; α1 and α2 denote the
coefficients of seasonal deformation, respectively; T is the
length of the year, which can be considered as 365.25 days; e1
and e2 denote the coefficients of environmental deformation;
and Tem and Pre denote the average monthly temperature
and precipitation, respectively. In principle, at least N + 5
interferometric pairs, the equations can be solved, and to
avoid the model overparameterization causing problems in
the solution, we suggest preferentially using the conditional
condition number Cond∞(B) = ∥B∥∞∥B−1

∥∞ to determine
the ill-conditioned of the matrix, and B is the coefficient
matrix of the set of phase equations. Then, least squares (LSs)
and SVD [14] can be used to estimate the unknown parameter
X = [v1 v2 · · · vN α1 α2 e1 e2 1h(x, y)].
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D. High-Precision DEM Generation and Precision
Evaluation

When the model parameters are obtained, the high-
precision DEM can be generated using (1). However, the
time series InSAR technology based on high coherence
points has limitations due to spatial–temporal incoherence
or geometric distortions. To address this, this study uses an
interpolated fusion approach to improve the accuracy [39].
The acquired DEM is then reprojected and geocoded to the
WGS-84 coordinate system to facilitate the understanding and
interpretation of the acquired geographic information.

The DEMs generated by the ISCM method were compared
with several traditional methods. The LM method, known
for its dense time sampling interval, is a classical residual
elevation generation algorithm. The SM method, on the other
hand, is more suitable for areas with complex topography
and has been used for regional permafrost deformation
inversion and DEM generation. The PM method is known
for its suitability for nonlinear data and high accuracy
in DEM generation. The persistent scatterer interferometry
(PSI) method is known for its high accuracy in deformation
estimation and handling of SAR signal decorrelation [40],
[41]. The maximum elevation error (Emax), root-mean-square
error (RMSE), mean absolute error (MAE), and 90% linear
point-to-point error (LE90) were used to validate the elevation
accuracy of ISCM. The standard deviation (STD) of the
residual phase was used to evaluate the InSAR modeling.
In addition, the MAE of the terrain features was used to
evaluate the preservation of the terrain features

Emax = max(abs(yi − ŷi )) (10)

RMSE =

√√√√1
j

j∑
i=1

(yi − ŷi )2 (11)

MAE =
1
j

j∑
i=1

∣∣(yi − ŷi )
∣∣ (12)

STD =

√√√√1
j

j∑
i=1

(yi − ȳi )2 (13)

Et f =
1
j

j∑
i=1

∣∣(ti − t̂ i )
∣∣ (14)

where j represents the number of pixels, yi represents the true
value, ŷi represents the model generation value, ȳi represents
the mean of the observed data, ti is the terrain parameter
generated from the original elevation, and t̂ i is the terrain
parameter generated from different models.

III. EXPERIMENTS AND RESULTS

A. YA and Data Preprocessing

Two typical study areas, San Diego, USA (SD), and
Yan’an City, Loess Plateau, China (YA), were selected as
test areas (as shown in Figs. 3 and 4). The purple rectangles
in Figs. 3(a) and 4(a) denote the spatial coverage of the
(descending) TerraSAR-X and PAZ data, and the yellow
rectangles are two test areas of interest. Both the test areas

Fig. 3. Map of the study area (SD). (a) Coverage of SAR image. (b) Location
of SD on the map of the USA. (c) ALOS 12.5-m DEM of the YA.

Fig. 4. Map of the study area (YA). (a) Coverage of SAR image. (b) Location
of YA on the map of China. (c) ALOS 12.5-m DEM of the YA.

are rich in topography and geomorphology, characterized
by high surface relief due to the presence of mountains,
plains, hills, and a dense network of rivers and lakes, making
them ideal for high-precision DEM studies and mapping.
A total of 19 TerraSAR-X images were collected in the SD
area (from August 8, 2009 to April 29, 2010) and 18 PAZ
images were collected in the YA area (from April 8, 2022 to
October 21, 2023).

Data preprocessing was performed using GAMMA soft-
ware, and the spatial–temporal baseline thresholds were set
to 400 m and 150 days. To account for the effects of
decorrelation noise and to preserve as much of the original
image resolution as possible, a 1:1 multilooking was used
in the SD area and a 2:1 multilooking was used in the YA
area, resulting in a resolution of about 2.05 × 1.76 m for
the SD area and 5.08 × 4.24 m for the YA area in the
WGS-84 north and east directions, respectively [42], [43].
The Goldstein filter was used for further noise reduction.
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TABLE I
DATA PARAMETERS USED IN THIS WORK

The topography phase was filtered using ALOS 12.5-m DEM
(https://search.asf.alaska.edu) [44], [45]. Polynomial fitting
models were used to remove orbital errors and minimum
cost flow (MCF) was used for phase unwrapping [46].
The reference points for SD and YA are shown as R1 in
Fig. 3(c) and R2 in Fig. 4(c), respectively. After removing the
less effective interference pairs, the spatial–temporal baseline
connection is shown in Fig. 5, and the data parameters used in
this work are shown in Table I. Finally, 36 interferometric pairs
for the SD and 34 interferometric pairs for the YA are selected
for the ISCM experiment. The selected interferometric pairs
have smooth phases, continuous and no obvious jumps, stable
coherence, and low noise images. Besides, the three-threshold
method (coherence threshold, amplitude deviation index, and
intensity) was used to extract high coherence points [14], [47].

B. Residual Elevation Estimation by ISCM

1) ICA Phase Separation: As described in Section II-B,
the FastICA phase separation algorithm was used in the
experiments to analyze the changes in the independent
components. In the experimental process, the effect of
separation number n on the contribution rate was investigated
to determine the most effective number of ICA separations.
It was found that when the number of separations was 6 for
the SD area and 5 for the YA area, the contribution rate
(the proportion of the independent components isolated by
ICA to the total components) reached 90.2% and 96.5%,
respectively [24]. Also, the nonindependent component can
be considered as other residual signals. Furthermore, if the
number of separations is lower than the optimal number,
it becomes difficult to separate the atmosphere and its
contribution. Conversely, if the number of separations is higher
than the optimal value, it may disrupt the spatial distribution
and time series of topography and deformation. Therefore,
we considered the optimal number of separations to be 6 for
the SD area and 5 for the YA area.

Figs. 6 and 7 show the normalized spatial response and time
series of each independent component, respectively. To obtain
a physical interpretation of these independent components,

Fig. 5. Spatial–temporal baseline connection. (a) SD area. (b) YA area.

we resolve the deformation and topography using the SBAS
method before ICA separation. For the SD area, IC2 showed a
spatial alignment with the SBAS residual elevation, indicating
that it can be interpreted as the topography phase; IC1, IC3,
and IC4 showed a cumulative situation in the time series,
as shown by the red arrows in Fig. 6. IC3 showed a simple
composition and showed a linear trend, indicating that it can
be considered as a linear deformation phase; IC1 and IC4
showed consistent time series and were spatially dominant in
the SBAS deformation, indicating that they can be attributed
to seasonal and environmental factor-induced deformation
phases; in addition, IC5 and IC6 showed clear atmospheric
and noise features, with repeated jumps in the range of
[−8, 8] radians over time, as shown by the blue dotted lines
in Fig. 6, indicating their association with the atmosphere and
noise phases. Similarly, for the YA area, IC3 and IC1 can be
considered as the topography and linear deformation phases,
respectively; IC2 and IC4 can be considered as the seasonal
and environmental factor-induced deformation phases; and IC5
can be considered as the atmosphere and noise phases.

In addition, to confirm the accuracy of the physical
interpretation, a spatial estimation of the atmosphere and
noise is performed using simultaneous GACOS (http://ceg-
research.ncl.ac.U.K./v2/gacos/) [48], [49]. Therefore, atmo-
sphere and noise can be directly removed after ICA phase
separation. For the SD area, the correlations between the
deformation and topography phases are small, but for the
YA area, the deformation and topography phases have a
greater correlation as shown by the red circle as shown in
Fig. 7. At this point, deformation and topography are entangled
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Fig. 6. Spatial response and time series of each independent component for
the SD (the top is the spatial response and the bottom is the time series).

with each other, and therefore, the subsequent modeling is
important.

2) InSAR Combinatorial Modeling: As mentioned in
Section II-C, the baseline errors were corrected using the
adaptive polynomial fitting after ICA separation. The average
baseline error for both areas is less than 0.5 rad, which
is consistent with the magnitude of the baseline error. The
environmental factor can be obtained from climate data
(https://www.worldclim.org/data/monthlywth.html). Fig. 8(a)
shows that the residual elevation calculated by ISCM was
between [−28, 38] m for SD. The maximum elevation change
is 37.5 m, and the largest residual elevation change was
observed in steep mountainous areas. For the YA area, the
residual elevation is between [−70, 80] m, with a maximum
elevation of 69.6 m, and the largest residual elevation change
occurred mainly in the urban area of Yanan city [Fig. 8(b)].
This can be attributed to the fact that the PAZ data for the
YA area are the latest, covering the period from 2022 to 2023,
which has a longer time interval compared to the reference
ALOS DEM data collected in 2008. In addition, urban
construction has a greater impact on topographic changes,
which will be discussed in Section IV-D.

C. High-Precision DEM Generation by ISCM

After obtaining the residual elevations as shown in Fig. 8,
the surface elevation can be realized by (1), and the generated

Fig. 7. Spatial response and time series of each independent component for
the YA (the top is the spatial response and the bottom is the time series).

DEMs are shown in Figs. 9 and 10. For comparison with the
acquired photogrammetric DEMs, the DEMs were resampled
to the 3-m resolution for the SD area and 6-m resolution for the
YA area. The DEMs generated by ISCM not only effectively
reduce the noise present in the SAR-generated DEMs but also
improve the visibility of mountains, rivers, and urban areas
compared to the traditional LM and PM methods. However,
due to the large size of the DEMs generated, the elevation
changes in Figs. 9 and 10 may not be apparent from the images
alone, although there are obvious differences. In Section III-D,
the area E(a) in Fig. 9 and the area E(b) in Fig. 10 are clearly
shown to better explore the detail variation.

D. Accuracy Evaluations

1) Accuracy Evaluation Using Photogrammetric DEM:
To verify the elevation accuracy of the DEMs generated by
the ISCM method, photogrammetric DEMs with a resolution
of 3 m in the SD area (https://datagateway.nrcs.usda.gov/)
and 6 m in the YA area were collected for validation. The
photogrammetric DEMs are located at E(a) in Fig. 9 and
E(b) in Fig. 10. All the generated DEMs were geocoded
and projected to the WGS-84 coordinate system [50]. From
Figs. 11 and 12, the DEMs generated by the traditional
LM, SM, PM, and PSI methods contain obvious atmospheric
noise and other effects, whereas the DEMs generated by the
ISCM method show a high degree of agreement with the
photogrammetric DEM.
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Fig. 8. Residual elevation calculated by ISCM. (a) SD area. (b) YA area.

Fig. 9. DEM generated for the SD area. (a) ALOS 12.5-m DEM. (b) LM 3-m DEM. (c) PM 3-m DEM. (d) PSI 3-m DEM. (e) LM + IS 3-m DEM.
(f) ISCM 3-m DEM.

The accuracies of the DEMs produced by the different
SAR methods and the photogrammetric DEMs were further
analyzed using Emax, RMSE, MAE, and LE90. The results
show a significant improvement in DEM accuracy after
applying the ISCM methods. Tables II and III illustrate the
advantages of the DEMs produced by the ISCM method
over the traditional LM, SM, PM, and PSI methods. For the
SD area, the RMSEs of the DEMs produced by LM + IS
and ISCM with the photogrammetric DEMs are 3.62 and
3.20 m, with an improvement of 18.1%–34.7% and 30.8%–
44.9% respectively, compared to the traditional MB-InSAR
method. For the YA area, the RMSEs of the DEMs are
4.79 and 4.41 m, with an improvement of 15.2%–33.1% and
21.9%–38.4% respectively. These results demonstrate the
feasibility of the proposed method for atmospheric noise and
other residual signals removal and ISCM during SAR DEM

TABLE II
COMPARISON OF ELEVATION ACCURACY INDEXES FOR SD (UNIT: m)

generation. The ISCM has successfully improved the quality
of the generated DEMs so that the vertical accuracy LE90 is
about 6.77 m for SD and 8.65 m for YA, which can meet the
US HRTI-3 standard [51].
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Fig. 10. DEM generated for the YA area. (a) ALOS 12.5-m DEM. (b) LM 6-m DEM. (c) PM 6-m DEM. (d) PSI 6-m DEM. (e) LM + IS 6-m DEM.
(f) ISCM 6-m DEM.

TABLE III
COMPARISON OF ELEVATION ACCURACY INDEXES FOR YA (UNIT: m)

From Tables II and III, we can see that the overall accuracy
of the SD area is higher than that of the YA area, and the
main reasons are that the data acquired in the SD area are
TerraSAR-X Stripmap mode data with 3-m resolution, while
the data acquired in the YA area are stripmap dual-mode data
with 6-m resolution. The overall accuracy of the SD area
is better than that of the YA area at the sensor resolution.
However, due to the different resolutions of the collected data
sensors themselves, the performance of the sensors needs to
be further investigated by collecting SAR satellite data at the
same resolution.

2) Accuracy Evaluation Using ICESat/GLAS Elevation
Data: To further validate the accuracy of the ISCM method for
DEM generation, 128 ICESat/GLAS data were collected from

the YA area, as shown in Fig. 10. Considering the difference
in resolution between the ICESat/GLAS data (about 65 m
in diameter) and the DEMs generated by the ISCM (about
6 m in the YA area), we compared the elevation value from
a 9 × 9 window in the YA area with the elevation of the
GLAS points [16]. The ICESat/GLAS elevation measurements
were compared with the center position (H1), minimum (H2),
maximum (H3), and average (H4) values of the different
DEM generation methods within the corresponding 9 × 9
geographical window. Table IV shows the mean difference
and RMSE of the different DEMs with ICESat/GLAS. The
RMSE is significantly improved in H1–H4, with improve-
ments of 16.9%–30.0%, 25.0%–28.5%, 19.2%–30.8%, and
13.7%–29.5% compared to the traditional MB-InSAR method,
respectively. In addition, the variability of H1–H4 is relatively
small, thus demonstrating the accuracy of the geographic
location of the SAR-generated DEMs.

3) Accuracy Evaluation for ISCM Modeling Using Residual
Phase: To analyze the accuracy of the InSAR modeling
considering linear deformation, seasonal deformation, and
environmental factors, using the residual phase to validate
the InSAR modeling [30]. A smaller residual phase indicates
a better performance of the InSAR modeling in generating
DEMs and deformations. Fig. 13 shows the residual phases
of the 36 selected interferograms in the SD area and
the 34 selected interferograms selected in the YA area.
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TABLE IV
MEAN DIFFERENCE AND RMSE OF DIFFERENT DEMS WITH ICESAT/GLAS (UNIT: m)

Fig. 11. Comparison between different DEM generation methods for the SD
area. (a) ALOS 12.5-m DEM. (b) LM 3-m DEM. (c) SM 3-m DEM. (d) PM
3-m DEM. (e) LM + GACOS 3-m DEM. (f) PSI 3-m DEM. (g) LM + IS
3-m DEM. (h) ISCM 3-m DEM. (i) Photogrammetric DEM.

The residual phases obtained by the ISCM method are
significantly lower than those obtained by the traditional
method. By calculating the STD of the residual phase, for the
SD area, the STD of the traditional LM model is ±0.23 rad,
while that of ISCM is ±0.16 rad, with an improvement of
30.4%; for the YA area, the STD of the traditional LM model
is ±0.21 rad, while that of the ISCM is ±0.13 rad, with an
improvement of 38.0%. These results confirm the feasibility
and reliability of the InSAR model proposed in this study for
DEM generation.

4) Accuracy Evaluation for Deformation Using GNSS Data:
To validate the ability of the ISCM to capture the deformation,
two GNSS points in the SD area (G1 and G2 in Fig. 6) were
collected for further evaluation [52]. It should be noted that
G1 points are used for accurate verification of deformation
over the same period. Due to limitations in the collection
of historical GNSS data, G2 points are only used to assess
the consistency of deformation trends. Fig. 14 shows the

Fig. 12. Comparison between different DEM generation methods for the YA
area. (a) ALOS 12.5-m DEM. (b) LM 6-m DEM. (c) SM 6-m DEM. (d) PM
6-m DEM. (e) LM + GACOS 6-m DEM. (f) PSI 6-m DEM. (g) LM + IS
6-m DEM. (h) ISCM 6-m DEM. (i) Photogrammetric DEM.

comparison of time series deformation between different
methods and GNSS. The RMSEs between the ISCM and
GNSS are ±2.79 and ±4.66 mm in G1 and G2, respectively,
while the LMs are ±7.48 and ±9.97 mm. In addition, from
Fig. 14, the time series of the ISCM model are consistent with
GNSS and can better capture the nonlinear deformation of the
surface, indicating that the ISCM model has good potential
for deformation modeling.

IV. DISCUSSION

A. Analysis of the DEM Applications for Terrain Feature
Identification

To further analyze the effect of ISCM on DEM generation,
the DEMs of area E(a) for the SD area were selected and used
for slope, aspect, and river network generation, the sample as
shown in Figs. 15–17.

The differences observed in the extracted slope, aspect,
and river network of the different methods compared to
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Fig. 13. Residual phases of DEMs generated by different methods. (a) SD
area. (b) YA area.

Fig. 14. Comparison of time series deformation between different methods
and GNSS for the SD area. (a) G1 point. (b) G2 point.

photogrammetric DEMs reflect their respective abilities to
preserve topographic features. The better preservation of
terrain features in the generated DEM demonstrates the
superior quality of the resulting DEM product. It can be seen
from Figs. 15 and 16 that the traditional LM, SM, and PM
methods can produce more refined terrain features compared
to the photogrammetric DEMs, but the retention of terrain
features is weak due to a variety of factors such as atmospheric
and noise, other residual signals, and deformation errors.
In contrast, the terrain features produced by ISCM are more
consistent with the terrain features of the photogrammetric
DEM. In addition, the surface details of the DEM products
are clearer and more representative of the rich topographic
features. From Fig. 17, we performed hydrological analyses on

Fig. 15. Sample slope maps based on DEMs generated by different methods.
(a) ALOS 12.5-m slope. (b) LM 3-m slope. (c) SM 3-m slope. (d) PM 3-m
slope. (e) LM + GACOS 3-m slope. (f) PSI 3-m slope. (g) LM + IS 3-m
slope. (h) ISCM 3-m slope. (i) Photogrammetric slope.

Fig. 16. Sample aspect maps based on DEMs generated by different methods.
(a) ALOS 12.5-m aspect. (b) LM 3-m aspect. (c) SM 3-m aspect. (d) PM 3-m
aspect. (e) LM + GACOS 3-m aspect. (f) PSI 3-m aspect. (g) LM + IS 3-m
aspect. (h) ISCM 3-m aspect. (i) Photogrammetric aspect.

the DEM-generated river network, the river networks derived
from the ALOS DEM appear relatively simple, while the
InSAR and photogrammetric river networks show more detail.

To validate the performance of the terrain features,
we performed an analysis of slope and aspect and compared
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Fig. 17. Sample river network maps based on DEMs generated by different
methods. (a) ALOS 12.5-m river network. (b) LM 3-m river network. (c) SM
3-m river network. (d) PM 3-m river network. (e) LM + GACOS 3-m river
network. (f) PSI 3-m river network. (g) LM + IS 3-m river network. (h) ISCM
3-m river network. (i) Photogrammetric river network.

TABLE V
COMPARISON OF TERRAIN FEATURES INDEXES (UNIT: ◦)

the results with those obtained from the photogrammetric
DEM. Table V shows the MAE of slope ESlope and aspect
EAspect performance of DEMs generated by different methods
with the photogrammetric DEM, and the results show
differences in the ability of different methods to capture
terrain features. Furthermore, the capture of terrain features
gradually improves as factors such as atmospheric noise, other
residual signals, and deformation error are optimized. In par-
ticular, the proposed ISCM method shows improvements of
10.5%–27.7% and 7.0%–16.0% in slope and aspect represen-
tation, respectively, compared to the traditional MB-InSAR
method.

B. Analysis of the Horizontal and Vertical Profiles

To illustrate the differences between the DEMs produced
by the different methods, the horizontal profile EE’ and
the vertical profile FF’ from Fig. 11(e) are selected for
further analysis. From Fig. 18, it can be seen that although
the traditional LM, SM, and PM methods are capable
of reproducing rich topographic information (the surface
undulation is much more detailed), they are subject to
atmospheric and noise effects, baseline and deformation

Fig. 18. Comparison between different DEMs using the horizontal and
vertical profiles. (a) Horizontal profile EE’. (b) Horizontal profile FF’.

Fig. 19. Influence of deformation errors on elevation measurements. (a) SD
area. (b) YA area.

modeling errors, and other factors that are significantly
different from the photogrammetric DEM profiles.

From the horizontal profile EE’, the maximum difference
between the LM method and the photogrammetric DEM is
14.23 m, while the maximum difference between the ISCM
method and the photogrammetric DEM is only 8.06 m. The
traditional SAR method has limitations in producing DEMs
due to spatial–temporal incoherence or geometric distortions
caused by layover and shadows, and the DEMs produced
by the ISCM method are better able to compensate for this
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Fig. 20. Effect of separation number on topography phases.

phenomenon. However, it is worth noting that the interpolated
fusion approach still has some limitations in some void areas,
as shown in Fig. 18(b), and this phenomenon of erroneous
artifacts needs to be further improved.

C. Analysis of the Influence of Deformation Errors on
Elevation Measurements

To test how the phase contribution of deformation errors
affects the resulting DEM accuracy. Satellite parameters in
the SD and YA areas were used to test the effect of 0–10-mm
deformation errors on elevation measurements under different
perpendicular baselines, as shown in Fig. 19. Fig. 19 shows
that for a larger perpendicular baseline of 300 m, a deformation
error of 10 mm can cause an elevation error of 13.62 and
15.92 m in the SD and YA areas, respectively. Also, for a small
perpendicular baseline of 50 m, a deformation error of 10 mm
can cause an elevation error of 81.73 and 95.54 m. Therefore,
if the deformation phase cannot be accurately separated or
modeled, the error is introduced into the DEM and is a major
source of error in DEM reconstruction.

D. Analysis of the Effect of Separation Number on
Topography Phases

The number of independent component separations is
crucial for the accurate separation of the signals, so we
tested the effect on the spatial response and time series
of the topography phase when the number of separations
was 4, 5, 6, and 7. From Fig. 20, the time series and
spatial response of the topography phase in the SD area are
relatively stable. However, there is a large variability in the
YA area. We suspect that the reason for this is that the
correlation between the deformation and topography phase in
the SD area is small, and the topography phase is relatively
stable for different numbers of separations. On the other
hand, the deformation and topography phase in the YA area
have a larger correlation. In this case, the deformation and
topography phases are entangled. Therefore, the combination
of deformation and topography phase as a whole in
this article to obtain the residual elevation efficiently and
robustly.
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Fig. 21. Response of the ISCM to different terrain surfaces (i.e., conditions).

E. Analysis of the Response of the ISCM to Different Terrain

During the DEM generation process using the ISCM
method, we found that the residual elevation responds
differently to different terrain surfaces, as shown in Fig. 8. The
residual elevation generated by ISCM shows more significant
variations in areas with steep mountainous terrain, while it is
relatively smaller in flat areas. This difference can be attributed
to the influence of the reference DEM used, which has a larger
error in mountainous areas and a smaller error in flat areas.
It also seems to be simply related to the different resolution
classes and different viewing geometries of the TerraSAR-X
data in the SD area and the PAZ data in the YA area with the
ALOS 12.5-m DEM. The HR DEM generated in this study
effectively recovers the terrain details and thus compensates
for the errors in the reference DEM.

To further explore the response of the ISCM to different
terrains, the DEMs of different scenes (as shown in

Figs. 9 and 10) were selected for comparison. From Fig. 21,
the ISCM DEM shows richer terrain details than the LM DEM.
In terms of residual elevation, the ISCM has less noise and
clearer topography, reflecting the potential advantages of the
ISCM in improving atmospheric noise, other residual signals,
and deformation modeling errors. For the SD area of the
steep mountains, the DEMs generated by ISCM show better
recovery of the steep ridges and are consistent with the textural
characteristics of the San Diego Mountains. This indicates that
the ISCM is effective in capturing the detailed terrain features
of rugged landscapes; the ISCM provides a finer representation
of the urban surface features of San Diego and can capture
subtle changes in urban topography.

In addition, for the YA area of the urban construction and
the airport construction, the ISCM better reflects the correction
for surface changes. The residual elevation in Yan’an city
and its airport is particularly noticeable, and according to
the geographic survey of Yan’an city, we found that the
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main reason is that the PAZ data used in the experiment
were from 2022 to 2023, while the reference ALOS DEM
was collected in 2008. The temporal change of the city
of Yan’an and its airport is a well-known result of the
extensive excavation and filling activities in recent years.
According to the investigation, the government proposed the
Mountain Excavation and City Construction (MECC) project
in December 2011, and it was reported to have started in April
2012 [53]. The Yan’an Nanniwan Airport was constructed
in July 2013 and officially opened to traffic in November
2018. The topographical and geological conditions of the
Loess Plateau Wet Trapped Loess Area are complicated by
high excavation and deep filling with incongruent deformation
(the maximum filling depth is nearly 100 m). In addition
to the abovementioned effect of the mountainous area, the
effect of urban construction and airport construction on the
topography of Yan’an City also contributes significantly to
this phenomenon. The ISCM residual elevations are highly
consistent with the spatial distribution and magnitude, and
the difference between TanDEM-X DEM and SRTM [54].
Overall, the ISCM method demonstrates its effectiveness in
capturing terrain variations and accurately representing the
changes caused by different terrain surfaces (i.e., conditions),
including steep mountains, urban construction, and airport
development.

V. CONCLUSION

To compensate for the limitations of atmospheric noise,
other residual signals, and inaccurate deformation modeling
in the MB-InSAR DEM generation, the spatial ICA phase
separation and ISCM method was proposed in this article.
TerraSAR-X and PAZ data were acquired in the SD and
YA areas for the test. The accuracy of the DEMs produced
by the ISCM was verified using photogrammetric DEM and
ICESat/GLAS elevation data. The main conclusions are as
follows.

First, compared to the traditional LM, SM, PM, and
PSI methods, the ISCM method can significantly improve
the effects of atmospheric noise, other residual signals, and
deformation error in the DEM generation. The accuracy
of the generated DEM can be improved by 30.8%–44.9% in
the SD area and 21.9%–38.4% in the YA area. In addition,
the modeling error analysis shows that the ISCM has a high
modeling accuracy.

Second, the DEMs generated by the ISCM method have
significant advantages in generating slope, aspect, and river
networks and can show the texture and detail of features more
clearly, with better preservation of terrain features.

Third, the DEMs generated by the ISCM method provide
a better representation of the terrain in different scenes,
especially for the terrain changes caused by steep mountains,
urban construction, and airport construction. The DEMs can
more clearly reflect the basic features of the terrain and
geomorphology, confirming that the ISCM is more meaningful
in recovering the DEM changes caused by the long time series
surface construction.

This article still has some limitations that need further
investigation. 1) the method only analyzes and improves the

errors in MB-InSAR DEM generation and the spatial–temporal
incoherence or layover and shadow problems of InSAR
can only be overcome by simple interpolation fusion and
2) the interferometric pairs need large spatial baselines in
mountainous areas, which could lead to decorrelation problems
and unwrapping errors. In future research, we will address this
limitation by using artificial intelligence (AI) fusion combined
with ascending and descending data.
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