
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025 5203418

An Intelligent Learning Reconfiguration Model
Based on Optimized Transformer and Multisource

Features (TMSFs) for High-Precision
InSAR DEM Void Filling

Tengfei Zhang , Graduate Student Member, IEEE, Yumin Chen , Rui Zhu , John P. Wilson , Jun Song ,
Ruoxuan Chen, Licheng Liu, and Lanhua Bao

Abstract— The synthetic aperture radar (SAR) systems can
provide submeter terrain mapping and accurate point elevation
information quickly and efficiently. The interferometric SAR
(InSAR) technology has proven to be a powerful method for
producing digital elevation models (DEMs). However, DEM
generation using InSAR technology is limited by mountain
shadow overlap, atmospheric noise, low backscatter coefficient,
and spatiotemporal incoherence, leading to the problem of voids.
This article proposes an intelligent learning reconfiguration
model based on optimized transformer and multisource features
(TMSFs). First, the intelligent learning reconfiguration model
based on the transformer and convolutional neural network
(CNN) was constructed, and the multisource feature connection
module was used for feature supervision and loss function
optimization. Then, the relationship of nonvoid areas between the
low-resolution (LR) DEM and the high-resolution (HR) InSAR
DEM was found, and the voids were intelligently filled. The
experiments used 19 TerraSAR-X images in San Diego (SD),
USA, and 18 PAZ images in Yan’an (YA), China, to gener-
ate high-precision InSAR void DEMs and intelligently fill the
voids. Compared with traditional interpolation or deep learning
models, modeling accuracy improved by 11.31%–45.74% and
2.32%–8.78% in the SD and YA areas, respectively. Using
the photogrammetric DEM to evaluate the accuracy of the
filled DEM, the new method showed improvements of 15.64%–
25.91% and 5.60%–28.26%, respectively. In addition, 122 Ice,
Cloud, and land Elevation Satellite (ICESat)/Geosciences Laser
Altimeter System (GLAS) points collected in the YA area were
further validated, with an improvement of 4.40%–22.28%. The
generated DEM has considerable advantages for terrain feature
preservation and river network extraction, and the new method
can provide technical support for DEM void filling.
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I. INTRODUCTION

HIGH-PRECISION digital elevation models (DEMs) play
an essential part in geographic information architecture,

widely used in urban operations management, flood simula-
tion and prediction, landslide and mudslide risk assessment,
and 3-D real scene construction [1], [2], [3]. Traditional
high-precision DEM acquisition methods include topographic
mapping, aerial photogrammetry, and light detection and rang-
ing (LiDAR) [4]. However, their susceptibility to weather
conditions, poor coverage, and high cost have limited their use
in large-scale, high-precision DEM production. The synthetic
aperture radar (SAR) technology can operate in all weather
conditions, all day, and is unaffected by clouds, rain, and
fog. In addition, the high-resolution (HR) satellite-based SAR
systems can provide submeter terrain mapping and quickly
and effectively acquire the point elevation information needed
to construct high-precision DEMs [5].

The main methods that use interferometric SAR (InSAR)
technology to produce high-precision DEMs include two-
pass, multibaseline, and bistatic InSAR. The accuracy of
traditional two-pass InSAR is limited and affected by factors,
such as SAR platform geometry, spatiotemporal incoherence,
atmospheric delay and noise, and unwrapping errors [6].
Currently, multibaseline and bistatic InSAR are the main
methods for producing high-precision DEMs using InSAR
technology. In terms of multibaseline InSAR, Eineder and
Adam proposed a method to generate DEMs without phase
unwrapping, and the results show that this is more applicable
in rugged mountainous terrain [7]. Zhao et al. [8] incorporated
Shuttle Radar Topography Mission (SRTM) DEM data into the
process of DEM reconstruction from TerraSAR-X data, which
effectively improved the accuracy of the generated DEM.
Du et al. [9] used simulated data to analyze the errors of
traditional InSAR DEM generation algorithms, such as linear
and polynomial models. Multibaseline InSAR DEM genera-
tion methods have achieved many successes, but they are still
affected by atmospheric delays and noise, baseline errors, and
deformation modeling errors. The bistatic InSAR technology

1558-0644 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Wuhan University. Downloaded on February 07,2025 at 23:55:50 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0009-0008-7355-7148
https://orcid.org/0000-0001-5045-6418
https://orcid.org/0000-0002-9965-0948
https://orcid.org/0000-0001-5969-0729
https://orcid.org/0000-0003-4479-700X


5203418 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

was introduced with the launch of the TerraSAR-X/TanDEM-
X satellites. The main characteristics of the satellite are
that it can acquire interferometric pairs with a “zero” time
baseline and long spatial baseline, effectively overcoming the
effects of spatiotemporal incoherence, atmospheric delay and
noise, and deformation modeling errors. Lachaise et al. [10]
investigated the TerraSAR-X/TanDEM-X data processing flow,
which shows high accuracy in areas with simple topography.
Lachaise et al. [11] propose a dual-baseline phase unwrapping
(DB-PUC) framework, and experimental results show that the
DB-PUC framework processes TanDEM-X data with high
efficiency and accuracy. Eldhuset [12] estimate the coherence
of different components and extract more topographic informa-
tion from TerraSAR-X/TanDEM-X interferometric data, which
is essential for improving the quality of high-precision DEMs.
However, the DEMs generated by the above-mentioned meth-
ods are subject to the problem of voids due to the limitations
of the terrain conditions, the scattering characteristics of the
features, and the temporal phase variations in the SAR images.

The presence of voids in DEMs is an inherent limitation
of optical remote sensing, aerial photogrammetry, and SAR
techniques, and significantly affects the quality of current
DEMs. Fig. 1 shows the void areas in the 3-m DEM generated
from TerraSAR-X data. Currently, single SAR data fusion and
multisource data fusion are the main methods used to fill the
voids in DEMs. In terms of single SAR data fusion, most
studies focus on the fusion of ascending and descending data
by selecting the optimal angle of incidence according to the
geometric relationship of the satellite. Deo et al. [13] deter-
mine the optimal fusion incidence angle based on the statistical
and topographic information to achieve weighted DEM fusion.
Zhang et al. [14] used an improved polynomial model com-
bined with ascending and descending data fusion to achieve
DEM generation for Heifangtai, China. Dong et al. [15]
used a cascaded multibaseline interferometric approach with
the weighted fusion of ascending and descending data to
achieve high-precision DEM generation over Songshan, China.
The ascending and descending data fusion methods are more
effective in dealing with mountain shadow and overlap,
but is not well suited for areas affected by atmospheric
and noise, low backscatter coefficient, and spatiotemporal
incoherence problems. In terms of multisource data fusion,
Shen et al. [16] proposed an elevation difference fitting neural
network method to fuse advanced spaceborne thermal emission
and reflection radiometer (ASTER) global digital elevation
model (GDEM) and SRTM source data to generate seamless
DEM. Yue et al. [17] used a regularized framework to fuse
DEM data from multiple sources and scales to produce seam-
less DEMs. Liu et al. [18] extracted a high-precision DEM of
the Antarctic area from TanDEM-X interferometric data using
an iterative sub-InSAR technique. The multisource data fusion
method can fill the void areas, but the existing multisource data
have different accuracies, inconsistent data formats, and large
geographical location deviations. In addition, the fusion of the
acquired high-precision DEM has the problems of elevation
error, insufficient enhancement of high-frequency information,
over-smoothing of complex topographic areas, and loss of
topographic features.

Fig. 1. Void areas in a 3-m DEM generated with TerraSAR-X data.

With the development of geospatial artificial intelli-
gence (GeoAI), DEM super-resolution (SR) reconstruction
plays an important role in high-precision DEM generation.
Chen et al. [19] used a three-layer convolutional neural net-
work (CNN) to achieve reconstruction from low-resolution
(LR) to HR DEM. Zhou et al. [20] introduced deep CNN
and multiterrain features to achieve high-precision DEM
reconstruction. Researchers have attempted to demonstrate the
feasibility of using these deep learning networks to fill DEM
voids [20]. Liu et al. [21] proposed a deep CNN that com-
bines intensity information from SAR data and interferometric
phases to generate high-precision DEMs. Chen et al. [22]
introduced a residual network with an attention module (AM)
for DEM reconstruction, which was used to fill the DEM voids
at 5-m resolution. Compared with existing fusion approaches,
deep learning-based DEM-SR reconstruction has achieved bet-
ter performance, but the accuracy of the reconstruction process
needs further improvement. In addition, the high-frequency
information in the void areas is insufficient, leading to incon-
sistencies between the results and the actual terrain.

Based on the above analysis, the main challenges for
improving the quality of high-precision DEM using AI are
as follows.

1) The missing data problem severely affects the DEM
quality, and the reasons for this problem in InSAR DEMs are
complex and multifaceted, due to problems such as mountain
shadow overlap, atmospheric noise, low backscatter coeffi-
cient, and spatiotemporal incoherence. Dealing with different
types of missing data is extremely challenging.

2) The traditional void-filling method lacks the
high-frequency information of the void areas, leading to
a large number of elevation errors. The effectiveness of the
DEM void filling needs to be further improved.

3) The method based on DEM-SR reconstruction used to
fill the void areas needs further refinement and improvement.

To address this limitation, we propose an intelligent learning
reconfiguration model based on optimized transformer and
multisource features (TMSFs) to fill the void problem in
high-precision InSAR DEMs. First, the intelligent learning
reconfiguration model based on the transformer and CNN was
constructed, and the multisource feature connection module
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Fig. 2. Workflow of optimized TMSFs.

was used for feature supervision and loss function opti-
mization. Then, the relationship of nonvoid areas between
the LR and HR InSAR DEMs was found, and the voids
were intelligently filled by TMSF. The multisource feature
connection module can effectively increase the high-frequency
information in the void areas, and significantly improve the
quality of the DEM. The generated high-precision DEM
products have significant advantages in elevation accuracy and
terrain feature preservation. It provides high-precision DEM
3-D modeling products for geological disasters, environmental
protection, soil and water conservation, and other applications.

II. METHODOLOGY

In this article, a TMSF framework is proposed to solve the
void problem in high-precision InSAR DEMs. Specifically,
the research work includes the following steps: 1) high-
precision InSAR void DEM generation; 2) training dataset
construction; 3) optimized TMSFs modeling; and 4) TMSF
accuracy evaluation. The research workflow is shown in Fig. 2.

A. High-Precision InSAR Void DEM Generation

Multibaseline and bistatic InSAR are the main methods
for high-precision InSAR DEM generation. During SAR data
preprocessing, the dense interference fringes caused by the
topography phase can seriously affect the accuracy of the
phase unwrapping. Researchers have proposed to remove
the topographic phase using the LR DEM [expressed as
href(x, y)], and then use the differential interferometric phase
to solve the residual elevation between the HR and LR DEMs

[expressed as 1h(x, y)]. The interferometric phase is written
as follows [23], [24], [25], [26]:

δϕm
i = δϕi

def + δϕi
topo + δϕi

orbit + δϕi
atm + δϕi

noise + δϕi
hp (1)

where δϕm
i represents the phase at the i th pixel on the mth

interferogram (1 ≤ m ≤ M), M represents the number of
interferometric pairs. δϕi

def represents the deformation phase
δϕi

def = 4π · 1d(x, y)
/
λ, λ is the radar wavelength, 1d(x, y)

is the line-of-sight (LOS) deformation. δϕi
orbit represents the

orbit error. δϕi
atm and δϕi

noise represents the atmospheric delay
and noise phase, respectively. δϕi

hp represents the high-pass
(HP) deformation phase. δϕi

topo represents the topography
phase, which can be written as follows:

δϕi
topo =

4π Bm
⊥

λR sin θ
1h(x, y) (2)

where R represent the sensor-target distance. θ and Bm
⊥

rep-
resent the perpendicular baseline and radar incidence angle,
respectively. It is worth noting that the bistatic InSAR can
calculate the residual elevation directly using (2). The multi-
baseline InSAR technique requires the combination of (1)
and (2) to build an InSAR model that considers linear deforma-
tion, seasonal deformation, and environmental factors [27], and
then solves the deformation parameters and residual elevation
by least squares (LSs) and singular value decomposition
(SVD) [24], [28]. In addition, the independent component
analysis (ICA) was used to overcome the effects of atmosphere
and noise, and the polynomial fitting was used to remove
the baseline error. After obtaining the residual elevations, the
elevation on the surface can be written as follows [29]:

z(x, y) = href(x, y) + 1h(x, y). (3)

The elevation information of the high-precision InSAR
DEM can be obtained using (3), and then, the high-precision
InSAR void DEM corresponding to the actual geography can
be generated by geocoding and reprojection.

B. Training Dataset Construction

The training dataset consists of LR and HR training datasets,
as shown in Fig. 3. Specifically, it includes the DEM, terrain
feature, and SAR feature training datasets.

1) DEM Training Datasets: A wide range of LR DEMs
are available for free download worldwide, including 90-,
30-, and 12.5-m DEMs. The suitable data can be selected
according to the study area and actual needs. In this study,
the high-precision InSAR void DEM obtained in Section II-A
was used as the HR DEM, and the advanced land observing
satellite (ALOS) 12.5-m DEM was used as the LR DEM.
To avoid the influence of forests and buildings in different
bands of SAR data (L, X, and P) on the continuity and
accuracy of the elevations in the DEMs, filtering or the
triangulated irregular network (TIN) method can be used after
generating high-precision InSAR void DEMs. To facilitate the
calculation of the deep learning network, the resolution of
the LR and HR DEMs must satisfy the multiplier relation.
Therefore, the interpolation or resampling method is chosen
to make the DEM data meet the multiplier requirements [20].
The LR and HR DEMs were clipped to a pixel size of 64 ×

64 and 64 × 64 s, respectively, where s is the ratio of the
resolution between the LR and HR DEMs.
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Fig. 3. Training dataset construction.

2) Terrain Feature Training Datasets: Calculate the terrain
features corresponding to the LR DEM using the feature
extraction operators. Clip the terrain feature using the LR
DEM training datasets clip method, and then add the clipped
terrain feature to the training datasets. The main terrain
features used are slope and aspect, which can improve the
accuracy of intelligent learning reconfiguration and preserve
the detail and structure of the landform.

3) SAR Feature Training Datasets: The intensity map and
coherence map generated in Section II-A were used as SAR
features. The intensity feature represents the intensity of the
response of the features and landforms in the SAR image
to the echo signals, calculates the average of the intensity
information at different times, and performs the normalization
process. The coherence feature reflects the stability of the
InSAR phase, calculates the average of the intensity informa-
tion at different times, and performs the normalization process.
The SAR features were cropped and added to the training
datasets according to the cropping method of the HR DEM
training datasets.

C. Optimized TMSF Modeling

Combining the DEM datasets and the characteristics of the
voids caused by the missing data area, the intelligent learning
reconstruction model of TMSF was constructed, as shown in
Fig. 4. Specifically, it includes the shallow feature extraction,
multisource features connection, transformer and CNN feature
fusion block, up-sampling block, and loss function block.

1) Shallow Feature Extraction: The design structure con-
sists of a 3 × 3 convolutional layer and a shallow feature
matrix. Shallow features are extracted from the LR DEM
by a 3 × 3 convolutional layer, which processes the DEM

information from low-to-high dimensions and generates the
corresponding shallow feature matrix. Assuming that the input
LR DEM is DLR, the extracted shallow feature F0 can be
expressed as follows [22]:

F0 = HSFE(DLR) = W0 ∗ DLR (4)

where HSFE represents the convolutional layer with the weight
of W0, W0 represents the weight of the 3 × 3 convolutional for
shallow feature extraction, and ∗ represents the convolutional
operation.

2) Multisource Features Connection: The multisource fea-
tures connection module was introduced into the TMSF model
to improve the training accuracy. The multisource features
accessed include terrain (slope and aspect) and SAR fea-
tures (intensity and coherence). The feature matrices FTS are
obtained after normalization of the terrain and SAR features,
respectively. Since the resolution of SAR features differs from
that of terrain features, they cannot be fused with terrain
features by simple convolution, so the terrain and SAR features
were fused using the feature fusion module. The feature fusion
module contains two convolutional layers and a rectified linear
unit (ReLU), as shown in Fig. 5. The fused features FTS
are then concatenated with the shallow feature matrix F0 to
generate a new shallow feature FNew, which can be expressed
as follows:

FNew = WNew([F0, FTS]) + b (5)

where b represent the weights of the 3 × 3 convolutional layers
for multisource features fusion.

3) Transformer and CNN Feature Fusion Block: To better
extract the deep features and enhance the information of
the DEM, an attention transformer and CNN feature fusion
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Fig. 4. Architecture of the proposed TMSF for DEM void filling.

Fig. 5. Architecture of the multisource features connection.

module were designed, the main component of which is
the attention transformer and CNN block (ATCB). The new
shallow feature FNew was added to the transformer and CNN
feature fusion block. After passing through K ATCB modules,
a 1 × 1 convolutional layer, and a 3 × 3 convolutional layer,

Fig. 6. (a) ATCB, (b) AM, and (c) STL.

the deep feature matrix was obtained. ATCB module, AM, and
swin transformer layer (STL) module are shown in Fig. 6.

The ATCB module consists of two AMs, a swin transformer
block (STB) consisting of two STLs, and a 3 × 3 convolutional
layer. The feature Fk output from the kth ATCB (1 ≤ k ≤ K )

module can be expressed as follows:

Fk = f ATCB
k

(
f ATCB
k−1 , . . . ,

((
f ATCB
1 (FNew)

)))
(6)

where f ATCB
k , f ATCB

k−1 , and f ATCB
1 represent the nonlinear func-

tions of the features extracted by the kth, (k − 1)th, and lth
ATCB module, respectively. When a feature Fk−1 is input,
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the kth ATCB module first extracts the important features
from the attention structure AM, then extracts the intermediate
features through the STL structure, and then passes through
a 3 × 3 convolutional layer to preserve performance. Finally,
it introduces an attention structure AM to weight the locally
important areas and improve the smoothness of the terrain. The
AM consists of convolutional layers with different sizes and
windows, and a sigmoid activation function, which is used to
enhance the representational information of the features and
increase the capability and efficiency of training. The STL
consists of a two-layer nodes (LNs), a shifted windowing-
based multihead self-attention (SW-MSA), and a multilayer
perceptron (MLP).

Finally, the features output from each ATCB module are
combined using deep feature fusion and effectively spliced in
the channel dimension. The deep feature fusion consists of a
1 × 1 convolutional layer and a 3 × 3 convolutional layer
to fuse features. In addition, the residual aggregation structure
was used to facilitate learning. The feature after deep feature
fusion FD can be expressed as follows [30]:

FD = W1(PReLU(W2 ∗ [F1, F2, . . . , FK ])) + FNew (7)

where W1 and W2 represent the weights of the 3 × 3 convolu-
tional and the 1 × 1 convolution, respectively, for deep feature
fusion. PReLU represents the parametric ReLU activation
function and [F1, F2, . . . , FK ] represents the output features
of each ATCB module.

4) Upsampling Block: The upsampling module includes a
3 × 3 convolutional layer and a subpixel shuffle, which are
used to map multiple LR DEM feature maps onto a single HR
DEM [31]. The DEM after SR reconstruction can be expressed
as follows:

DSR = FUP(W3 ∗ FD) (8)

where FUP represents the pixel shuffling operation and W3
represents the weights of the 3 × 3 convolutional layers
for upsampling. The subpixel shuffle first converts an LR
DEM feature map into an HR DEM feature map using a
convolutional kernel, and then reorganizes the feature map
using a pixel mapping relationship to stitch it into the HR
DEM feature map. The subpixel shuffle first converts an LR
DEM feature map into C2 LR DEM feature maps through
C2 convolutional kernels, and then reorganizes and merges
these LR DEM feature maps into a single HR DEM feature
map through the mapping relationship of the pixels. Finally,
multiple HR DEM feature maps are merged into a single HR
DEM.

5) Loss Function Block: The loss function calculation block
was used to calculate the error between the input and the
output DEMs, and the model parameters were continuously
iterated and updated by the error back-propagation function so
that the error was gradually reduced [32]. In the loss function
calculation block, the void areas in the DEM were masked
out, and the mapping relationship of nonvoid areas was found.
Meanwhile, to improve the training ability and enhance the
effect of multisource features, the loss function calculation
module was designed to include global loss, terrain feature
loss, and SAR feature loss. The loss function, Loss, can be

written as follows:

Loss = LGlobal + λ1LTerrain + λ2LSAR (9)

where LGlobal represents the global loss, LTerrain represents the
terrain feature loss, LSAR represents the SAR feature loss, and
λ1 and λ2 represent the weights of terrain and SAR feature
loss, respectively.

The global loss LGlobal can be calculated based on the
model-predicted SR DEM and the HR InSAR DEM elevation
of the nonvoid area, as follows:

LGlobal =
1
J

J∑
j=1

| fmask

(
D j

SR − D j
SAR

)
| (10)

where J is the number of DEM training datasets. fmask is
the void mask function. D j

SR and D j
SAR represent the elevation

of the j th SR DEM and HR InSAR DEM training datasets,
respectively.

The terrain feature loss LTerrain can be calculated using
the error between the terrain features generated by the
model-predicted SR DEM and the HR InSAR DEM,
as follows:

LTerrain =
1
J

J∑
j=1

∣∣∣T j
SR − T j

SAR

∣∣∣. (11)

The essence of the SAR features was to differentiate the
characteristics of different feature landscapes. For model train-
ing, the SAR features can be used as prior information to
monitor and guide the model. The SAR features were used
as weights in the DEM to measure the SAR feature loss,
as follows:

LSAR =
1
J

J∑
j=1

∣∣∣ fmask

(
S j

× D j
SR − S j

× D j
SAR

)∣∣∣ (12)

where S j represents the pixel values of the j th SAR features
training datasets, and the SAR features include intensity and
coherence features.

The loss function can be calculated by substituting
(10)–(12) into (9), considering the global loss, terrain feature
loss, and SAR feature loss together. If the loss function does
not satisfy the discriminant convergence condition, the model
is retrained by error backpropagation. If the loss function sat-
isfies the discriminative convergence condition, the predicted
high accuracy DEM is output. The high-precision DEM prod-
uct can be generated by combining the intelligently filled and
predicted missing data area DEM from Section II-C with the
high-precision InSAR void DEM generated in Section II-A.
The generated high-precision DEM is then subjected to steps,
such as coordinate transformation and reprojection to produce
a DEM product that corresponds to the actual geographic
location.

D. TMSF Accuracy Evaluation

The TMSF accuracy evaluation spanned the modeling,
elevation, and terrain feature accuracy. The modeling accu-
racy was assessed using root mean square error (RMSE)
of elevation and mean absolute error (MAE) of elevation
and slope between the SR and HR InSAR void DEM. The
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evaluation of DEM elevation accuracy after void filling relied
on the RMSE, MAE, and line error at 90% probability (LE90)
between the generated DEM and photogrammetric DEM. The
elevation was further validated using the RMSE and mean
error according to Ice, Cloud, and land Elevation Satel-
lite (ICESat)/Geosciences Laser Altimeter System (GLAS).
In addition, the MAE of slope and aspect were used to assess
the preservation of terrain features and are discussed further.
The main classical interpolation or deep learning algorithms
for comparison include the following.

1) Bicubic [33]: The bicubic interpolation is a basic image
interpolation algorithm. Many images or DEM deep learning
algorithms are based on the bicubic algorithm for improvement
and development. It offers computational efficiency and is
simple to implement.

2) Super-Resolution CNN (SRCNN) [34]: The SRCNN
learns the mapping information from LR to HR directly
through deep learning. The model structure is simple, and
it is the first deep learning model to apply CNN to SR
reconstruction. This approach shows better performance in
DEM-SR reconstruction.

3) Enhanced Deep SR (EDSR) [35]: The EDSR uses the
ResNet residuals concept by removing the regularization layer
from the residual structure, which can improve the quality of
the results.

4) Deep Asymmetric Transfer Network (DATN) [36]: The
DATN is part of the semi-supervised transfer learning frame-
work. In various application scenarios, DATN demonstrates
its effectiveness in overcoming the problem of unbalanced
domain adaptation.

5) Residual Dense Network (RDN) [37]: The core part
of the RDN is the dense residual connectivity structure.
Compared with the traditional structures, the dense residual
connectivity in RDN allows the extracted feature represen-
tation information to propagate quickly through the network
structure. In addition, RDN and EDSR serve as the basic
methods for model accuracy verification and calibration.

6) Residual Feature Aggregation Network (RFAN) [38]:
The RFAN improves the performance of SR image reconstruc-
tion through a novel RFA framework and enhanced spatial
attention (ESA), the core idea of which is the effective use
of residual features. It has been widely applied and has
significantly improved image quality.

7) Hierarchical Swin Transformer (HST) [39]: The HST
improves representation at any scale by using hierarchical
feature representation. It has achieved remarkable results in
creating SR images from highly distorted compressed images.

8) Hybrid Network of CNN and Transformer (HNCT) [30]:
The HNCT combines the ability of CNN to capture local
features with the ability of transformers to model the global
context, leading to a more comprehensive understanding of
image information.

III. EXPERIMENTS AND RESULTS

A. Study Area and Data Preprocessing

The experiments used a total of 19 views of TerraSAR-X
images from the San Diego (SD) area of the United States

Fig. 7. Maps of the study areas and datasets [including test areas SD(A),
SD(B), YA(B), and YA(B)].

(https://sss.TerraSAR-X.dlr.de/) and 18 views of PAZ images
from the city of Yan’an (YA) on the Loess Plateau of China
(https://www.inta.es/paz-ciencia/en/AO/ao-006/) to generate
high-precision InSAR DEMs. The LR DEM data are based
on ALOS 12.5-m DEMs (https://search.asf.alaska.edu). These
SAR data and LR DEM are available from the German
Aerospace Center and the European Space Agency. The
locations of the study areas and corresponding datasets are
shown in Fig. 7. The study areas SD(A) and SD(B) are
located at (117.078◦W∼116.937◦W, 32.614◦N∼32.734◦N)
and (116.908◦W∼116.767◦W, 32.590◦N∼32.709◦N),
respectively. The study areas YA(A) and YA(B) are
located at (109.460◦E∼109.590◦E, 36.662◦N∼36.806◦N) and
(109.430◦E∼109.558◦E, 36.467◦N∼36.656◦N), respectively.
The four test areas are rich in topographical features,
including mountains, rivers, and cities, and contain typical
landforms, such as plateaus, mountains, plains, hills, and
basins. Each of these study areas contains a different type of
void problem (mountain shadow overlap, atmospheric noise,
low backscatter coefficient, and spatiotemporal incoherence).
The complex topography provides suitable conditions for
high-precision DEM research.

The data preprocessing was performed using GAMMA
software to format N + 1 views of SAR satellite data
acquired for the same study area into single-look com-
plex (SLC) images. The preprocessing mainly includes the
spatial–temporal baseline connection, image registration, inter-
ferogram, and flat-Earth phase removal, using the ALOS
12.5-m DEM to remove the topographic phase [40], [41]
and filtering to generate intensity maps, coherence maps, and
differential interferograms, the minimum cost flow (MCF) was
used for phase unwrapping [42]. High coherence points were
selected using thresholding. Atmospheric delays and noise
were removed using ICA [43]. Baseline errors were corrected
using a polynomial fitting with adaptive discrimination [44],
[45]. Deformation errors were modeled using a combined
InSAR model. The acquired residual elevations are summed
with the LR DEM elevations to generate high-precision InSAR
DEM according to (3). Then, the DEM training datasets,
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Fig. 8. Dynamic processes of intelligent learning reconfiguration in
high-precision InSAR DEM void areas.

terrain feature training datasets, and SAR feature training
datasets were constructed. Finally, a total of 4050 samples in
the SD area and 5080 samples in the YA area were generated.

B. Nonvoid Area Learning and Void Area Filling by TMSF

The nonvoid area learning and void area filling by TMSF
are shown in Fig. 8. The void areas in the training datasets
obtained in Section III-A were masked, and the first 80% of
these datasets were used as the training datasets, while the
last 20% were used as the validation datasets. The TMSF
model was trained using the training datasets, and the network
parameters were initialized to achieve a training converged
model. The TMSF model in this article contains four ATCB
modules, where each ATCB module contains two STL struc-
tures and two AMs. The number of attention heads is set
to 4, and the number of channels in the feature map is set
to 64. The window size is set to 8. The experiments are
performed by rotating the images 90◦, 180◦, and 270◦ to
achieve improvement. The Adam optimizer hyperparameters
are set to β1=0.9, β2=0.999, and ε=1e-8. The learning rate
is set to 1e-4 and a simulated cosine annealing curve is used
to optimize the learning rate. λ1 and λ2 are considered as
unit weights, respectively [30]. The TMSF model was trained
using six Nvidia A6000 graphics cards for model training with
a training number of 1000. The void area in the DEM is
used as the test dataset. The LR DEM data, terrain feature
data (slope and aspect), and SAR feature data (intensity and
coherence) from the test datasets are input into the trained
model to achieve intelligent filling of the high-precision InSAR
DEM.

C. High-Precision DEM Generation

The high-precision DEM product can be generated by
combining the DEM of the void area intelligently filled by
TMSF with the high-precision InSAR DEM generated in
Section II-A. The coordinates of the generated high-precision
DEM are then transformed and reprojected to produce DEM
products. The results of the high-precision DEM generation
for the study areas SD(A) and SD(B) and the elevation

Fig. 9. Intelligent learning reconfiguration using TMSF in the void areas of
the SD area DEM.

Fig. 10. Elevation distribution of the ALOS 12.5 m and TMSF 3-m DEMs
in the SD area.

distributions of the ALOS 12.5-m DEM and the TMSF 3-m
DEM are shown in Figs. 9 and 10, respectively. Fig. 11 shows
the high-precision DEM generation for the study areas YA(A)
and YA(B), and Fig. 12 shows the elevation distributions of
the ALOS 12.5-m DEM and the TMSF 6-m DEM.

It can be seen from Figs. 9 and 11 that the InSAR 3-m
DEMs can better represent the textural details of the feature
landforms compared with the ALOS 12.5-m DEMs, but they
have large DEM voids. The DEMs filled by TMSF show
richer topographic and geomorphological features, with clearer
representations of the mountains, rivers, and urban areas.
As shown in Fig. 10, for SD(A), the elevation of the pixels
in the ALOS 12.5-m DEMs 40- and 180-m span 73.20% of
the pixels, and for the TMSF 3-m DEMs 73.34%. The pixels
of ALOS 12.5-m DEM with elevations >400 m represent
1.76%, and for the TMSF 3-m DEMs, they represent 1.84%.
For the SD(B) area, the pixels in the ALOS 12.5-m DEMs
elevation between 250- and 500-m spanned 63.08%, and for
the TMSF 3-m DEMs 63.28%; and the pixels in the ALOS
12.5-m DEMs with elevations >900 m represent 2.54%, and
for the TMSF 3-m DEMs, they represent 2.58%. This shows
that the high-accuracy DEM products produced in the SD area
span a smaller range of elevations and have better continuity.
In addition, the YA area has similar distribution characteristics,
as shown in Fig. 12.
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Fig. 11. Intelligent learning reconfiguration using TMSF in the void areas
of the YA area DEM.

Fig. 12. Elevation distribution of the ALOS 12.5 m and TMSF 6-m DEMs
in the YA area.

TABLE I
VOID RATIO OF THE FOUR TEST AREAS

However, an interesting phenomenon can be seen from the
red arrows in the YA(B) area, as shown in Fig. 12. The per-
centage of pixels with elevations between 900 and 940 m and
960 and 1000 m decreases significantly, while the percentage
of pixels with elevations between 940 and 960 m increases
significantly. We suspect that this phenomenon is related to
the fact that the PAZ data used in YA City was collected
between 2022 and 2023, while the ALOS 12.5-m DEM was
collected in 2008. During this period, the government proposed
the mountain excavation and city construction (MECC) project
in December 2011, which was reported to have started in
April 2012 [46], and urban construction is likely to lead to
this outcome [47]. In addition, to better illustrate the effect
of TMSF void filling, Table I shows the void ratio of four

test areas. First, the DEM void pixels in complex terrain areas
caused by missing data accounted for 21.24% of the total, and
second, the TMSF was able to fill the void areas.

D. TMSF Accuracy Evaluation

1) Accuracy Evaluation of TMSF Modeling: The experi-
ment uses the last 20% of the training dataset as the validation
dataset. The higher the accuracy of the validation datasets,
the better the ability of the TMSF to perform intelligent
learning reconfiguration, indicating the higher the potential
of the TMSF model to fill the void area. Table II shows the
performance of the TMSF model and traditional interpolation
or deep learning methods. From Table II, the TMSF model has
significantly improved the RMSE and MAE of the elevation,
and the MAE of the slope attributes compared with the tradi-
tional interpolation or deep learning models. For the SD area,
the RMSE of the TMSF elevation is 2.415 m, while the bicubic
model is 4.449 m, showing an improvement of 45.71%. For the
YA area, the RMSE of the TMSF model elevation is 5.210 m,
while the bicubic model is 5.712 m, showing an improvement
of 8.7%. The overall effect of the TMSF model is greater
in the SD area than in the YA area. We suspect that this
phenomenon is mainly due to the following reasons. Frist,
the topography of the YA area, located on the Loess Plateau,
is dominated by mountainous areas and the overall error of
the DEM is large. The topography of the SD area includes
mountains and plains, and the overall error is smaller. Through
the quantitative analysis, the elevation of the SD area is in the
range of 3–1087 m, while the elevation of the YA area is
in the range of 904–1326 m. The RMSE of the TMSF model
accounts for only 0.22% and 0.39% of the maximum elevation
in these areas, respectively, which indicates that the TMSF
model has a high modeling accuracy in both study areas.
Second, the high-precision DEM generated from TerraSAR-X
data in the SD area has a resolution of 3 m and was acquired
in 2009 and 2010. The high-precision DEM in the YA area,
generated from PAZ data, has a resolution of 6 m and was
acquired in 2022 and 2023. The reference DEMs used in
the experiments are 12.5-m resolution ALOS data acquired in
2008, and the elevation changes caused by the long time series
are greater in the YA area than in the SD area. In addition,
the TMSF model requires a ×4 reconstruction in the SD area,
while only a ×2 reconstruction is required in the YA area,
and the TMSF has a better ability to learn reconstruction
modeling of HR DEMs with higher accuracy requirements.
Two experiments confirmed the strong generalization of the
TMSF model and demonstrated its promising applications in
other areas.

2) Accuracy Evaluation Using Photogrammetric DEM:
To verify the accuracy of the DEM products after
void-filling, photogrammetric DEMs with 3-m resolution
(https://datagateway.nrcs.usda.gov/) in the SD area and 5-m
resolution in the YA area were acquired for validation at
locations E(A) and E(B) shown in Figs. 9(f) and 11(f), respec-
tively. To ensure the consistency of geographical location and
spatial reference, the DEMs were geocoded and projected to
the WGS-84 coordinate system [48]. The DEM comparison of
different models after void filling in the SD area is shown in
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TABLE II
PERFORMANCE OF DEM INTELLIGENT LEARNING RECONFIGURATION APPROACH

Fig. 13. Comparison of DEM void filling for different models in the SD area. (a) E(A) area DEM. (b) F(A) area DEM.

Fig. 13(a). To clearly show the effect of void filling, the F(A)
in the E(A) area was selected for visualization and analysis,
as shown in Fig. 13(b). The errors between different models
and photogrammetric DEMs and their distributions are shown
in Fig. 14. Similarly, the DEM comparison and visualization
analysis of the F(B) in the YA area and the errors and their
distributions are shown in Figs. 15 and 16, respectively.

It can be seen from Figs. 13 and 15 that the DEM void
filling by the TMSF model is significantly improved, and
the cracks and edge jagging effects in the void area are
gradually eliminated. By introducing multisource features into
the TMSF model, the high-frequency information in the void
area are effectively enhanced and the texture detail of the DEM

becomes richer and closer to the photogrammetric DEM. From
Figs. 14 and 16, the error of the TMSF gradually decreases.
The quantitative analysis shows that for the SD area, the
probability of pixel points with an error distribution between
−10 and 10 m is 67.79% for the TMSF model and 39.86%
for the bicubic model. For the YA area, the probability of
pixel points with an error distribution between −10 and 20 m
is 94.53% for the TMSF model, while the bicubic model is
91.75%. This shows that the error distribution of the TMSF
model points to smaller values.

To further assess the accuracy of the TMSF model in the
SD and YA areas, the RMSE, MAE, and LE90 between
different models and the photogrammetric DEM in the E(A)
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Fig. 14. DEM error and distribution between different models and photogrammetry in the F(A) area. (a) F(A) area error. (b) F(A) area error distribution.

Fig. 15. Comparison of DEM void filling for different models in the YA area. (a) E(B) area DEM. (b) F(B) area DEM.

and E(B) validation areas were calculated. From Table III, the
accuracy of the TMSF is significantly improved compared to
the traditional interpolation or deep learning model. For the SD
area, the RMSE between the TMSF void-filled DEM and the
photogrammetric DEM is 2.679 m, while that of the bicubic
is 3.616 m, with an improvement of 25.91%. For the YA
area, the RMSE between the TMSF void-filled DEM and the
photogrammetric DEM is 3.168 m, while that of the bicubic
is 4.416 m, with an improvement of 28.26%. This shows that
the TMSF model has a significant advantage in high-accuracy
DEM void filling.

3) Accuracy Evaluation Using ICESat/GLAS Elevation
Data: To further evaluate the accuracy of the TMSF model
DEM void filling, 122 ICESat/GLAS points were collected
in the YA area for further validation, as shown in Fig. 11.
Since the ICESat/GLAS point has a diameter of about 65 m
and the high-precision InSAR DEM in the YA area is 6 m,
the center position (H1), minimum (H2), maximum (H3), and
average (H4) of the DEMs in the 9 × 9 window after void
filling are used for comparison to avoid errors due to imprecise
matching of point positions [15]. Table IV shows that the
variability of the mean error between different model DEMs
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Fig. 16. DEM error and distribution between different models and photogrammetry in the F(B) area. (a) F(B) area error. (b) F(B) area error distribution.

TABLE III
ELEVATION ACCURACY INDICES BETWEEN DIFFERENT MODELS AND THE PHOTOGRAMMETRIC DEM

and ICESat/GLAS is small, demonstrating the accuracy of
the geographic position of the generated high-precision DEM
products. The RMSE of the TMSF model at H1–H4 can be
improved by 4.34%–22.21%, 4.46%–23.37%, 4.31%–22.47%,
and 4.40%–22.28%, respectively, compared with the tradi-
tional models. This indicates that the void DEM filled by the
TMSF model has high accuracy.

IV. DISCUSSION

A. Analysis of the Consistency of Terrain Features

Terrain feature consistency is an important index for terrain
analysis, and the higher the terrain feature consistency, the bet-
ter the quality of the generated high-precision DEM. To fully

demonstrate the consistency of the DEM terrain features after
void filling by the TMSF model, the DEM in the SD area was
analyzed. The slope and aspect are shown in Fig. 17, and the
river network is shown in Fig. 18.

From Fig. 17, the slope and aspect generated by TMSF are
in good agreement with those generated by photogrammetry.
The slope and aspect generated by the LR ALOS DEM
are simple, while the slope and aspect generated by the
high-precision InSAR DEM can reflect more texture detail.
In addition, the slope results show that the traditional model
cannot accurately fill the void area, and a distinct red crack
appears at the boundary of the void area. As the model
improves, the red crack at the boundary gradually disappears,
and the TMSF model becomes closer to the photogrammetric
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TABLE IV
ELEVATION ACCURACY INDICES BETWEEN DIFFERENT MODELS AND THE ICESAT/GLAS

Fig. 17. Comparison of the slope and aspect generated by the DEM after different models of void filling. (a) Slope. (b) Aspect.

DEM. From the aspect results, the traditional model aspect
of the void area is more chaotic, while the TMSF model is
better at improving the stability of the aspect in the void
area. From Fig. 18, the river network generated by the LR
ALOS DEM loses a lot of topographic detail, whereas the
river network generated by the HR DEM is rich in detail. Due
to the presence of voids in the high-precision InSAR DEM,
the river network exhibits obvious breaks that are visible,
whereas the filled DEM can better connect the river network.
The river network in the traditional model creates errors or
distortions, and the TMSF model reduces these problems.
In addition, to fully demonstrate the results of the consistency
of the terrain features, the MAEs of slope and aspect were
calculated for the E(a) area, as shown in Table V. Through the

quantitative analysis, the MAEs for slope and aspect generated
by TMSF and photogrammetric DEM show improvements of
11.26%–19.14% and 9.34%–20.86%, respectively, compared
with the bicubic model. This shows that the TMSF has a better
ability to maintain the terrain features.

B. Analyzing the Ability of TMSF to Repair DEMs

To better represent the effect of the TMSF model on the
void-filled DEM area, the horizontal and vertical profiles in
the DEM [EE’, FF’, GG’, and HH’ as shown in Fig. 13(b)] are
selected for further discussion. By calculation, the maximum
differences between the TMSF model and the bicubic model at
EE’, FF’, GG’, and HH’ are 28.38, 36.96, 45.17, and 18.02 m,
respectively. From Fig. 19, the TMSF void-filled DEM profile
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TABLE V
TERRAIN FEATURE CONSISTENCY ACCURACY INDICES (UNIT: ◦)

Fig. 18. Comparison of the river network generated by the DEM after
different models of void filling.

has better continuity, while the traditional interpolation and
deep learning method void areas have an obvious scale cut-
off problem.

In addition, to fully demonstrate the ability of TMSF to
repair the DEM void problem caused by various factors,
different landscape settings are extracted from the SD area
for further analysis. These include the mountain shadow over-
lay, atmospheric noise, and low backscatter coefficient areas,
as shown in Fig. 20. As can be seen from the mountain shadow
overlay area, the high-precision DEM generated by InSAR
has clearer mountain contours than the ALOS DEM, but the
problem of voids is serious. Traditional interpolation and deep
learning methods will exhibit obvious cracks and a jagged
edge phenomenon after void filling. The TMSF model can not
only better fill the void areas of the DEM but also add richer
high-frequency information. From the atmospheric noise area,
it can be seen that the TMSF model can improve the speckle
noise in the DEM and fill the DEM better. From the river area,
it can be seen that the TMSF can better repair the river area
via the contour of the river bank.

C. Analysis of TMSF Interpretability and
Ablation Experiments

To investigate the effectiveness of the multisource features
and the ATCB module in the TMSF model, two experiments
were designed for the ablation of multisource features and

Fig. 19. Comparison between different DEMs using the horizontal and
vertical profiles. (a) Horizontal profile EE’ and FF’. (b) Vertical profile GG’
and HH’.

the ablation of the ATCB module, respectively, as shown in
Fig. 21. Multisource feature ablation experiments are use-
ful to explore the effectiveness of introducing multisource
features and to understand which features have a greater
impact on filling DEM voids. The multisource feature ablation
experiments from models 1–6 were designed to progressively
ablate the loss function and to fully test the advantages of
the TMSF model for terrain and SAR features. The ATCB
module ablation experiments help to better understand the
impact of the transformer and CNN modules on the network
performance and the DEM intelligent learning reconfiguration
modeling. To test the effectiveness of the transformer and
ensure the robustness of the experiments, model 7 replaces
the STL module with two 3 × 3 convolutional layers and
ReLU activations, while model 8 replaces the STL module
with one 3 × 3 convolutional layer and ReLU activation.
To test the effectiveness of the AM structure, models 9 and
10 remove one AM and two AM modules, respectively. To test
the comparison between the AM structure and the conventional
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Fig. 20. Ability of TMSF to repair voids in different landscape settings.

TABLE VI
ACCURACY INDEX FOR MULTISOURCE FEATURES

ABLATION EXPERIMENTS

ESA structure, models 11 and 12 replace one and two AM
structures, respectively, with one ESA structure.

Tables VI and VII show the accuracy indices for multisource
feature and ATCB module ablation, respectively. In the mul-
tisource feature ablation experiments, the accuracy indices of
models 1–6 are all reduced relative to the TMSF, confirming
the effectiveness of the terrain feature, SAR feature, and
loss functions. In the ATCB module ablation experiments,
the accuracy metrics of models 7–12 are all reduced com-
pared to the TMSF model. In addition, models 7 and 8

TABLE VII
ACCURACY INDEX FOR ATCB MODULE ABLATION EXPERIMENTS

confirm the effectiveness of the transformer module insertion.
Models 9 and 10 confirm the effectiveness of the AM mod-
ule. Models 11 and 12 confirm the effectiveness of the AM
over the ESA. Therefore, the proposed multi-source feature
fusion module and the ATCB module are reasonable and
robust and can improve the elevation accuracy. Besides, in the
design of the multi-source feature connection module, we have
reserved space for additional data to be added or replaced.
In this article, we only use four features (slope and aspect
in terrain features, intensity, and coherence in SAR features)
that are easy to acquire and collect for experiments and
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Fig. 21. (a) Multisource feature module. (b) ATCB module ablation.

applications. In subsequent studies, we will further experiment
with the introduction of the other feature data and explore their
feasibility.

V. CONCLUSION

This article combines high-precision InSAR DEM gener-
ation with intelligent learning reconfiguration modeling to
produce high-precision DEM products. The InSAR technology
can effectively compensate for the shortcomings of traditional
DEM generation. Intelligent learning reconfiguration modeling
based on deep learning can significantly increase the informa-
tion of DEM void areas. The experiments using TerraSAR-X
and PAZ data covering the SD and YA areas, respectively,
confirmed the effectiveness of the proposed method for intel-
ligent void filling. The main improvements and advances of
this work are as follows.

1) An intelligent learning reconfiguration model based on
optimized TMSFs was proposed. Through the shallow
feature extraction, the multisource feature connection,
the transformer and CNN feature fusion, the up-
sampling, and the loss function, the intelligent learning
reconfiguration model from LR DEM to HR DEM was
achieved, which improved the modeling accuracy.

2) The TMSF model shows a significant improvement
in accuracy compared with traditional bicubic and
deep learning methods. The modeling accuracy of SD
and YA areas can be improved by 11.31%–45.74%
and 2.32%–8.78%, respectively. Using photogrammet-
ric DEM for validation, the elevation accuracy can
be improved by 15.64%–25.91% and 5.60%–28.26%,
respectively. Further validation using 122 ICESat/GLAS
data, with an improvement of 4.40%–22.28%. The gen-
erated high-precision DEM has significant advantages
for terrain feature preservation, with improvements of
11.26%–19.14% in slope and 9.34%–20.86% in aspect.

3) The multisource feature connection module was used for
feature supervision and loss function optimization. The
multisource features (slope and aspect in terrain features,

intensity, and coherence in SAR features) can enhance
the high-frequency information of void areas. The gener-
ated high-precision DEM can effectively fill DEM voids.
It expands the applications of InSAR technology and
deep learning, provides important basic data support for
geological disasters and environmental protection, and
provides a theoretical and methodological system that
can be used for the DEM modeling problems in related
fields of geoscience.

There are still some limitations in this article that need to be
further addressed: 1) this article only uses the multibaseline
InSAR to generate the DEM to fill the void area, but the
effectiveness of the bistatic InSAR TanDEM-X data needs
to be further tested by collecting new data and 2) the pho-
togrammetric DEM accuracy of the validation data used in
this article has some limitations, while InSAR has a strong
ability to capture the geomorphological features. The texture
details beyond the validation data need further clarification.
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