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a City-scale and Harmonized 
Dataset for Global Electric Vehicle 
Charging Demand analysis
Zihan Guo  1,2,3, Linlin You1,2 ✉, Rui Zhu  4, Yan Zhang5 & Chau Yuen6

With increasing policy and market support for electric vehicles (EVs) worldwide, analyzing EV charging 
demand is crucial for jointly optimizing transportation and energy systems. However, existing public 
datasets typically suffer from limited global coverage, coarse temporal resolution, and narrow feature 
availability. Here, we present CHARGED, a city-scale and harmonized dataset for global electric 
vehicle charging demand analysis. CHARGED contains hourly records from April 1 to September 30, 
2023, covering about 12,000 charging chargers across six representative cities on six continents, 
including Amsterdam, Johannesburg, Los Angeles, Melbourne, São Paulo, and Shenzhen. Each entry 
encompasses core charging metrics (duration, volume, electricity price, and service price) alongside 
rich auxiliary information (weather variables, geospatial attributes, and multi-level static descriptors). 
CHARGED fills existing gaps and provides standardized data with spatiotemporal features aligned and 
multi-source information harmonized. Technical validation shows the potential of CHARGED to support 
in-depth characterization of user charging demand, and to impel the study of more advanced machine 
learning models, especially those enabling transfer learning across diverse urban contexts.

Background & Summary
With growing pressures on both urban air quality and energy security, electric vehicles (EVs) have become an 
important means of implementing low-carbon and sustainable mobility1,2. Despite the accelerating global adop-
tion of EVs, the development of charging infrastructure is not yet ready to empower cities in an optimal state 
that can fulfill the increasing EV charging demand cost-efficiently3. Hence, considerable strains on urban trans-
portation and energy systems are emerging, as, on one hand, consumer expectations for charging convenience, 
speed, and reliability are continuing to rise, and on the other hand, grid operators and policymakers are strug-
gling to ensure the balance between demand and supply4. Consequently, to forge a general research foundation, 
there is an urgent need for a scientific dataset that can systematically characterize EV charging behaviors from a 
global perspective. Such data are vital for advancing intelligence and autonomy in applications such as charging 
site location5, dynamic energy allocation6, and real-time traffic guidance7, as well as for guiding the development 
of urban infrastructure8, the upgrade of smart grids9, the evolution of intelligent transportation systems10, etc.

To enable these applications in reality, it becomes a key challenge about how to use EV charging data to make 
accurate forecasts. In general, traditional time-series methods, such as autoregressive integrated moving average 
(ARIMA)11,12, offer certain advantages in supporting forecasting with highly regular patterns, and, accordingly, 
may become inefficient when confronted with nonlinear samples. To tackle these shortcomings, deep learning 
related approaches, especially with the fusion of spatial contexts and auxiliary features13–16, have been widely 
studied, demonstrating superior capabilities in not only capturing localized charging behaviors but also mod-
eling global dependencies across multiple temporal scales. In recent days, the foundation models adapted for 
time-series forecasting, through techniques such as prompt engineering17 or tokenization-based optimization18, 
have demonstrated outstanding out-of-the-box generalization capabilities to capture both fine-grained fluctua-
tions and long-term trends by applying minimal architectural modification or parameter fine-tuning.
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To support the study of these data-driven models, high-quality datasets become essential19. Although several 
public EV charging datasets have been released (with representative examples listed in Table 1), they can, in gen-
eral, only support studies of models focusing on fusing information from a single or homogeneous source, and lack 
the ability to either test the adaptivity of related models in processing data with heterogeneous contexts, such as 
different cities, or enable transfer learning among these models to further improve their generalizability. Therefore, 
there is a need for a standard dataset that holds data from different cities with a high level of heterogeneity in 
economic development, mobility patterns, EV penetration, infrastructure completeness, and weather diversity20.

Hence, we introduce CHARGED, a city-scale and harmonized dataset for global EV charging demand anal-
ysis. In general, CHARGED is prepared with three core objectives. First, it aims to fill existing data gaps by 
integrating EV charging data with auxiliary information from representative cities worldwide. Second, it intends 
to provide standardized data with spatiotemporal features aligned and multi-source information harmonized. 
Finally, it is prepared to provide a general foundation that provides necessary but rich content to support the 
study of how novel technologies, e.g., federated meta-learning21, and retrieval-augmented generation22, can be 
applied to advance the analysis of EV charging demand worldwide.

Methods
Data overview. In general, CHARGED comprises 510,877,797 raw charging records collected from 11,953 
charging chargers within a time range from April 1 to September 30, 2023. After data cleansing and harmoniza-
tion, these records are aggregated to form hourly records for 4,280 sites generated through clustering of charging 
chargers. Besides EV charging data, i.e., duration, volume, electricity price (charges for electric vehicle charging), 
and service price (additional charges such as parking fees and idle fees), CHARGED also includes information 
about weather variables (temperature, precipitation, visibility, and other influencing factors), functional attributes 
(points of interest (POI) around a charging site, inter-site distances), and static descriptors (hierarchical data at 
charger, site, and city levels). By offering a unified, multi-scale, and richly annotated global dataset, CHARGED 
can support fine-grained analysis of EV charging behavior and enable the study of model generalizability that can 
impel the development of next-generation intelligent EV and energy management systems.

To facilitate a comprehensive analysis of global EV charging behaviors, six representative cities, one from each 
continent, have been selected based on multidimensional criteria including data availability (cities with continuous, 
richly attributed, and fine-grained charging records), geographic diversity (cities from each continent to ensure 
broad applicability), economic diversity (cities spanning various stages of economic development), and regional 
representativeness (cities with large populations, extensive charging site networks, and high electric vehicle adop-
tion rates). The statistics for each city are outlined in Table 2. Raw data covers public EV charging chargers across 
the entirety of each city’s urban area, collected from open online platforms for different regions over the half-year 
period from April 1 to September 30, 2023, including ChargePoint (https://www.chargepoint.com/), Chargefox 
(https://www.chargefox.com/), ChargePocket (https://www.chargestations.co.za/cp/Index.aspx), Chongdianba App 
(https://apps.apple.com/cn/app/id1071506659), and Tupi (https://tupinambaenergia.com.br/). These open plat-
forms allow users to query the status of public EV charging chargers within the respective cities, retrieving attrib-
utes such as charging power, status, and electricity pricing, as well as geographic information including address, 
latitude, and longitude. Additionally, to further support the spatiotemporal analysis of urban EV charging behav-
iors, we also collected auxiliary data, e.g., POI within the boundaries of each city from OpenStreetMap (https://
www.openstreetmap.org/), which includes details such as POI types and their corresponding geographic coordi-
nates; and weather data from Visual Crossing API (https://www.visualcrossing.com/) containing meteorological 
site measurements for each city, which encompasses parameters such as temperature, precipitation, and visibility.

Data Cleansing. As shown in Fig. 1, to make the collected heterogeneous charging data ready for further 
usage, we design and implement the following data cleansing workflow: 

 1. Parsing. Raw charging records were parsed and converted into a standardized schema with predefined 
fields including timestamp, site identifier, instantaneous power, rated power, status code, and geographic 
coordinate. Charging duration and volume were generated according to the plug-level status and power. 
As records for each charging charger may host multiple charging plugs, the total charging duration at each 
timestamp was calculated as the number of plugs labeled as “charging”. The instantaneous power of each 
plug at each timestamp was collected and multiplied by its corresponding duration to calculate the charg-
ing volume. However, since the raw data cannot fully capture transient power fluctuations, this calculation 

Dataset Spatial Coverage
Spatial 
Granularity Time Spanning

Temporal 
Granularity

Record 
Count Aux.

ACN-Data30 Three locations citywide Site N/A N/A 30,000+ × 

Residential EV31 A location within a city Charger 2018.12.01 – 2020.01.31 N/A 6,878 ✓

EV Charging Fleet32 Several locations citywide Charger 2018.05.11 – 2020.07.01 10 min 1,853,280+ × 

Charging Transactions33 Several locations 
nationwide Charger 2021.09.30 – 2022.09.30 15 min 72,856 ✓

UrbanEV34 Urban regions of a city Charger/Site 2022.09.01 – 2023.02.28 5 min/1 hour 1,194,600 ✓

CHARGED (ours) Urban regions of six cities Charger/Site 2023.04.01 – 2023.09.30 5 min/1 hour 510,877,797 ✓

Table 1. Comparison of representative public EV charging datasets. Note that N/A stands for information not 
explicitly provided, and Aux. represents whether there are any auxiliary features.
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may introduce some bias. Therefore, a fine-grained sampling frequency was implemented, with the rated 
power substituted in the absence of instantaneous power, in order to more closely approximate the actual 
charging volume. It should be noted that the use of rated power occurs only in a subset of records from 
MEL, representing a negligible proportion. Since our downstream processing pipeline includes outlier 
detection and correction, no additional adjustment factor was applied to these instances. Additionally, for 
records lacking information about electricity price or service price, they were filled according to the pricing 
rules retrieved from the raw data. For chargers without any service price, a value of zero was used.

 2. Filtering. Data filtering was made both spatially and temporally. First, geographic coordinates were re- 
projected to a unified reference system, and any records located outside the administrative boundary of their 
respective city were excluded. Second, as raw records may include historical entries outside the target period, 
only records within the study window were retained. It should be noted that capturing seasonal character-
istics typically requires a full year of data. Due to limitations in data completeness and quality, CHARGED 
covers only a six-month period, which may limit its ability to capture seasonal patterns, especially in regions 
with pronounced temperature variations. Nevertheless, this time window still effectively reveals variations in 
charging behavior and supports tasks such as short-term and long-term forecasting, as well as cross-domain 
knowledge transfer. The corresponding validations are presented in the following section.

 3. Denoising. To mitigate data quality issues, we implemented an automated denoising procedure that 
harmonizes both spatial inconsistencies and numerical anomalies. As for spatial inconsistencies, e.g., a 
charging charger may appear under slightly different latitude/longitude values at different timestamps, 
we calculated the mean of observed latitude and longitude for each charging charger, and then used this 
centroid as its geographic location. Meanwhile, as for numerical anomalies, the implausible measurements 
of charging duration or volume (e.g., negative values) were first set to missing. Then any remaining values 
lying more than four times the interquartile range below the first quartile or above the third quartile were 
identified as outliers23 and likewise imputed as missing.

 4. Imputation. To address missing values flagged during denoising as well as those inadvertently omitted 
during data collection, we designed an imputation strategy operating at the individual charging charger 
level. Using timestamps as the index, the temporal interpolation is implemented by filling approximate val-
ues calculated according to the index and the actual value around this interpolation point. For long missing 
sequences or boundary segments, where direct interpolation is infeasible, we applied linear interpolation 
with subsequent forward- and backward-filling, thereby ensuring seamless continuity and completeness of 
the dataset. The two imputation methods account for 10.70% and 0.99% of the total data, respectively.

Data Harmonizing. As illustrated in Fig. 1, to achieve data unification across diverse cities on multiple con-
tinents, the cleansed data was further harmonized in three steps to ensure data consistency:

Temporal Alignment. Due to network latency, recorded sampling times exhibited slight deviations, so raw 
timestamps were rounded down to the nearest five-minute interval. Any duplicate records for the same charger 
and timestamp were merged by taking the mean of related metrics such as charging duration and volume. 
Although Coordinated Universal Time (UTC) is typically used for temporal alignment24, we retained each city’s 
local time zone to better capture its intrinsic temporal distribution. To further smooth high-frequency noise, 
the five-minute-resolution data were then aggregated into hourly bins by summing parameters such as charging 
duration and volume and averaging variables like electricity price and service price.

Spatial Formalization. To better represent real-world EV charging infrastructure layout, we defined the virtual 
charging site as a spatial cluster of neighboring physical charging chargers. Accordingly, we implemented an 
adaptive spatial aggregation strategy to group points of charging chargers and generate virtual sites that consol-
idate geographic information into coherent units. To be specific, the primary task was to determine the rules for 
defining neighboring charging chargers within a charging site. Consequently, by calculating pairwise geodesic 
distances between all charging chargers, we created a one-dimensional distance array for each city. By sorting 
this array, its largest jump in first-order differences was used as the adjacent radius. This procedure produced 
a mean radius of 47.37 meters across the six cities, including 32.96 meters in MEL, 34.97 meters in SPO, 40.29 

City Continent Country Abbreviation
Land 
Area Population

Record 
Count

Charger 
Count

Site 
Count

Amsterdam Europe Netherlands AMS 166 931,298 244,600,416 8880 2449

Johannesburg Africa South Africa JHB 1,643 6,198,000 11,335,392 108 47

Los Angeles North America United States LOA 2,629 8,092,394 53,851,104 521 229

Melbourne Australia Australia MEL 4,264 3,848,745 14,154,624 80 63

São Paulo South America Brazil SPO 1,521 11,451,999 6,235,204 55 47

Shenzhen Asia China SZH 1,748 17,791,600 180,701,057 2309 1445

Table 2. Summary of six worldwide cities in CHARGED. For each city, it shows land area (km2, calculated 
based on the city boundary data), population, as well as the total count of collected records, charging chargers 
and charging sites. Note that charging sites are generated via geographical clustering of recorded charging 
chargers.
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meters in JHB, 41.95 meters in SZH, 47.36 meters in AMS, and 86.70 meters in LOA. For each city, we then 
applied the DBSCAN algorithm25 by using its corresponding radius as the parameter to determine connectivity 
to cluster charging chargers into charging sites. Note that the geolocation of each generated charging site is the 
mean of its cluster members’ latitudes and longitudes, with geographic locations in the city as shown in Fig. 2. 
Furthermore, within each charging site, charging duration and volume were aggregated by summation, while 
electricity and service price were averaged to prepare the hourly record.

Data Consolidation. Data for each city were structured into four major modules, i.e., charging data, weather 
variables, functional attributes, and static descriptors. Charging data, including duration, volume, electricity 
price, and service price, were reorganized into separate matrices indexed by hourly timestamps and charging 
site identifiers after temporal and spatial harmonization. Then, city-level weather variables (e.g., temperature, 
precipitation, and visibility) were normalized on the same hourly grid to ensure perfect temporal alignment with 
the charging data. Meanwhile, functional attributes, represented by POI and their inter-site distance matrix, 
were prepared, which are time-invariant and shared across all sites within each city. Finally, static descriptors 
consisted of statistical indicators at the charger, site, and city levels, which were computed only for entities with 
valid data and stored in flat-table format. Through the cross-mapping and spatiotemporal alignment of these 
four components, we produced a coherent, semantically unified, and globally consistent dataset. Related statis-
tics of some key features are provided in Table 3.

Data Records
The dataset is available at GitHub (https://github.com/IntelligentSystemsLab/CHARGED) and Zenodo26. 
City-specific datasets are organized in separate directories, and each city directory contains two versions of the 
data, i.e., one complete and one excluding charging sites with zero duration and volume (given that it is inactivity 
due to no charging demand). All kinds of data are saved in Comma Separated Values (*.csv) format for ease of 
use. A description, including file overviews and data field definitions, is provided as a Markdown (*.md) file in 
the root directory. In addition, we supply a comprehensive suite of Python (*.py) scripts that provide standard-
ized interfaces and illustrative examples for data preprocessing, model training, and deployment. In general, 
following files are included in CHARGED: 

 1. (duration.csv, volume.csv, e_price.csv, and s_price.csv) provide site-level hourly charging data, including 
charging duration (measured in hours), volume (measured in kilowatt-hours), electricity price, and service 
price. Prices are recorded in the local currency of each city without unit conversion.

 2. (weather.csv) contains nineteen city-level meteorological variables at hourly resolution, all expressed in 
metric units.

 3. (distance.csv) is part of functional attributes, and represents the distance matrix computed via a WGS-84 
ellipsoidal geodesic algorithm, where both rows and columns are indexed by unique site identifiers, yield-
ing a symmetric matrix in kilometers.

 4. (poi.csv) is part of functional attributes to store the collected POI in each city. It contains POI types and 
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Fig. 1 Overall workflow for data cleansing (a) and data harmonizing (b). Raw records are cleansed by 
successively applying parsing, filtering, denoising, and imputation. The cleansed charger-level data are then 
harmonized into a unified site-level dataset through temporal alignment, spatial formalization, and data 
consolidation. This figure was created with graphic elements provided by Iconfont (https://www.iconfont.cn).
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geographic coordinates. The types cover all subcategories under the major OpenStreetMap features, and 
the provided coordinates enable users to flexibly explore various POI integration strategies, such as spatial 
buffering, association matching, and filtering criteria.

 5. (chargers.csv, sites.csv, and info.csv) provide static descriptors at three hierarchical levels, i.e., charger, site, 
and city. It includes unique identifiers, hierarchical relationships, geospatial data, and charging statistics, all 
stored in flat-table format.

 6. (README.md) offers a comprehensive dataset overview located in the root directory, including file de-
scriptions, field names, data types, units, and semantic definitions.

 7. (*.py scripts) implement standardized interfaces and illustrative examples organized into api/ and exam-
ple/ subdirectories in the root directory.

technical Validation
To validate the efficiency and effectiveness of CHARGED for EV charging demand analysis, we conduct a 
multi-perspective evaluation using hourly charging volume forecasting as a representative task. Charging vol-
ume is selected as the evaluation metric because, compared to charging duration, it better captures power fluc-
tuations and energy demand during the charging process, and more effectively supports downstream application 

Sites Chargers

Fig. 2 Spatial distribution of charging chargers and the generated charging sites across six cities. Charging 
chargers are shown as orange filled circles, while charging sites are indicated by green hollow circles. To illustrate 
the clustering relationship in detail, an inset for AMS highlights one site composed of a row of 16 charging 
chargers, demonstrating the rationale behind clustering them as a single charging site. It should be noted that 
most cities have full-city coverage in CHARGED. However, for a few cities (such as SPO and JHB), CHARGED 
currently includes data only for some lower-level administrative regions. Consequently, we also employ city-
level maps for visualization here and will supplement the dataset once the full data become available.
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scenarios. The core objectives include the following four aspects, namely, 1) verification of its support for 
demand forecasting, 2) evaluation of performance gains imparted by its auxiliary features, 3) exploration of its 
capacity to support knowledge transfer, and 4) investigation of its usage on foundation models. Through these 
tasks, we aim to showcase the high quality and practical value of CHARGED.

In total, fifteen forecasting models were evaluated, encompassing the following three categories, namely 1) 
traditional statistical time-series models, including the autoregressive model (AR)11 and ARIMA12 methods; 
2) novel deep-learning models, including FreTS13, ConvTimeNet (CTN)14, SegRNN15, and MultiPatchFormer 
(MPF)16, which are designed based on model architectures spanning from multilayer perceptrons (MLP), con-
volutional neural networks (CNN), recurrent neural networks (RNN), to Transformer; and 3) time-series fore-
casting foundation models drawn from three leading families consisting of Amazon’s Chronos-T527, Salesforce’s 
Moirai-1.1-R28, and AutonLab’s Moment-129, with three model sizes picked from each family.

Fig. 3 Performance under three knowledge transfer scenarios using CHARGED, including cross-city transfer 
(a), intra-city cross-site transfer (b), and inter-city cross-site transfer (c). The changes in MAE were tracked 
during both training and adaptation phases. The curves were min-max normalized, with the corresponding 
extrema annotated in the top-left corner of each subplot. The results demonstrate pronounced reductions in 
MAE during both training and adaptation, thereby validating the efficacy of CHARGED in supporting transfer 
learning.

https://doi.org/10.1038/s41597-025-05584-7
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To ensure fairness, the evaluation was conducted under identical experimental settings and fixed random 
seeds. Moreover, model performance was measured using six widely accepted regression metrics, including 
Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Relative Absolute Error (RAE), Median 
Absolute Error (MedAE), R-squared (R2), and Explained Variance Score (EVS).

Results to Support Charging Demand Forecasting. This evaluation component was specifically 
designed to assess short-term forecasting performance. Data here were split into training, validation, and test 

Fig. 4 Regressions of predicted versus actual values for long-term charging volume forecasting. In each subplot, 
the red solid line denotes the linear regression fit, the black dashed line marks the ideal y = x reference, and 
the shaded band represents the regression confidence interval. EVS and R2 are annotated to quantify predictive 
accuracy. Subplots (a–c), (d–f), and (g–i) correspond to the Chronos-T5, Moirai-1.1-R, and Moment-1 model 
families, respectively, each evaluated at small, base, and large scales for zero-shot one-month-ahead charging-
volume prediction based on five months of historical data. The evident zero-shot capabilities of these foundation 
models further illustrate the rich temporal structure captured by CHARGED.
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subsets in a ratio of 8:1:1. The models incorporate a 12-hour input window (12 time steps) to forecast the value 
in the subsequent hour. Moreover, they were trained for 50 rounds and evaluated via a month-based six-fold 
cross-validation strategy, with metrics reported as the average across all test folds.

Table 4 presents the forecasting performance of different models across multiple cities. Notably, traditional 
time-series models such as AR and ARIMA, which rely solely on historical charging volume, consistently 
underperformed. This highlights the inadequacy of linear autoregressive and statistical approaches in captur-
ing the complex charging behavior observed in modern urban environments. In contrast, models like CTN 
and SegRNN, which incorporate spatial information and support nonlinear temporal modeling, demonstrate 
significant performance gains. These results confirm the effectiveness and robustness of using spatiotemporal 
information to support demand forecasting. Going further, advanced models, such as MPF, which leverages a 
multi-scale segmented temporal modeling strategy, and FreTS, which incorporates frequency-domain transfor-
mations, achieved the best or second-best results. Their ability to capture trends under scenarios with high vol-
atility highlights their strength in modeling oscillatory patterns in time series. In summary, CHARGED’s hourly 
spatiotemporal resolution provides a rich foundation for forecasting tasks. The dataset not only supports robust 
demand forecasting but also enables effective nonlinear spatiotemporal modeling. Future work may explore the 
development of dedicated modules that can better capture spatiotemporal dependencies hidden in charging 
behavior to further improve forecasting accuracy and generalization capability of related models.

Usage of Auxiliary Feature. The same training and evaluation setup here was adopted as the first experi-
ment, except that only FreTS is used as the representative model to investigate the influence of auxiliary features 
on prediction performance. Moreover, seven auxiliary feature configurations were considered in this evaluation. 
First, the baseline setting (denoted as None) includes no auxiliary features. Second, one of the following features, 
i.e., electricity price (pe), service price (ps), temperature (T), precipitation (P), and visibility (V), is separately 
added to the baseline setting, which forms five feature-specific settings. Finally, a full setting (All) indicates all 
above five auxiliary features are used together with the baseline setting.

The results across different cities and configurations are summarized in Table 5. It demonstrates that the 
inclusion of auxiliary features generally leads to substantial improvements in forecasting performance across 
most cities, indicating their practical relevance in influencing EV charging behaviors. Notably, as the avail-
able weather data are currently limited to the city level, they may not accurately capture local meteorologi-
cal conditions at individual charging sites. While some performance improvements can be observed, finer 
spatial-resolution weather data would undoubtedly enhance demand analysis, and it will be updated into 
CHARGED accordingly if such data become available. Furthermore, different cities exhibit varying sensitivities 
to specific features. For instance, the inclusion of P yields the best performance for AMS, while pe leads to the 
best results across all metrics in LOA, reflecting the heterogeneity of charging behavior patterns among cities. 
Interestingly, in some cases, incorporating all auxiliary features results in performance degradation, highlighting 
the importance of proper feature selection and modeling despite the availability of this rich information. Overall, 
the extensive spatial, economic, and behavioral descriptors in CHARGED provide strong support for advanced 
nonlinear and multimodal spatiotemporal modeling.

Potential to Support Knowledge Transfer. In this evaluation, we employed federated learning, which 
enables collaborative and privacy-preserving learning among data owners, to assess the ability of CHARGED to 
support transfer learning. We assumed that each data source was a client and created three testing scenarios, i.e., 
1) in the cross-city transfer scenario, each city served as a client, with SZH designated as the test client and the 
remaining cities as training clients; 2) in the intra-city cross-site transfer scenario, all charging sites within SZH 
were partitioned into training and test clients at an 8:2 ratio; and 3) in the inter-city cross-site transfer scenario, 
30 sites were selected from each city and, then split into training and test clients at an 8:2 ratio. For all scenarios, 
models were trained for 100 rounds and then fine-tuned over 20 adaptation rounds per test client, using 50% 
of the test client’s data for fine-tuning and the remaining 50% for evaluation. Note that reported metrics are the 
averaged performance across all test clients.

Level Feature Unit Max Min Mean Median Q1 Q3 Std

Site

Duration Hour 439.65 0.00 3.93 1.17 0.58 3.00 10.13

Volume Kilowatt-hour 93592.24 0.00 85.10 8.17 4.01 22.17 1427.39

Perimeter Meter 1002.50 230.33 364.20 398.91 275.33 399.31 108.38

Area Square Meter 67588.70 4206.33 10807.68 11576.35 6013.50 11593.27 7061.62

Average Power Kilowatt 360.00 0.00 10.35 6.60 6.40 7.00 23.04

City

Temperature Degree Celsius 37.00 − 2.20 18.37 17.80 13.60 23.00 6.67

Precipitation Millimeter 107.51 0.00 0.08 0.00 0.00 0.00 1.36

Visibility Kilometer 45.50 0.00 14.16 11.40 10.00 16.00 7.86

Site Distance Kilometer 93.87 0.03 12.60 8.00 4.17 18.79 11.47

POI Count — 617806.00 42782.00 142719.33 48603.50 47257.75 50934.75 212481.62

Table 3. The statistical summary of multi-scale features. At the charging site level, charging duration, 
volume, average power, cluster-derived coverage perimeter, and coverage area are reported. At the city level, 
temperature, precipitation, visibility, distance among sites, and the number of POI are included. For each 
feature, the maximum, minimum, mean, median, first and third quartiles, and standard deviation are presented.
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Figure  3 illustrates performance curves during the training and adaptation phases across three 
knowledge-transfer scenarios. Overall, MAE decreases markedly with the increase of training rounds, and sta-
bilizes rapidly after only a few adaptation rounds. Although the test clients are not the same, cross-scenario 
comparisons can generally reveal that more granular and hierarchical transfer strategies produce smoother con-
vergence curves, indicating that global models can more effectively capture generalizable features. However, as 
adaptation rounds continue, some scenarios exhibit performance fluctuations and minor degradations, showing 
a sign of overfitting. This experiment demonstrates the value and potential of CHARGED produced for hetero-
geneous knowledge transfer, and reveals the possibility of integrating with novel technologies to further improve 
the forecasting capability of models as well as their adaptability in better handling heterogeneous scenarios.

AMS

Model MAE RMSE RAE MedAE R2 EVS

AR 7.492 25.520 0.197 6.089 0.781 0.783

ARIMA 7.573 25.650 0.199 6.197 0.780 0.781

CTN 3.720 10.410 0.078 1.599 0.950 0.954

SegRNN 3.230 10.690 0.114 2.098 0.929 0.931

MPF 1.461 5.567 0.052 0.814 0.978 0.978

FreTS 2.757 3.372 0.556 2.752 0.625 0.805

LOA

AR 4.834 8.304 0.699 4.617 0.618 0.638

ARIMA 5.278 9.019 0.764 5.134 0.545 0.573

CTN 1.767 3.441 0.254 1.249 0.934 0.935

SegRNN 3.001 5.454 0.433 2.621 0.835 0.837

MPF 1.536 3.314 0.222 0.917 0.939 0.939

FreTS 1.503 3.259 0.217 0.861 0.941 0.942

SPO

AR 3.168 6.668 0.687 2.929 0.211 0.228

ARIMA 3.386 7.386 0.733 3.145 0.056 0.068

CTN 1.308 3.642 0.281 0.881 0.761 0.767

SegRNN 1.206 3.676 0.274 0.753 0.746 0.747

MPF 0.997 3.597 0.221 0.505 0.766 0.767

FreTS 0.952 3.485 0.211 0.444 0.780 0.781

JHB

AR 4.861 9.834 0.714 4.140 0.122 0.147

ARIMA 5.044 10.184 0.740 4.356 0.110 0.130

CTN 1.537 4.094 0.223 1.024 0.825 0.829

SegRNN 1.396 4.195 0.191 0.935 0.819 0.823

MPF 0.915 3.707 0.136 0.345 0.851 0.851

FreTS 0.848 3.674 0.127 0.266 0.853 0.853

MEL

AR 30.009 106.953 0.555 27.227 0.440 0.443

ARIMA 31.388 113.155 0.579 27.492 0.355 0.364

CTN 16.138 71.231 0.299 11.940 0.750 0.751

SegRNN 24.806 89.869 0.458 21.718 0.575 0.576

MPF 15.999 73.255 0.296 11.638 0.735 0.735

FreTS 15.282 71.575 0.283 10.824 0.745 0.745

SZH

AR 499.497 7029.149 0.521 488.559 0.817 0.817

ARIMA 128.656 628.770 0.134 121.011 0.980 0.980

CTN 50.495 261.486 0.054 37.771 0.997 0.997

SegRNN 68.385 302.189 0.071 57.252 0.995 0.995

MPF 47.600 247.707 0.050 34.496 0.997 0.997

FreTS 51.266 278.575 0.055 36.041 0.996 0.996

Table 4. Performance of charging volume forecasting based on CHARGED. It includes results for two 
traditional statistical time-series models and four novel deep-learning models across six representative cities. 
Models, which can jointly leverage temporal and spatial features, consistently outperformed their counterparts, 
highlighting the pronounced spatiotemporal dependencies inherent in CHARGED.
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AMS

Auxiliary MAE RMSE RAE MedAE R2 EVS

None 2.757 3.372 0.556 2.752 0.625 0.805

pe 2.542 3.389 0.546 2.493 0.625 0.824

ps 2.542 3.389 0.546 2.493 0.625 0.824

T 2.609 3.465 0.534 2.591 0.625 0.814

P 2.166 2.943 0.489 2.122 0.677 0.833

V 2.727 3.592 0.549 2.650 0.624 0.812

All 2.757 3.612 0.556 2.732 0.661 0.810

LOA

None 1.503 3.259 0.217 0.861 0.941 0.942

pe 1.432 3.210 0.207 0.785 0.943 0.943

ps 1.432 3.210 0.207 0.785 0.943 0.943

T 1.522 3.242 0.220 0.919 0.942 0.943

P 1.434 3.213 0.207 0.786 0.943 0.943

V 1.461 3.242 0.211 0.822 0.942 0.942

All 1.472 3.225 0.213 0.850 0.943 0.943

SZH

None 51.266 278.575 0.055 36.041 0.996 0.996

pe 47.903 256.004 0.051 34.275 0.997 0.997

ps 47.903 256.004 0.051 34.275 0.997 0.997

T 50.366 276.360 0.054 35.194 0.996 0.996

P 49.029 271.646 0.052 33.660 0.996 0.996

V 49.005 269.788 0.052 34.021 0.996 0.996

All 44.600 225.731 0.048 32.978 0.997 0.997

JHB

None 0.848 3.674 0.127 0.266 0.853 0.853

pe 0.961 3.711 0.141 0.403 0.851 0.851

ps − * — — — — —

T 0.902 3.660 0.134 0.365 0.854 0.854

P 0.866 3.666 0.128 0.301 0.853 0.854

V 0.832 3.667 0.123 0.258 0.853 0.853

All 0.923 3.648 0.137 0.374 0.856 0.856

MEL

None 15.282 71.575 0.283 10.824 0.745 0.745

pe 15.127 72.768 0.281 10.549 0.735 0.736

ps — — — — — —

T 15.305 73.400 0.285 10.767 0.726 0.726

P 15.106 72.842 0.281 10.423 0.733 0.734

V 15.241 72.634 0.283 10.800 0.733 0.734

All 15.138 70.847 0.280 10.649 0.752 0.752

SPO

None 0.952 3.485 0.211 0.444 0.780 0.781

pe 0.970 3.469 0.215 0.479 0.782 0.783

ps — — — — — —

T 0.968 3.472 0.213 0.481 0.782 0.782

P 0.962 3.466 0.213 0.467 0.782 0.783

V 0.959 3.469 0.212 0.471 0.782 0.782

All 0.941 3.458 0.208 0.466 0.783 0.783

Table 5. Performance on integrating various combinations of auxiliary features into FreTS across six cities. 
Seven configurations of auxiliary feature sets were tested, where results involving service price (ps) were omitted 
for JHB, MEL, and SPO. The results demonstrate the usage of different auxiliary features brings different degrees 
of performance improvement. These findings confirm the value of auxiliary features provided by CHARGED in 
supporting effective time-series forecasting. * – : Omitted results for cities without ps.
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Usage on Foundation Model. To test the performance of CHARGED in supporting long-term charging 
volume forecasting, we ran related experiments on foundation models from three model families (Chronos-T5, 
Moirai-1.1-R, and Moment-1) at small, base, and large scales. Without loss of generality, zero-shot inference was 
conducted at the site-level for SZH to forecast daily demand for the subsequent month based on the preceding 
five months of daily-resolution data. Figure 4 depicts the regression fits for each model, with predicted points 
tightly clustered around the ideal line y = x, indicating minimal prediction error and negligible systematic bias. 
Specifically, the EVS and R2 values further confirmed the ability of these models to capture virtually all temporal 
variations and trends. These findings not only demonstrate the excellent zero-shot performance of the foundation 
model in time series forecasting, but also highlight the critical role of the hourly and citywide datasets provided 
by CHARGED in enhancing model generalization.

Code availability
CHARGED together with all prepared scripts and tools for data analysis and model evaluation, is publicly 
available on GitHub at https://github.com/IntelligentSystemsLab/CHARGED.
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