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Urban flood mapping Massive and multi-dimensional social media data provide precious opportunities for the
rapid collection and assessment of urban flooding depth. However, effectively and robustly estimating water
depth from these multimodal data remains a significant challenge. Although previous studies integrated several
existing models, they increase model complexity and hinder joint optimization across different modalities. This
paper proposes a Segment-level Direct Preference Optimization-based Multimodal Large Language Model (SDPO-
MLLM) for estimating flood depth by integrating image-text data. Our contributions include the design of a
hybrid training strategy combining Supervised Fine-Tuning (SFT) and SDPO to reduce inaccurate responses.
Additionally, a novel structured workflow is designed, including: (1) dataset preprocessing and construction; (2)
event-based extraction of flood location and depth descriptions from text; (3) generation of water depth de-
scriptions from images and videos; (4) classification of water depth descriptions based on multiple reference
objects; and (5) quantification of depth categories into numerical values. Empirical experiments are conducted
on a dataset containing 2843 text records and 1563 images. The evaluation results show that SDPO-MLLM
outperforms other unimodal methods, generating structured and organized results from text, and identifying
flooding depth from images based on reference objects. As a case study in Wuhan, Shenzhen and Beijing, the
multimodal water depth extracted from social media data is quantified and fused to map and analyze
waterlogging-prone areas, demonstrating satisfactory generalization and adaptability of the developed model
under various flood scenarios. Our research offers valuable insights for rapid mapping and analysis of urban
waterlogging severity.

1. Introduction

In recent decades, flooding has become more frequent and severe due
to the increasing occurrence of extreme weather events driven by global
climate change, coupled with the growth of populations and the
expansion of impervious surfaces. Flooding caused by rainfall can range
from minor inconveniences, such as disruption to transport systems and
daily activities, to more severe consequences, such as damage to infra-
structure, resulting in significant economic losses and presenting risks to
public security (Moftakhari et al., 2018; Wang et al., 2021; Ouyang
etal., 2022b). Collecting and extracting water depth information during
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flood events can provide insight into the severity of flooding in different
areas, which is crucial for implementing emergency response plans.
Moreover, data-driven monitoring also supports urban planning efforts,
such as the design of flood-proof architecture, to mitigate the impacts of
urban flooding (Feng et al., 2022; Mustafa, 202.3).

Various methods have been developed to collect flooding depth in-
formation (Huang et al., 2018; Liao et al., 2023; Saleh et al., 2024).
Traditional methods, such as field surveys and stream gauges, though
accurate in results, often require high labor or equipment costs and have
limited detection ranges, making them unsuitable for large-scale moni-
toring. Flood simulation methods based on complex physical
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mechanisms require substantial computational resources, rendering
them ineffective for real-time surveys. The method of monitoring using
optical or Synthetic Aperture Radar (SAR) imagery is limited by the
satellite’s revisit cycle, making it difficult to obtain timely images during
flood events, particularly in cases of short-term heavy rainfall.

Compared to the above methods, massive social media data provide
an opportunity to collect flood information in real time (Li et al., 2023b;
Wang et al., 2024c). During extreme disasters or emergencies, the public
often spontaneously uses social media platforms like X (formerly
Twitter), TikTok, and Sina Weibo, to request assistance or disseminate
disaster information (Hou et al., 2024). However, the primary challenge
lies in the effective and robust extraction of flood depth and location
data from multimodal social media content, including text, images, and
videos. Current research primarily focuses on developing water depth
estimation methods based on a single data type or modality (Wan et al.,
2024), potentially overlooking valuable information from other sources
and introducing biases into flood mapping and analysis. An alternative
approach involves integrating these models into a pipeline (Yan et al.,
2023), which not only increases model complexity and computational
requirements but also hampers the collaborative optimization of
multitasking and the modeling of interrelations between different
modalities.

For extraction of flood location and water depth from text, single-
task models struggle to establish the correspondence relationships be-
tween these elements, making it difficult to accurately identify water
depths at multiple locations. For estimation of water depth from images
and videos, fixed-category image classification or detection models lack
semantic associations and reasoning capabilities, limiting their scal-
ability and flexibility. Moreover, with respect to flood information
localization, most data lack geotags (Lamsal et al., 2022) and location
information is typically conveyed through textual descriptions. The
variety and flexibility of location descriptions, especially for non-
contiguous geographic entities or complex spatial relationships (Stock
et al., 2022), further hinder the application and analysis of water depth
information (Sathianarayanan et al., 2024).

To tackle these challenges, Multimodal Large Language Models
(MLLMs) (Bubeck et al., 2023; Wu et al., 2024b) are employed to
construct a unified flooding depth estimation model for text, images and
videos. These models possess cross-modal comprehension and semantic
association capabilities and have been explored in several domains such
as smart cities (Duan et al., 2024), social media analysis (Chu et al.,
2025), and cybersecurity (Ali and Ghanem, 2025). However, in practical
applications, the results generated by MLLMs still exhibit hallucination
(Huang et al., 2025). For example, although MLLMs can identify objects
in images relatively accurately, they can generate missing or incorrect
water depth descriptions. The behavior of MLLMs, which does not align
well with human preferences, makes it challenging when applied to
flood disaster scenarios.

Supervised fine-tuning (SFT) is a basic optimization method, but it
may introduce or amplify hallucinations due to a mismatched learning
objective (Ouyang et al., 2022a). An alternative approach is Reinforce-
ment Learning with Human Feedback (RLHF) (Kaufmann et al., 2024),
which builds on an SFT model. RLHF involves training an additional
reward model using a large set of preference-labeled data to evaluate
and guide the MLLMs. However, RLHF typically requires running three
models simultaneously—the reference model, the reward model, and
the policy model—which leads to increased computational complexity
and memory usage. Direct Preference Optimization (DPO) (Rafailov
et al., 2023) offers another alternative by directly parameterizing the
reward model, thereby eliminating the need for separate reward model
training and scoring during fine-tuning. DPO reduces computational
overhead and often achieves comparable or better performance with
fewer preference-labeled samples, improving sample efficiency. Despite
these advancements, MLLMs often generate short, inaccurate fragments
in the responses regarding flooding depth, particularly when describing
the water depth of reference objects in images. These errors are typically
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overlooked by evaluation mechanisms that focus on overall response
quality (Wang et al., 2024d). Therefore, developing a targeted fine-
tuning method is essential to correct these segment-level errors and
enhance the accuracy of the generate responses.

This paper proposes a Segment-level Direct Preference Optimization-
based Multimodal Large Language Model (SDPO-MLLM) focused on the
extraction of urban flooding depth from multimodal social media flood
data. The multimodal water depth extraction task is first decomposed
into three subtasks and a multimodal dataset is annotated for fine-tuning
and evaluation of the model. Then, a SDPO loss combined with SFT loss
is proposed to train the MLLM, while the Low-Rank Adaptation (LoRA)
(Hu et al., 2022) method is used to decrease the computational cost
during training. Finally, the performance on the multimodal tasks is
comprehensively evaluated, while its effectiveness is further validated
through water depth quantification as well as water depth mapping and
analysis. Overall, the primary content and contributions of this paper are
summarized as follows:

e A novel SDPO-MLLM is proposed, which integrates a training strat-
egy combining supervised fine-tuning with Segment-level Direct
Preference Optimization, effectively facilitating model alignment for
water depth information extraction by integrating image-text data.

o The efficient and accurate extraction methods for multimodal data

are constructed in SDPO-MLLM to adapt the generative response of

MLLM, including text water depth extraction, image water depth

extraction, and water depth level classification.

An event-based extraction method is proposed to enhance water-

logged area localization, which improves the structured and orga-

nized extraction of discontinuous and overlapping locations in the
text.

o A water-level classification and quantification method is developed
that establishes classification levels and estimates the depth range for
each category based on multiple reference objects, enhancing the
overall water depth estimation for waterlogged areas containing
multiple objects.

e The innovative approach integrating multimodal image-text data is
used to assess waterlogged areas, further validating the model’s
effectiveness and contributing to waterlogging risk management and
response strategies in a large-scale urban environment.

. Related work

The estimation of urban flooding depth from social media data relies
primarily on three data modalities: text, images, and videos. For text
data, two main approaches are used to extract water depth information.
The first approach (Khan et al., 2022) classifies the text into different
water depth levels and assesses the overall water depth of the entire text.
However, the method cannot handle multiple water depth descriptions
presented simultaneously within the same text, such as several numer-
ical values for water depth. The second approach (Aarthy et al., 2022)
first extracts water depth descriptions and then estimates water depth
using keyword matching or classification methods. While this approach
can accurately identify multiple water depth descriptions, it fails to
establish spatial associations between water depths and location de-
scriptions because the extraction process of each is performed in isola-
tion. To address these limitations, this study models the task as event-
based water depth extraction, where each flood event contains both a
water depth description and a location argument, allowing effective
extraction of water depth information from complex textual content.

For image data, current methods attempt to estimate water depth
information by analyzing visual cues within the images. One approach
(Chaudhary et al., 2019; Feng et al., 2020; Liu et al., 2024) uses object
detection models to classify reference objects at various water levels (e.
g., people, cars, bicycles) into different categories, thereby estimating
water depth. While this approach can stably identify multiple objects
and their corresponding water levels when sufficient high-quality
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Fig. 1. The SDPO-MLLM framework.

training data is available, its implementation remains challenging and regression. For example, Chaudhary et al. (2020) uses a multi-task
resource-intensive for data annotation. In addition, the method’s reli- ranking method to regress the water depth. However, this method is
ance on predefined reference object types limits the scalability of the susceptible to interference from the image background, and the water
model. Another approach (Wu et al., 2024a; Yan et al., 2023) estimates depth at which each reference object is submerged may differ. In addi-
the overall water depth of an image using image classification or tion, some studies attempt to estimate water depth numerically by
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utilizing fixed-size reference objects or assuming ideal reference objects,
such as road signs (Alizadeh Kharazi and Behzadan, 2021), traffic cones
(Jiang et al., 2020), and pedestrians (Li et al., 2023a). For example, Qin
and Shen (2025) estimate water depth by analyzing the refraction-
induced displacement of road markings in images captured by traffic
cameras. While these methods are reliable in specific environments,
their implementation is challenging with diverse social media data. For
the video data, research on water depth estimation is limited (Zhu et al.,
2024b). In most cases, key frames are obtained from videos and treated
as separate frames for analysis. For example, Hao et al. (2022) extracts
the time periods when vehicles appear in surveillance videos and detects
their water levels using object detection. In this paper, the MLLMs that
integrate image-text data are utilized to enhance the robustness and
flexibility of water depth estimation.

For the localization of flooding-related data, one approach (Feng
et al., 2020) is to use geotags from social media data, which provide the
coordinates of the poster’s location. However, only 1-2 % of posts
contain this information, and the location provided does not necessarily
correspond to the actual flooding site. Another approach extracts loca-
tion descriptions from text. The informal and irregular nature of location
descriptions in social media data, along with the infrequent use of
structured address formats, presents a challenge to accurately extracting
this information. Previous methods (Berragan et al., 2023) mainly
depend on Named Entity Recognition (NER) models to detect specific
toponymies, like administrative divisions, streets, and points of interest
(POIs). However, these models often struggle to model non-continuous
or hierarchically nested locations (Chen et al., 2022). This study pre-
sents a generative extraction method based on MLLMs to extract and
organize complex location expressions, thereby improving the accuracy
of subsequent location geocoding and fully exploiting social media data.

By constructing generative tasks, multi-task depth estimation models
can be developed based on MLLMs that integrate multimodal data,
facilitating collaborative modeling across tasks and improving both
performance and robustness. These models have already been prelimi-
narily explored for their potential in disaster management field (Zhang
etal., 2024). For example, Hu et al. (2023) used geo-knowledge to guide
Generative Pre-trained Transformer (GPT) in location information
extraction from disaster messages. Zhu et al. (2024a) developed a flood
knowledge-constrained Large Language Models (LLMs) to improve cit-
izens awareness of flood disasters. Additionally, Akinboyewa et al.
(2024) applied GPT-4 to estimate flood depth of social media images.
However, current methods rely solely on carefully designed prompts to
implement specific tasks, limiting the full potential of MLLMs. Efficient
fine-tuning is therefore required. Existing approaches primarily focus on
fine-tuning LLMs. The study proposes Kahneman-Tversky Optimization
(KTO) (Ethayarajh et al., 2024), based on prospect theory, to model
human preferences. Another approach introduces Odds Ratio Preference
Optimization (ORPO) (Hong et al., 2024), which integrates an Odds
Ratio loss into the SFT loss. Additionally, Simple Preference Optimiza-
tion (SimPO) (Meng et al., 2024) method is developed by omitting the
reference model in the DPO loss to reduce the computational cost.
However, fine-tuning methods for task-specific MLLMs require further
investigation (Yu et al., 2024). This paper presents a Segment-level DPO
fine-tuning method to build a robust and generalizable system for
extracting water depth and its location from various social media
sources, including text, images, and videos.

3. Methodology
3.1. Model framework

The framework of SDPO-MLLM is presented in Fig. 1. The model
consists of the following: (1) Data preprocess; (2) Water depth infor-

mation extraction model (SDPO-MLLM); (3) Water depth quantification;
(4) Water depth mapping and analysis; (5) Model evaluation.
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Table 1
The keywords used for crawling flood messages.

Category Keywords

Flooding-related Ponding, flooding, inundation, water immersion, water
rise, water disaster, urban waterlogging, flood,
submersion, water depth

Heavy rain, rainstorm, downpour, intense rainfall, heavy
precipitation, rainwater, precipitation, storm

Low-lying terrain, river, waterway

Weather-related

Natural environment-
related
Infrastructure-related Drainage system, drainage pipeline, flood resistance, flood

prevention facilities, flood embankment

3.2. Data preprocess

3.2.1. Data collection

The flood-related data is collected from Sina Weibo (https://weibo.
com/) and the Wuhan City Message Board (https://liuyan.cjn.cn/).
Data from Sina Weibo is retrieved using an Application Programming
Interface (API) based on predefined keywords and a specified time
range. To minimize the risk of missing flood-related posts, an extensive
list of relevant keywords is incorporated. Table 1 details the keywords,
which are manually refined and expanded by referencing previous
studies (Li et al., 2023b). Additionally, to enhance the variety of the
dataset, Wuhan City Message Board data is included as an additional
data source. Each record from both data sources includes a textual
description, with some records also containing multiple images or a
video.

3.2.2. Data cleaning

The dataset collected using keywords contains irrelevant and
duplicate posts. Irrelevant posts include advertisements, entertainment
content, garbled text, posts that contain the keyword but are semanti-
cally unrelated, and those describing other disasters or weather events.
Duplicates consist of reposts or repeated posts with identical or highly
similar text. Flood-related posts are required to indicate that flooding
occurs at a specific location, either through a geo-tag or a textual
geographic description to enable spatial localization, while information
about the severity of flooding is not mandatory. Data cleaning is per-
formed as follows: regular expressions remove emojis, user information,
and URLs; duplicates are detected using the single-pass method with
Sentence-BERT (Reimers and Gurevych, 2019) embeddings, discarding
texts with cosine similarity above 0.8. Posts are retained only if they
contain geo-tags or textual toponyms, the latter extracted using NER
tools (He and Choi, 2021). The same tools are also used to identify and
exclude posts mentioning celebrities or public figures. Finally, a binary
classifier based on Bidirectional Encoder Representations from Trans-
formers (BERT) (Devlin et al., 2019), fine-tuned on annotated data, fil-
ters the remaining semantically irrelevant samples.

3.2.3. Multimodal dataset construction

As shown in Fig. 2, to effectively extract water depth information,
this study decomposes the task into three subtasks based on the char-
acteristics of MLLMs: text water depth extraction, image water depth
description, and water depth level classification. The cleaned dataset is
then used to construct a multimodal water depth dataset for training and
evaluating MLLMs. In addition, the video task is treated as an image
water depth description of multiple key frames. Therefore, the following
sections primarily focus on modeling water depth extraction from text
and images.

For text data, text water depth extraction is treated as an event
extraction task, as texts often refer to waterlogging at multiple locations.
The water depth description at each location is considered an event
comprising two arguments: location description and water depth
description. If certain information is missing, it will be left blank. The
spatial description includes administrative divisions, points of interest,
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Fig. 2. The multimodal data process.

Text water depth extraction Task instruction ~ Examples = Samples  Output

As a professional waterlogging event extraction analyst. your task is to parse the input content according to the
waterlogging event argument dictionary |{"location”. "water depth"}. Identify all waterlogging events from the
input and respond in JSON format, For unmatched event arguments, use "null".

Example 1.

Input: Heavy rain in Heyuan, Guangdong, caused severe waterlogging near Xiangfeng Commercial Plaza in
Yuancheng District, with motoreycles submerged up to the seat.

Output: [{“location": "Xiangfeng Commercial Plaza, Yuancheng District, Heyuan, Guangdong","water depth":
"motorcycle seat"}]

Example 2...Example 3...

Input: Several road sections of Jinan have been subjected to traffic control due to waterlogging. Shizhong
district: Under the Dangxi railway bridge. Tiangiao district: North of Shengchan Road Railway Bridge(25cm)...
Output:

[{“location": "Under the Dangxi railway bridge, Shizhong district, Jinan", “water depth": null}....]

Water depth level classification

You are a water depth classifieation expert. Your task is to classify water depth descriptions into the appropriate
water depth levels according to the classification standards provided below. Please respond in JSON format. For
any unclassified water depth, use "null". There are 11 levels with the following classification standards:

Level Water Depth Description

0 Water depth near 0 cm, no waterlogging

1 Water depth near 0 to 1 cm, or at the feet of a person. the bottom of a car wheel. bicyele wheel...

Example 1.

Input: {“water depth": "motorcycle seat”}

Output: {“water level": "Level 6"}

Example 2...Example 3..
Input: {*water depth": "
Output:

{ ‘water le\«el" “Lreve! 7"}

car window U

Image. water depth de:scrlptlfm

Can you describe the depth of the flooding?

The picture shows that the water has submerged the lower bodies of the pedestrians, with the
water level neachmg approximately mid-calf hmght

Fig. 3. Prompt templates for the three water depth extraction subtasks.
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roads, addresses, etc., while also considering discontinuous location
entities and complex spatial relationships. For example, in the sentence
of “Due to heavy rain in Guangdong, Enping traffic police took to the
streets to maintain traffic order and clear water accumulation at
Ximengang Point and Nanhua Street” two discontinuous and over-
lapping locations are mentioned: “Ximengang Point, Enping, Guang-
dong” and “Nanhua Street, Enping, Guangdong”. Completely extracting
both locations, rather than only “Ximengang Point” and “Nanhua Street”
can reduce ambiguities caused by similarly named locations during
subsequent geocoding and localization processes. The water depth de-
scriptions generally fall into two categories. The first are absolute de-
scriptions, such as ‘5cm’ or ‘20 cm’. The second are relative descriptions,
which refer to the water depth in relation to a reference object, such as

‘the water level reached the motorcycle seat’. Subjective terms such as
‘very deep’ or ‘quite deep’ are ignored because they are difficult to
quantify.

For image data, image water depth description involves instructing
the MLLM to identify and describe the flooded parts of reference objects,
like ‘knee’ for a person or ‘tire’ for a vehicle. The responses are first
collected from the MLLMs, then incorrect segments, especially incorrect
or missing water depth descriptions, are corrected to construct positive
samples of the dataset. The image descriptions are then processed by the
text water depth extraction task, which sets the location description to
null or replaces it with the flooded object to extract the water depth of
multiple targets in the image. This two-step approach allows the model
to focus on identifying objects and their corresponding water depths in
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Fig. 6. The water levels corresponding to the reference objects.

the image during the first stage, while ensuring that the description task
in MLLMs is more generalizable than directly classifying or detecting
water depth levels for objects in the image. Finally, water depth level
classification categorizes the extracted water depth descriptions from
text and images into predefined levels.

To avoid model overfitting, a set of prompts is designed specifically
for each of the three tasks, as shown in Fig. 3. These prompts consist of
task instruction, few shot examples, and samples to process. Task in-
struction specifies the task to be performed and the required output
format, such as producing textual results in JSON format. Few shot ex-
amples include three input samples along with their corresponding
outputs in JSON format. Including more examples could exceed the
maximum input length and increase the inference time, so the number of
examples is limited to three. In addition, no examples are included for
the image water depth description task. A separator is added between
the examples and the samples to be processed to reduce the likelihood of
the model replicating the examples provided.

3.3. Water depth information extraction model (SDPO-MLLM)

Since the collected social media data is mainly composed of Chinese,
Qwen2-VL-7b (Wang et al., 2024b) is selected as the base model to
construct the multimodal water depth information extraction model.
The training set of this model contains more Chinese corpus, has rela-
tively fewer parameters, so it has relatively better adaptability to the
water depth dataset. Fig. 4 shows the two components of the model: A
Vision Transformer (ViT) (Dosovitskiy et al., 2021) serving as the visual
encoder, and a Qwen-2 (Yang et al., 2024) LLM for generating results.

To enable the model to generate the desired responses based on in-
structions, especially when describing image content with water depth
information, a training method for MLLMs is designed that combines
SFT and SDPO losses, which can be represented as Eq. (1).

Lot = AL spr + L sppoF# (@]
where 1 is weight parameter. The SFT loss is employed to prompt the
model to mimic the dataset while adjusting the probability distribution
of model to meet the requirements of SDPO, which is given by Eq. (2).

J
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where 7(y|x) is the model’s predicted probability for the expected output
y given the input x, and logz(y|x) is given by Eq. (3).
logn(yx) =Y _ logp(yilxy:)#

Yi€y

3

where y; is the i-th token of the response y. As shown in Fig. 5, consid-
ering the relatively long textual responses related to image water depth
description task, where the part describing the water depth is relatively
short, it is difficult to achieve fine-grained water depth alignment using
DPO. Therefore, segment- level DPO is used to align text fragments
where the model’s judgment of the water depth is incorrect. DPO
transforms the reinforcement learning objective in RLHF into a super-
vised learning objective that expresses the reward function r(x,y) in
terms of both its optimal policy model z(y|x) and reference model
Tref (¥]x). The reward function can be represented as Eq. (4).

z(ylx)
Toref (%)

r(x,y) = plog + PlogZ(x)# C))

where f is a constant and Z(x) is the partition function. Furthermore, the
DPD learning objective is defined by Eq. (5).

Zppo = — [E(wa ) (logo (r(x, yw)

T(yw|x)
Toref (Yw|)

z(yilx)
Tref (Y11%)

— plog ) #

(5)

—rley))]= _[E(x.yw.y,) {IOgG (ﬁlog

where the reference model 7y (yw|x) refers to the initial base model,
whose parameters remain fixed, while only the policy model z(y|x) is
updated i.e. DPO allows to optimize policy models directly from paired
preference data without the reward model. To improve the learning
ability from the corrected text fragment, especially the water depth text
fragment, it is essential to increase its contribution to the overall score of
the text. Therefore, the scoring method is refined to a weighted sum of
the text fragments, which is given by Eq. (6).
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Table 2
The water level and estimation depth subject to a person.

Level  Body Height Estimation of Depth range under +
parts range (m) water depth (m) 10 % variation (m)
0 None 0.00 0.00 0.00 - 0.00
1 Instep 0.00 - 0.01 0.01 0.01 - 0.01
2 Ankle 0.01 -0.10 0.10 0.09 - 0.11
3 Calf 0.10 - 0.20 0.20 0.18 - 0.22
4 Knee 0.20 - 0.40 0.40 0.36 - 0.44
5 Thigh 0.40 - 0.60 0.60 0.54 - 0.66
6 Hip 0.6 - 0.80 0.80 0.72-0.88
7 Waist 0.80 - 1.00 1.00 0.90 - 1.10
8 Chest 1.00 - 1.30 1.30 1.17 -1.43
9 Neck 1.30 - 1.50 1.50 1.35-1.65
10 Temple, 1.50 - 1.70 1.70 1.53-1.87
eyes
1
logn(yl) = |, logpbilxy) + 7Y  logplyibxy) |# (6

where y, is the unchanged fragment, y. denotes the corrected text
fragment, and y > 1 is a weight parameter. As the value of y increases,
the impact of y, on the total score also grows. N is used for normalization
to prevent longer responses from receiving higher scores, where N = |
Yul + 7lyel-

In addition, LoRA is employed to improve the training efficiency.
This method conceptualizes the model training as an incremental pro-
cess applied to the original parameters. To encode the parameter in-
crements with fewer parameters, a low-rank decomposition is
performed for the pre-trained weight matrix Wy € R™* to represent the
parameter updates AW, which is given by Eq. (7).

Wo + AW =W, + BA# 7
where B € R¥”" A € R™* andr<min(d, k), During fine tuning, W, is
fixed, while the parameters of A and B are trained. The forward process
h = Woyx can be represented as h = Wyx + AWx = Wyx + BAx.

3.4. Water depth quantification

In the water level classification task, the water levels are divided into
11 categories, extending the criteria from previous studies (Yan et al.,
2023), as shown in Fig. 6. A person approximately 170 cm tall is used as
a reference, and the height is then mapped to other reference objects,
including bicycles, motorcycles, cars, etc. To better utilize the classified
depth levels for estimating specific depth values, an estimated depth is
constructed for each level, as shown in Table 2. This approach allows the
conversion of depth levels into numerical values, which facilitates the
calculation of the average depth of multiple targets in images or videos.

To evaluate the impact of reference objects on water depth estima-
tion and to quantify the uncertainty introduced by ambiguous or vari-
able reference objects, a sensitivity analysis was performed. For each
level, the corresponding water depth was recalculated by perturbing the
original reference heights by + 10 %, and the results are presented in
Table 2. The analysis shows that such perturbations lead to a maximum
deviation of 0.01-0.17 m in the estimated water depth, depending on
the level. Furthermore, in practical situations, extreme deep-water
events are relatively rare, whereas shallow flooding events occur
much more frequently. This results in a skewed distribution of water
depths in the dataset, under which the overall average absolute devia-
tion across all samples tends toward 0.01 m. Overall, these findings
demonstrate that the water level classification method is robust,
providing reliable depth estimations even under ambiguous or variable
reference conditions.

In addition, to locate waterlogged areas, the structured location
extracted by SDPO-MLLM is geocoded using the Gaode API to obtain
coordinates, as it provides more reliable and accurate geocoding
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services within the study areas. However, the API has certain limitations
in global applications. It is primarily optimized for Chinese address
formats, such as processing abbreviations, misspellings, incomplete, or
redundant address information. Moreover, its geographic coverage
mainly focuses on mainland China. For studies requiring worldwide
coverage, alternative services such as Google Maps or Mapbox may be
more appropriate (Geoapify, 2021).

Then, flooding depth extracted from text, images, and videos is in-
tegrated. During integration, records containing location information
are first retained. The next step is to determine if the record specifies a
water depth. If an exact depth value is provided, it is used as the water
depth for that location, disregarding estimates from other modalities. If
the depth is described relative to a reference object or is not explicitly
mentioned, images and videos are used to estimate water depth. The
final water depth for each location is calculated by averaging the depths
derived from all three modalities.

3.5. Water depth mapping and analysis

To identify the spatio-temporal distribution and trends of water-
logging hotspots in social media data, Kernel Density Estimation (KDE)
is applied to analyze the multimodal water depth information at the city
scale. The KDE can be used to identify urban waterlogging hotspot areas,
which typically correspond to regions prone to waterlogging. These
areas are strongly linked to factors such as urban geography, develop-
ment, and rainfall intensity. For a spatial location (x,y), the KDE func-
tion f(x,y) can be represented as the probability density of flood points
{(21,¥1), (x2,¥2), -+, (Xn,Yn)} over the spatial area, as given by the Eq.
(8).

JESIEES S (1 (%) ) (d <

®

where r is the search radius, the weight of water depth at the flood point
(x,¥:) is denoted by k;, while d; is the length between the flood point and
the location (x,y). Only flood points within the radius r contribute to the
calculation.

Additionally, clustering based on the Hierarchical Density-Based
Spatial Clustering of Applications with Noise (HDBCSAN) algorithm is
applied to identify regions with concentrated flood points, and by
comparing the kernel density values of these clusters, the severity of
flooding in these areas is assessed. HDBSCAN (Campello et al., 2013) isa
clustering algorithm that extends DBSCAN by incorporating a hierar-
chical approach, enabling it to handle datasets with varying densities
effectively. It introduces the concept of mutual reachability distance to
account for density differences. This distance is calculated as the
maximum of the core distances of two points and the actual distance
between them. HDBSCAN then uses these distances to construct a
minimum spanning tree (MST) that represents the connectivity of points
based on density. The MST is then condensed into a hierarchy of clusters
by varying the density threshold. Clusters form and merge dynamically
as the density level changes. HDBSCAN has an average-case time
complexity of approximately O(nlogn), making it efficient and scalable
for large datasets.

To further explore the impact and variation of various geographical
factors on waterlogging hotspot regions, Geodetector (Wang et al.,
2024a) is employed to assess the spatial heterogeneity of waterlogging
hotspots, which divides the geographic space into different regions and
uses the g-value to quantify how effectively X explains Y. A higher g-
value signifies a greater explanatory influence of the factor on Y,
whereas the p-value indicates the statistical significance of the factor.
The formula for calculating the g-value is calculated using Eq. (9).

" N; 02
qYX) =1 - Z:&% € [0,1)# ©)
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Fig. 7. Study area for urban waterlogging assessment.

where i refers to the category or division of X, N is the overall count of
regional units, N; is the count of regional units in category i, c? is the
variance of Y within category i, and o2 is the total variance of the
dependent variable across all regions.

3.6. Model evaluation

For the text water depth extraction task, precision, recall and F1-
score are used to evaluate the results of location and water depth
description, which is given by Egs. (10)-(12).

2 x P*R

F1 = 10
P+R # (10)

TP
= 11
P TP+FP# an

TP
_ 12
R TP+FN# a2

Since LLMs often add connective words to improve the flow of re-
sponses, especially for discontinuous entities, this can prevent the
extracted results from exactly matching the true labels. Therefore,
extraction results with a sequence match similarity greater than 80 % to
the true labels are considered correct (Han et al., 2024). In addition, the
extracted location results are further verified by converting them to
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coordinates through geocoding, with a distance threshold of 500 m used
to determine correct localization. MSE, MAE, and RMSE are used to
further evaluate the water depth extraction results after classification
and quantification. These metrics provide an overall estimation of the
disparity between the true and estimated depth, which are given by Egs.
(13)-(15).

I

MSE =% | (i —x)"# 13)
I

MAE = ;ZH i — x:|# a9

RMSE = VMSE# (15)

where y; is predicted water depth and x; is true value. For the image
water depth description task, Recall-Oriented Understudy for Gisting
Evaluation (ROUGE) is utilized to examine the consistency of the output
water depth text, which evaluates the degree of n-grams matching be-
tween the output text and the target text. The F1-ROUGE score is
calculated using Eq. (16).

2 % Prouct*“RroucE

Flrovee = (16)

Prouce + Rroucs

where Proygr is the fraction of the count of matching texts to the output
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Table 3

Location extraction and localization result on the text water depth dataset.
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Extraction Recall

Localization F1-score

Localization Precision

Localization Recall

Method Extraction F1-score Extraction Precision

BERT-BiLSTM-CRF 42.40 % 36.84 % 49.93 %
UIE 50.19 % 82.45 % 36.08 %
SDPO-MLLM (Few shot) 63.24 % 64.98 % 61.59 %
SDPO-MLLM (SFT) 78.83 % 77.99 % 79.70 %
SDPO-MLLM (SFT + DPO) 81.82 % 80.94 % 82.72 %
SDPO-MLLM (SFT + SDPO) 83.19 % 81.91 % 84.50 %

56.79 % 50.77 % 64.44 %
54.56 % 90.35 % 39.08 %
70.44 % 72.85 % 68.19 %
86.35 % 88.95 % 83.89 %
86.98 % 89.20 % 84.86 %
87.51 % 88.95 % 86.11 %

text, and Rgrouge is the ratio of the count of overlapping texts to the target
text. ROUGE-1, ROUGE-2 and ROUGE-L are used to measure concor-
dance at different levels. These metrics calculate overlap based on 1-
gram, 2-gram and longest common subsequence, respectively. Simi-
larly, MSE, MAE and RMSE are used to assess the error after the image
water depth descriptions are quantified. Finally, the Fl-score is
employed to assess the water level classification task, where words such
as ‘very deep’ and ‘fairly deep’ are classified as a separate category and
excluded from the subsequent water depth quantification.

4. Experiments and results
4.1. Experiments

The multimodal water depth dataset contains 2843 text records and
1563 images derived from collected, cleaned and annotated social media
data. A test set is constructed from three cities—Wuhan, Shenzhen, and
Beijing—with each city contributing 100 texts and 50 images. The
remaining data are divided into training and validation sets at an 8:2
ratio. The text annotations include 4491 location descriptions and 1267
water depth descriptions. Each image contains one or more water depth
description texts, with each description corresponding to the water
depth extraction results and water level classification labels.

The fine-tuning process is performed for 10 epochs on 4 RTX A6000
GPUs, with the SFT loss weight parameter A of 1, the SDPO loss
parameter f of 0.1, and the corrected text fragment weight of 5. The
LoRA parameters are configured to rank 8, alpha 32, and dropout
probability 0.05. During model inference, repetition penalty is set to 1,
temperature to 0.01, top p to 0.001, and top k to 1 to minimize
randomness in the model outputs. Additionally, regular expressions are
used to extract results in JSON format from the model’s responses. If the
model does not return the correct format, the inference process is
repeated until the output could be correctly recognized, with a
maximum of 10 attempts.

As shown in Fig. 7, Wuhan, Shenzhen, and Beijing in China are
selected as study areas to further evaluate the applicability and effec-
tiveness of SDPO-MLLM in different urban environments. Wuhan,
characterized by low-lying terrain, frequent extreme rainfall events, and
rapid urban expansion, faces a heightened risk of waterlogging. The case
study focuses on urban waterlogging in Wuhan in 2022, where SDPO-
MLLM is employed to extract water depth information from flood-
related multimodal social media data. The integrated multimodal
water depth data is then used to map and analyze inundated areas.

Shenzhen and Beijing are chosen to further test the model’s appli-
cability under different flooding conditions. Shenzhen, a coastal city in

Table 4
Water depth extraction and quantification result on the text water depth dataset.

southern Guangdong Province adjacent to Hong Kong, experienced
extreme rainfall from September 7 to 8, 2023, when Typhoon Haikui
made landfall, leading to severe waterlogging risks. Flood-related mes-
sages were collected from September 7 to 16 to extract and analyze
water depth information. Beijing, an inland city in northern China
bordering Tianjin and Hebei Province, suffered extraordinary rainfall
from July 28 to August 2, 2023, due to Typhoon Doksuri. The event
caused flooding in rivers such as the Yongding and Juma within the
municipality. Posts were collected from July 28 to August 28 for
experimentation.

4.2. Results

The performance of SDPO-MLLM on three subtasks related to
multimodal water depth information extraction is assessed and con-
trasted with other baseline models. For the text water depth dataset, the
performance on location and water depth extraction tasks is evaluated
and compared with BERT-BiLSTM-CRF, UIE, and SDPO-MLLM under
different configurations. BERT-BiLSTM-CRF (Yan et al., 2023) combines
the strengths of three components: BERT, which serves as an encoder
layer that provides context-aware embeddings of input text; BiLSTM (Bi-
directional Long Short-Term Memory), which models sequential de-
pendencies bidirectionally; and CRF (Conditional Random Field), which
acts as a decoder to produce globally optimal tag sequences. During
training, water depth data is converted from dialog format to BIO
format. UIE (Universal Information Extraction) (Lou et al., 2023) is a
unified framework for information extraction tasks that treats these
tasks as generative problems and uses the Structured Extraction Lan-
guage for unified representation, which improves the adaptability and
effectiveness across different extraction tasks. In addition, SDPO-MLLM
is evaluated under different configurations: Few-shot, SFT, SFT + DPO,
and SFT + SDPO. The Few-shot SDPO-MLLM performs the water depth
information extraction task using a prompt and a few examples, without
fine tuning. The SFT, SFT + DPO, and SFT + SDPO variants of SDPO-
MLLM correspond to models trained with their respective loss functions.

Table 3 presents the location extraction and localization results. The
SDPO-MLLM with SFT + SDPO achieved the best performance, with an
improvement of 1.37-40.79 % on location extraction Fl-score and
0.53-32.95 % on localization F1-score compared to other models. The
accuracy of location extraction and localization implemented by the
MLLMs generally outperformed BERT-BIiLSTM-CRF and UIE because
these two models lack the capability to handle longer and non-
contiguous location descriptions. For instance, the UIE model tends to
show higher precision but lower recall, indicating that it fails to extract
some location entities. On the other hand, due to the limited sample size,

Method Extraction F1-score Extraction Precision Extraction Recall Quantification MSE Quantification MAE Quantification RMSE
BERT-BiLSTM-CRF 49.12 % 58.33 % 42.42 % 0.1048 0.1498 0.3237
UIE 57.42 % 77.92 % 45.45 % 0.0855 0.1284 0.2924
SDPO-MLLM (Few shot) 77.47 % 80.99 % 74.24 % 0.3431 0.2904 0.5857
SDPO-MLLM (SFT) 83.52 % 84.50 % 82.58 % 0.0517 0.0576 0.2274
SDPO-MLLM (SFT + DPO) 83.85 % 85.16 % 82.58 % 0.0276 0.0545 0.1660
SDPO-MLLM (SFT + SDPO) 86.26 % 86.92 % 85.61 % 0.0210 0.0324 0.1449
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#WuhanHeavyRain# It's not that bad. In 1991, [ was swimming in the alley, in @;\3 i1 | #KunmingTrafficPoliceRoadConditions# Real-time traffic status in the city as of 8:30
1998, 1 was wading through water up to my waist in the alley, and now itonly | 11| AM, July 28:
floods up to my heels, L 11| L 5 Waterlogged Points, Roads Closed:
11|+ Guandu District: Guomao Road and Jinzhi Road, water accumulation 50CM; Second
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Fig. 8. Text water depth extraction examples.

these two models struggle to align with the requirements of this task. In
contrast, the MLLMs, even in a Few-shot scenario using only three ex-
amples, performed better than both BERT and UIE. Furthermore, the
Few-shot model achieves an F1-score of 63.24 %. After fine-tuning with
SFT, the performance improves by 15.59 %. The performance is further
enhanced when trained with SFT + DPO, while the SFT + SDPO
configuration provides the best results. The results show that segment-
based weighting effectively scores text and facilitates the model to
learn from specific segments. Finally, the localization accuracy after
location extraction is further evaluated, given the challenges with
generative models in extracting locations with precision. The experi-
ments indicate that the performance of localization is generally better
than that of location extraction, indicating that while MLLMs may not
extract locations with complete precision, they still perform well in
terms of localization. For example, the F1-score difference between the
model trained with SFT and the model trained with SFT + DPO is 2.99 %
for location extraction but only 0.63 % for localization. This suggests
that the inability of the model to accurately extract locations has mini-
mal impact on the final analysis of the geographic distribution of
waterlogging.

Table 4 shows the performance of the models on the water depth
extraction and quantification tasks. The SDPO-MLLM with SFT + SDPO
achieves the best performance, with an F1-score improvement ranging
from 2.41 % to 37.14 % in the water depth extraction tasks. For water
depth quantification, the model also shows improvements in MAE, MSE,
and RMSE. Compared to the Few-shot model, the performance of the
trained model shows a noticeable improvement in water depth extrac-
tion, especially after training with SFT + SDPO. This improvement can
be attributed to the conciseness of the water depth expressions, allowing
SDPO to focus on learning from these short fragments, resulting in sig-
nificant gains.

As shown in Fig. 8, the examples of water depth extraction from text
illustrate that SDPO-MLLM demonstrates a deep understanding of water
depth-related information. The first example is related to the heavy
rainfall in Wuhan, where three descriptions of water depth appear in the
text: those of 1991, 1998, and the current situation. The model correctly
extracted the current water depth. The second example describes a
heavy rain event in Shaoguan. The results indicate that the model not
only extracts waterlogging locations from complex textual descriptions
of places but also organizes these place names systematically, facili-
tating a clearer understanding of the flood situation and more accurate
location localization. The third example is a road condition warning
issued by the Kunming traffic police. The results show that both the
locations of waterlogging and the corresponding water depths are

Table 5

F1-score for image water depth description result.
Method Rouge-1 Rouge-2 Rouge-L
SDPO-MLLM (Few shot) 76.45 % 66.59 % 7213 %
SDPO-MLLM (SFT) 87.29 % 80.74 % 83.96 %
SDPO-MLLM (SFT + DPO) 86.72 % 80.15 % 83.37 %
SDPO-MLLM (SFT + SDPO) 87.51 % 80.94 % 83.99 %

Table 6

Image-based water depth quantification result.
Method MSE MAE RMSE
ResNet 0.0524 0.1338 0.2288
VIT 0.0297 0.0925 0.1723
SDPO-MLLM (Few shot) 0.0293 0.0553 0.1713
SDPO-MLLM (SFT) 0.0104 0.0283 0.1020
SDPO-MLLM (SFT + DPO) 0.0110 0.0288 0.1047
SDPO-MLLM (SFT + SDPO) 0.0076 0.0249 0.0870

correctly identified. However, certain deficiencies remain in the location
extraction. For example, the phrase ‘Guomao Road and Jinzhi Road’ in
the original text is ambiguous, as it could refer to either two separate
locations or a single combined area. The model interprets it as the latter,
and such ambiguity can lead to inaccuracies in the extraction. Further-
more, in Section II, some extracted locations related to Guandu District
lack the prefix ‘Guandu District’, such as ‘Chuncheng Road and
Yongping Road Intersection, Kunming’. This problem may be due to the
considerable textual distance between these locations and the mention
of ‘Guandu District’, which weakens their contextual association.

Table 5 shows the evaluation results for the image water depth
description task using SDPO-MLLM with different configurations. The
model trained with SFT + SDPO performs best on three metrics. In
addition, the models trained with SFT, SFT + DPO, and SFT + SDPO all
outperform the Few-Shot model; however, the performance differences
among these three training methods are minimal. This is because the
training data is derived from minor modifications of erroneous segments
in the MLLM output, resulting in high similarity between the generated
and reference texts and minimal differences in accuracy.

To further evaluate the quantified water depth of the image, the
generated descriptions are processed through a workflow for extraction,
classification, and quantification, and then compared with ResNet (He
et al., 2016) and ViT. In the extraction process, considering the de-
scriptions do not include location information, the location argument is
replaced with flooded object to better align with the content of the

905



T. Chu et al.

ISPRS Journal of Photogrammetry and Remote Sensing 230 (2025) 895-917

What objects or people are shown
| in the image, are they submerged in
| water, and what is the depth of
| submersion?

@ ®
What phjects or people in the image | Can the Nooded vehicles or people be
are in the water? What is the depth identified, and specifically, how far are
oF their subrmersion in the water? & they submersed? &

The image shows a person wearing a pink raincoat, riding & a |
motoreycle. The person is submerged in water, with the water ‘
fevel reaching above his ankles, The front wheel and part of the
matoreycle's body are also submerged.

middle of the wheel,

-.Cars: .. The black car at the front has its front wheel and part
of the body submerged, with the water level reaching about the

Maotoreyele: . there is a person riding a motorevele, with the
front wheel and part of the body also submerged in water..,

..-Vehicles: ._.there is a red motorcyele, with the bottom of its
wheels submerged in water, reaching the middle of the wheels,
People: There are two people in the fiood, one standing next to
the motoreyele, and the other riding it. The water has submerged
them up to below their knees...

[ {“Mooded object": "a person wearing a pink raincoat”™, “water

depth™: "above his ankles” |,
1“flonded object”: "motoreycie”, "water depth": ™ The fronl
wheel and part of the body" }]

wheel” },

| "fooded objeet": "black car”, "water depth™: "middle of the

{"Mooded objeet”: "Motorcyele”, "water depth”: "hottom™ }

|4 fioaded ohjeet™ "red motorcyele”, "water depth”; "middle
of the wheels” |,
| "flanded object”; "two people”, "water depth”; "below their

[ Fwvater bevel”™ "Level 2° ) {"water level”: "Level 47 ]

| [ {"water level": “Level 3"}, {"water level™ "Lovel 2'}]

knees" ]

{"water level"; "Level 3", {"water level”; "Level 2"}] |

According to the video, which objects or

Can the submerged objects or people in
the video be identified, and what is their
submersion water level?

targets are submerged in the water, and

whalt is the water level for each?

The video shows that a car is submerged -
in water, with the water level reaching
the height of the car windows. In
addition, several people are standing in
the water, with the water level reaching

their knees pedestrians.

According to the video, the street is
submerged in water, with the water level
reaching about the middle of the
motoreycle's wheels. This indicates that
the water level is quite high, enough to
partially submerge vehicles and

What vehicles or people are visible
above the water in the video, and how
far are they submerged?

The video shows several cars submerged
in floodwater, with the water level
reaching the height of the car windows.

In addition, several people are standing

[{"flooded object": "car", "water
depth": "car windows"},

wheels"}]

[1"flooded object": "street", "water
depth": "the middle of the motorcycle's

next to trees in the flood, trying to
observe the surrounding environment.

[1"flooded object": "several cars",

{"flooded object": "several people",

"water depth": "knees"}]

[{"water level”: “Level 3"}]

"water depth": "the height of the car
windows"},

[{"water level”: “Level 7"}, {"water
level": “Level 4"1]

{"flooded object": "several people”,
| "water depth": "null"} |

| {"water level"; “Level 7"}, {"water
level": null}]

Fig. 10. Video water depth extraction examples.

descriptions. ResNet is a convolutional neural network (CNN) that in-
corporates residual connections. During training, the ResNet-101 ar-
chitecture is fine-tuned for image water level classification. ViT divides
images into multiple tokens using a grid, serializes them, and leverages
the Transformer to capture global dependencies within the image. The
ViT model is trained using a 12-layer Transformer network for classifi-
cation. Table 6 shows the quantification results for the image water
depth dataset, where SDPO-MLLM with SFT + SDPO outperforms other
methods in MSE, MAE and RMSE, indicating that the proposed approach
improves the ability of MLLM to detect image water depth.

In addition, Fig. 9 presents examples of water depth extraction from
images using the SDPO-MLLM with SFT + SDPO. In the first example,

Table 7

Water level classification result.
Method Fl-score MSE MAE RMSE
BERT 78.18 % 0.0826 0.0943 0.2875
SDPO-MLLM (Few shot) 45.65 % 0.2022 0.2052 0.4496
SDPO-MLLM (SFT) 85.67 % 0.0746 0.0629 0.2731
SDPO-MLLM (SFT + DPO) 88.09 % 0.0592 0.0532 0.2434
SDPO-MLLM (SFT + SDPO) 90.17 % 0.0176 0.0330 0.1327
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the image depicts a person wearing a pink raincoat riding a motorcycle
through the water. The model successfully identifies both the person and
the motorcycle, and infers the water level. In the second example, the
model detects and estimates the flood depth of the car in the front and
the motorcycle in the behind. The third example shows a police officer
helping a resident cross a flooded area, with the model estimating the
water level at the person’s location. These examples also illustrate
certain limitations of the model. In example 1, the model does not ac-
count for the person sitting on the motorcycle, resulting in an over-
estimation of the water level compared to when the person is standing.
Additionally, in example 3, the model incorrectly describes the resident
as sitting on a motorcycle, whereas the person is actually standing beside
it. This misinterpretation may be due to visual occlusion or ambiguity.
Despite these errors, the model generally provides accurate descriptions
of water depth in the images.

Furthermore, Fig. 10 presents examples of water depth information
extraction from videos. Since the base model Qwen-2-VL supports video
understanding, the keyframe extraction process prior to video input is
unnecessary. However, the model basically treats the video as a
sequence of frames, similar to processing multiple images. To avoid
exceeding GPU memory limits, the maximum pixel value for the Qwen-
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Text evaluation results in the three regions.
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Method

Wuhan Location
Extraction F1-score

Wuhan Water
Extraction F1-score

Shenzhen Location
Extraction F1-score

Shenzhen Water
Extraction F1-score

Beijing Location
Extraction F1-score

Beijing Water
Extraction F1-score

BERT-BiLSTM- 45.74 % 57.47 % 40.29 % 56.57 % 27.54 % 53.19 %
CRF
UIE 47.62 % 59.04 % 56.34 % 77.97 % 34.30 % 61.05 %
SDPO-MLLM 83.37 % 91.92 % 57.98 % 66.17 % 68.50 % 68.25 %
(Few shot)
SDPO-MLLM 91.28 % 86.96 % 86.51 % 79.43 % 79.65 % 80.00 %
(SFT)
SDPO-MLLM 88.48 % 93.04 % 78.89 % 84.93 % 75.76 % 77.17 %
(SFT + DPO)
SDPO-MLLM 94.58 % 96.58 % 92.57 % 87.84 % 92.18 % 81.16 %
(SFT + SDPO)
Table 9
Image water depth quantification results in the three regions.
Method Wuhan MAE Wuhan RMSE Shenzhen MAE Shenzhen RMSE Beijing MAE Beijing RMSE
ResNet 0.0086 0.0926 0.3029 0.4459 0.1017 0.1810
VIT 0.0247 0.1573 0.2427 0.3417 0.1645 0.2426
SDPO-MLLM (Few shot) 0.0781 0.2794 0.1116 0.3677 0.0908 0.3427
SDPO-MLLM (SFT) 0.0028 0.0528 0.0429 0.1441 0.0226 0.0941
SDPO-MLLM (SFT + DPO) 0.0090 0.0949 0.0345 0.1174 0.0188 0.0725
SDPO-MLLM (SFT + SDPO) 0.0014 0.0375 0.0246 0.0923 0.0120 0.0546
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Fig. 11. The waterlogging spatial distribution in Wuhan in 2022.

2-VL hyperparameters is set to 50,176 pixels (224 x 224) per frame,
with a total of 40 frames. The hyperparameter setting limits the model’s
ability to process longer duration content. However, the responses
indicate that SDPO-MLLM is still able to detect the water depth of ob-
jects in the video. For instance, in the first example, it correctly recog-
nizes that the water level reaches the character’s knees. However, the
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description of the vehicle’s water level should state that it reaches the
door handles rather than the windows. While the answer is not entirely
accurate, it is fairly close, likely due to the down sampling of the video,
which caused the targets to blur and resulted in recognition errors.
Finally, Table 7 show the water level classification result, where the
SDPO-MLLM based on SFT + SDPO achieves the best performance,
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Fig. 12. Daily precipitation and waterlogging data distribution in Wuhan.

improving the F1-score from 2.08 % to 44.52 %. In addition, BERT, as an
encoder-based model, excels in text embedding and classification, out-
performing the Few-Shot MLLM. However, the fine-tuned MLLM still
demonstrates superior performance. Furthermore, the SDPO-MLLM,
based on SFT + SDPO, outperforms other training strategies, further
improving performance.

4.3. Water depth mapping and analysis result

The adaptability of the model is evaluated using test sets from three
regions: Wuhan, Shenzhen, and Beijing. The evaluation results of text
extraction are presented in Table 8, while the image-based water depth
quantification results are reported in Table 9. As shown in Table 8,
SDPO-MLLM achieved the best overall performance in both location and
water depth extraction tasks across the three regions. Compared with
other models, the improvements are substantial, demonstrating the
effectiveness of the SDPO strategy in cross-regional generalization.
Table 9 presents the proposed SDPO-MLLM (SFT + SDPO) consistently
achieved the lowest errors in Wuhan, Shenzhen and Beijing, further
confirming the robustness of the model across diverse flood
characteristics.

In addition, urban flooding in these regions is analyzed and mapped.
As shown in Fig. 11, the waterlogging points in Wuhan in 2022 are
mainly concentrated in the central urban area and extended along both
banks of the Yangtze River. Specifically, Fig. 11(a) presents the spatial
distribution of 2809 waterlogging points with depth information, while
Fig. 11(b) shows their counts aggregated within a 1.5 km hexagonal
grid. This area corresponds to the city’s densely populated core, where
certain locations exhibit a higher density of waterlogging reports, sug-
gesting more severe flooding conditions.

Fig. 12 shows the daily waterlogging record reports in Wuhan in
2022, along with the corresponding precipitation. Normality tests
(Shapiro-Wilk) indicated that neither variable follows a normal distri-
bution. Therefore, a Spearman correlation analysis was conducted,
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resulting in a correlation coefficient of 0.37 (p < 0.001), suggesting a
moderate positive relationship between the two variables over time.
Most waterlogging records are concentrated between late March and
May, and again in July, peaking around July 17.

The KDE method is then performed to assess the detailed water-
logging situation. The water depth of each record is used as the kernel
weight, with a search radius of 2000 m. The KDE results for water-
logging in 2022, shown in Fig. 13(a), indicate the presence of several
density centers with relatively severe waterlogging conditions. To assess
the conditions of these density centers, the HDBSCAN algorithm is used
to cluster the waterlogging points, with the minimum number of points
per cluster set to 30. Fig. 13(b) presents the clustering results from
HDBSCAN, suggesting that some of the clustered regions spatially
correspond to areas with higher density values in KDE, such as clusters
3,8,15,17, and 18.

In addition, Table 10 shows the average KDE values of the points
within each cluster and their corresponding locations in major street
blocks, which presents the severity of waterlogging in each cluster, by
ranking the KDE values. Among them, cluster 3 has the highest KDE
value, which is mainly concentrated in Jiufeng. Close behind are cluster
18, which is distributed across Yongfeng, and cluster 17, which is spread
over Wuli Dun, Cuiwei Jie, and Jiangdi Jie. Meanwhile, three clusters (9,
11, and 12) are located in the same region, Panlong Cheng. Although
these clusters are not highly ranked, they still highlight the widespread
and significant waterlogging problem in the area. The results show that
the application of KDE and HDBSCAN to analyze waterlogging points
extracted from SDPO-MLLM effectively identifies areas prone to
waterlogging, thereby also validating the performance of the model.

Furthermore, the case study shows that, although both information
extraction and situational analysis are important, accurate information
extraction is more critical. Inaccuracies in the extraction of key elements
can distort downstream spatial analyses and lead to incorrect in-
terpretations. In contrast, situational analysis typically involves more
subjective reasoning and judgment, allowing for interpretive flexibility,
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Fig. 13. The spatial clustering of waterlogging points in Wuhan.

The KDE values of spatial clusters and their corresponding street blocks.

Cluster ID KDE Value Street block
3 7.8321 Jiufeng
18 6.4682 Yongfeng Jie
17 5.1545 Wauli Dun, Cuiwei Jie, Jiangdi Jie
8 4.6805 Yangyuan, Xujia Peng, Heping Jie, Hongwei Lu
9 3.5894 Panlong Cheng
15 3.2077 Wansong Jie
11 2.4049 Panlong Cheng
13 2.1906 Jinyin Hu
14 1.7385 Houhu, Tazi Hu
7 1.5574 Hengdian
2 1.4346 Junshan
10 1.3635 Zhongnan Lu, Luonan, Shouyi Lu
6 1.1956 Jinhe, Wujia Shan, Changging Jie
12 1.1507 Panlong Cheng
4 0.9383 Caidian
0.9278 Yangluo
16 0.9098 Hanxing Jie, Changqing Huayuan
0.2551 Guandong, Guanshan

and minor inaccuracies have a limited impact on the overall outcome.
Therefore, accurate and robust information extraction is essential for
trustworthy situational analyses.

Finally, a rainfall event occurring between July 17 and July 20,
2022, along with the corresponding waterlogging KDE results, is
analyzed. Spatial distribution maps of daily waterlogging severity are
generated by applying KDE to the waterlogging points extracted from
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Table 11

Results of spatial heterogeneity detection of waterlogging severity and

precipitation.
Date q-value p-value
July 17, 2022 0.3688 <0.01
July 18, 2022 0.3972 <0.01
July 19, 2022 0.179 <0.01
July 20, 2022 0.4801 <0.01

SDPO-MLLM. Daily precipitation data is sourced from the GPM (Global
Precipitation Measurement) Level 3 Final data with a 10-kilometer
resolution. Table 11 presents the results obtained using Geodetector’s
factor analysis to assess the effect of precipitation on waterlogging
severity. The findings indicate that daily precipitation explained the
driving factors of waterlogging severity to varying degrees. On July 20,
2022, the precipitation factor accounted for approximately 48.01 % of
the spatial heterogeneity in water depth, reaching its maximum value.
This suggests that precipitation significantly influences the spatial
stratification heterogeneity of waterlogging severity.

Additionally, Fig. 14 presents the spatiotemporal distribution of
precipitation and waterlogging severity between July 17 and July 20,
2022, which shows a significant spatiotemporal consistency between
waterlogging severity and precipitation. From July 17 to July 20, the
precipitation area shows a trend of moving from south to north. On the
17th, the precipitation is relatively low, but a significant number of
waterlogging reports are still generated. This is due to the data pro-
cessing method, which gives priority to retaining earlier records in case
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Fig. 16. The spatial distribution of precipitation and KDE analysis in Shenzhen, September 7-8, 2023.

of duplicates. As a result, a higher number of reports from the early
stages of rainfall are retained, reducing the efficiency loss caused by
processing duplicate reports. On the 18th, as the rain decreased, the
number of waterlogging reports also decreased. On the 19th and 20th, as
the rainfall moved northward, the spatial distribution of waterlogging
also gradually shifted northward, consistent with the movement of the
rainfall. Overall, waterlogging reports are closely related to the spatial
pattern of daily rainfall.

Furthermore, Fig. 15 presents the results of urban waterlogging
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analysis in Shenzhen. Fig. 15(a) presents the distribution of water-
logging points aggregated within a 1.5 km hexagonal grid, with a total of
356 valid data points collected in the city. These points are mainly
concentrated in the northern Longgang District and the southern Futian
and Luohu Districts. Fig. 15(b) illustrates the KDE results based on
extracted water depth information, which indicate that the severely
affected areas extend inland from the southern coastline. Fig. 15(c)
shows the spatial clustering results, where the numbers assigned to each
cluster represent their ranking based on KDE values in descending order.
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Fig. 17. The results of urban waterlogging analysis from waterlogging points in Beijing.

The most severe clusters are located in Longcheng Subdistrict of Long-
gang District (1, 2, 5), Dongmeng Subdistrict of Luohu District (3, 8),
and Fubao Subdistrict of Futian District (4).

Fig. 16 illustrates the spatial distribution of precipitation and flood
severity from 20:00 on September 7 to 20:00 on September 8, 2023. The
results indicate that precipitation was relatively high during the first 12
h, accompanied by widespread waterlogging reports. In the subsequent
12 h, precipitation decreased markedly, and waterlogging reports also
declined, occurring only in a few rainfall centers, demonstrating a clear
spatiotemporal consistency. Moreover, Fig. 16 presents the results of the
Geodetector factor analysis. During the two periods, precipitation fac-
tors explained 60.68 % and 92.00 % of the spatial heterogeneity in water
depth, respectively, indicating that precipitation played a dominant role
in flood occurrence.

Fig. 17 presents the results of urban waterlogging analysis in Beijing.
Fig. 17(a) shows the distribution of waterlogging points aggregated
within a 3 km hexagonal grid, with a total of 710 valid data points
collected. These points are primarily concentrated in the southern and
central parts of the city, including Fangshan, Mentougou, and Fengtai
Districts. Fig. 17(b) illustrates the KDE results based on extracted water
depth information, which reveal multiple flooding centers, indicating
that the flooding event had a wide spatial impact. Fig. 17(c) displays
several clustered areas, where the numbers next to each cluster repre-
sent their ranking based on KDE values in descending order. The most
severe clusters are located in Liangxiang Town of Fangshan District (1,
5), Longquan Town of Mentougou District (2, 3), and Dingfuzhuang
Township of Daxing District (4).

Fig. 18 illustrates the spatial distribution of precipitation and KDE-
based waterlogging reports from July 29 to August 3, 2023. Overall,
precipitation was mainly concentrated in the central and southern parts
of Beijing, showing a temporal pattern of first increasing and then
decreasing, with the peak occurring on July 30. Waterlogging reports
exhibited a similar trend. Fig. 18 also presents the results of the Geo-
detector factor analysis, which indicate that precipitation explained the
spatial differentiation of waterlogging reports to varying degrees on
different dates. These visualization results further demonstrate the
model’s ability to accurately capture the spatial distribution of flood risk
across regions with varying flood characteristics.

911

5. Discussion
5.1. Accuracy and efficiency after model quantization

Model quantization can reduce resource consumption and increase
the speed of model inference, making it more applicable to large-scale
social media data. In this section, the efficiency and performance of
the quantization-applied SDPO-MLLM in extracting water depth infor-
mation is further evaluated. Gradient-based Post-training Quantization
(GPTQ) (Frantar et al., 2023) is used to quantize the model into INT3,
INT4, and INT8 precision, which compresses the weights after training
and adjusts the parameter errors through gradient optimization.

Fig. 19 compares the performance of different quantized models.
Specifically, Fig. 19(a) demonstrates the inference time of each model
on the test dataset, indicating that the time taken decreases linearly with
the level of quantization. Fig. 19(b) illustrates the quantified perfor-
mance of the model on three water depth information extraction tasks. It
is evident that the location extraction task experiences minimal per-
formance loss for the INT4 and INT8 models, while the loss is more
significant for the INT3 model. In addition, the water depth extraction
task shows little performance degradation across all quantized models,
while the water level classification task shows a gradual performance
degradation. In the image water depth description task, all models
except the INT3 model exhibit relatively small Rouge-1, Rouge-2, and
Rouge-L losses. Fig. 19(c) shows the results of the quantization of the
water depth text extracted by the model. It becomes evident that the
error gradually increases with the level of quantization, with the INT8
model exhibiting relatively smaller errors. Overall, the INT8 model
improves inference speed while minimizing accuracy loss, thereby
enhancing the efficiency of water depth information extraction.

In practical scenarios, the proposed model can be extended to enable
real-time or near real-time detection of floodwater depth. During the
data collection phase, scheduled tasks and asynchronous requests can be
employed to achieve high concurrency and rapid acquisition of relevant
information. In the data cleaning phase, vector databases can be utilized
to store and retrieve text embeddings of streaming data, followed by
NER filtering and BERT-based binary classification filtering. This pro-
cess substantially reduces the number of samples to be processed,
thereby allowing subsequent model inference to efficiently handle peak
traffic. Furthermore, the SDPO-MLLM model can be deployed locally
using techniques such as vLLM and DeepSeed to optimize GPU
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Fig. 18. The spatial distribution of precipitation and KDE analysis in Beijing, July 29-August 3, 2023.

inference. Quantization techniques can also be adopted to accelerate
inference speed. The multimodal workflow supports various combina-
tions of data inputs, thereby enabling flexible and scalable real-time
water depth detection. In summary, the proposed approach features a
modular architecture that is well-suited for real-time applications, with
strong scalability that facilitates adaptation to diverse scenarios.

5.2. Model generalization performance on different water depth
estimation tasks

To further validate the model’s performance, it is evaluated on a
different water depth dataset. The dataset (Wan et al., 2024) consists of
2000 images of vehicles submerged in water, including sedans, SUVs,
and trucks. The dataset annotations are provided in YOLO format, where
each vehicle is assigned a water depth category and a bounding box for
object detection. Water depth is classified into five levels, corresponding
to levels 0, 3, 5, 6, and 8, based on the water level standards outlined in
Section 3.4. During the evaluation, the detection results are quantified

912

using the estimated water depth shown in Table 2, and the MSE, MAE,
and RMSE are calculated to evaluate the average water depth for each
image.

SDPO-MLLM is compared to YOLOv8 (Wan et al., 2024), DINO
(Zhang et al., 2023), and Qwen2-VL-7b. YOLOv8 (You Only Look Once
version 8) is an object detection method that balances accuracy and
speed. DINO (Detection Transformer with Improved denoising anchor
boxes) is an object detection model based on the Detection Transformer
framework. It introduces improved denoising anchor boxes and en-
hances detection capabilities through multi-scale feature fusion and
efficient training strategies. Qwen2-VL-7b is the base model parameters
without fine-tuning using the proposed method, while SDPO-MLLM is
the model parameters fine-tuned on the multimodal water depth dataset
using SFT + DDPO. Qwen2-VL-7b and SDPO-MLLM are further fine-
tuned using a vehicle dataset with SFT. The prompt includes instruct
model output detection box of vehicles and classification criteria for
each water level. The response format follows the structure:

“<|object_ref start|>L3 vehicle<|object_ref end|><|box_start|>(x1,
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Fig. 19. Performance comparison on different quantized models.
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Table 12

The evaluation results on the vehicle water depth dataset.
Method MSE MAE RMSE
YOLOvVS8 0.0616 0.1913 0.2483
DINO 0.0475 0.1627 0.2178
Qwen2-VL-7b 0.0389 0.1062 0.1972
SDPO-MLLM (SFT + SDPO) 0.0378 0.1051 0.1944

y1),(x2,y2)<|box_end|>",

where multiple detection results are concatenated sequentially.

As shown in Table 12, the results indicate that the fine-tuned SDPO-
MLLM achieved the best performance because its ability to estimate
water depth is improved during prior training. Fig. 20 shows the
detection results of four different methods alongside the ground truth.
The results show that all methods have high accuracy in vehicle detec-
tion, with only DINO missing a few vehicles. For water level estimation,
MLLM-based methods, especially SDPO-MLLM, show superior accuracy.
This improvement can be attributed to the language module’s ability to
better understand the water level classification criteria. In addition, the
integration of image and text effectively improves the ability to
discriminate between different water depths.

SDPO-MLLM

Qwen2-VL-7b

DINO

Ground truth

Fig. 20. The detection examples of the vehicle water depth dataset.
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5.3. Limitations and future enhancements

This study demonstrates that the proposed SDPO-MLLM achieves
strong performance in extracting water depth information from multi-
modal social media data. However, the results of the experiments and
the subsequent analyses reveal several challenges and opportunities for
future research.

Although the SFT + SDPO fine-tuning strategy effectively mitigates
hallucination risks, potential risks remain, particularly in safety—critical
contexts such as emergency response and urban flood management.
Erroneous or fabricated information could mislead decision-makers,
resulting in delayed or inappropriate actions. Several factors
contribute to hallucinations. For instance, in extreme flood scenarios
where reference objects are fully submerged or absent, the lack of reli-
able visual anchors can lead to uncertain or biased predictions. This
study focuses on cases where reference features are present. To address
situations with very limited references, future work may incorporate
additional information sources (Wieland et al., 2025), such as hydro-
dynamic models, remote sensing imagery, and elevation data, to
improve robustness.

The characteristics of input imagery also influence estimation ac-
curacy. Shooting angle can affect the perceived size, clarity, and visi-
bility of reference objects. Images captured from oblique or elevated
viewpoints may distort spatial relationships. By contrast, ground-level




T. Chu et al.

images in which the water surface and reference targets are clearly
visible and unobstructed tend to yield more reliable results. In addition,
incorporating images with fixed-height reference structures (e.g.,
lampposts) can reduce the effect of viewing angles, provided that such
structures contain distinct and easily recognizable markers distributed
along their height to enable accurate identification of submergence
levels. Future studies may extend this approach by exploring other types
of reference objects with similar properties.

There are several strategies that could reduce hallucinations and
errors in complex or occluded environments. First, integrating
reasoning-capable LLMs, such as DeepSeek-R1 (DeepSeek-Al, 2025),
with vision encoders could improve reasoning and detection in chal-
lenging flood scenarios. Second, incorporating human pose estimation
models enables more accurate interpretation of human references (Feng
et al., 2020). Third, applying confidence thresholds to flag uncertain
predictions coupled with human-in-the-loop (HITL) systems would
allow automated pipelines to operate while maintaining expert over-
sight (Wilchek et al., 2023). Although SDPO-MLLM provides a fully
automated framework that integrates multimodal inputs and minimizes
human involvement in structuring water depth information from un-
structured social media data, limited verification remains essential when
dealing with low-quality or ambiguous imagery, or with misleading
textual content such as sarcasm or irony. Furthermore, incorporating
sensor data from IoT networks represents a promising direction for
improving estimation accuracy and reliability (Kamel Boulos et al.,
2011). Data from water level sensors, rain gauges, and traffic cameras
not only provide precise timestamps and georeferenced readings to
calibrate and validate predictions but also enable correction mecha-
nisms to identify noise or anomalous reports in social media data, as well
as to address spatial ambiguity or temporal lag.

Beyond hallucination risks, potential biases in data sources also
merit attention. The dataset is primarily derived from Sina Weibo and
citizen message boards, which may not accurately reflect the diversity of
all populations. Linguistic styles and expression patterns influence the
training process and extraction performance. User-generated content is
inherently heterogeneous in reliability, tone, and spatial precision,
which in turn may affect model outputs. The current model relies on
pretrained MLLMs primarily trained on high-resource languages and
mainstream platforms. In regions with sparse social media activity or
high linguistic diversity, performance may be limited by insufficient
training samples, restricting both coverage and comprehensiveness.
Future research should explore domain adaptation, cross-lingual trans-
fer learning, and the model’s transferability to less structured platforms
(e.g., TikTok videos) to improve robustness in multilingual and low-
resource environments (Hong et al., 2025). Integrating complemen-
tary data sources, such as official reports or sensor networks, could also
counterbalance social media biases and enhance monitoring coverage.

In terms of data privacy, this study only extracted task-relevant in-
formation from social media content, specifically water depth and
location descriptions related to flood events. All data were collected
from publicly accessible posts, and no private or restricted content was
accessed. Personally identifiable information (e.g., names, contact de-
tails, user handles) was removed during preprocessing. Geographic
references were limited to public descriptions (e.g., streets or neigh-
borhoods) and were not linked to individual users. Water depth values
represent environmental observations rather than personal information.
Data usage complied with the platforms’ terms of service, and all results
were analyzed and presented at an aggregated level using statistics and
mapping. Future work will explore stronger privacy-preserving tech-
niques, such as differential privacy, to further enhance protection
(Boulemtafes et al., 2020).

6. Conclusions

A novel model (SDPO-MLLM) is proposed to effectively extract
multimodal water depth information by integrating image-text data,
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demonstrating advanced performance and robustness. To accommodate
different social media data types and the generative responses of
MLLMs, three water depth extraction subtasks are designed, and corre-
sponding datasets are constructed: textual water depth extraction, image
water depth description, and water depth level classification. These
tasks are systematically integrated into a structured workflow to facili-
tate multimodal water depth extraction from text, image, and video
data.

To optimize the model parameters, the fine-tuning strategy SFT +
SDPO is introduced, which effectively reduces hallucinations in the
model’s responses to water depth information. In addition, LoRA is
incorporated to reduce computational resource consumption and
improve training efficiency. Evaluation results demonstrate that SDPO-
MLLM outperforms single-modal water depth extraction methods. In
text water depth extraction, the proposed method generates structured
and organized results by understanding textual content. In image water
depth description, the model analyzes image content and specifies the
water depth of observed objects. Furthermore, multimodal water depth
extracted from multi-source social media data is quantified and fused to
map and assess waterlogging severity. In the case study, waterlogging
prone areas in Wuhan, Shenzhen and Beijing are delineated using KDE
and HDBSCAN, providing valuable insights for urban flood manage-
ment. Factor analysis using Geodetector reveals that precipitation
significantly explains waterlogging severity, further validating the
model’s capability.

Finally, the quantization and generalization performance are
assessed. Results from post-training quantization using GPTQ (INT3,
INT4, INT8) show that while lower-bit quantization significantly re-
duces inference time, it may lead to varying degrees of accuracy loss.
Notably, the INT8 quantized model achieves a favorable trade-off: it
maintains high accuracy across the three water depth tasks while sub-
stantially improving inference efficiency. These findings suggest that
SDPO-MLLM can be effectively deployed in resource-constrained envi-
ronments or real-time scenarios, balancing performance and efficiency.
Additional experiments on other water depth datasets and in regions
with different flood characteristics, such as Shenzhen and Beijing,
confirm that after fine-tuning, the proposed model demonstrates strong
generalization and applicability across diverse and complex scenarios.
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