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A B S T R A C T

Urban flood mapping Massive and multi-dimensional social media data provide precious opportunities for the 
rapid collection and assessment of urban flooding depth. However, effectively and robustly estimating water 
depth from these multimodal data remains a significant challenge. Although previous studies integrated several 
existing models, they increase model complexity and hinder joint optimization across different modalities. This 
paper proposes a Segment-level Direct Preference Optimization-based Multimodal Large Language Model (SDPO- 
MLLM) for estimating flood depth by integrating image-text data. Our contributions include the design of a 
hybrid training strategy combining Supervised Fine-Tuning (SFT) and SDPO to reduce inaccurate responses. 
Additionally, a novel structured workflow is designed, including: (1) dataset preprocessing and construction; (2) 
event-based extraction of flood location and depth descriptions from text; (3) generation of water depth de
scriptions from images and videos; (4) classification of water depth descriptions based on multiple reference 
objects; and (5) quantification of depth categories into numerical values. Empirical experiments are conducted 
on a dataset containing 2843 text records and 1563 images. The evaluation results show that SDPO-MLLM 
outperforms other unimodal methods, generating structured and organized results from text, and identifying 
flooding depth from images based on reference objects. As a case study in Wuhan, Shenzhen and Beijing, the 
multimodal water depth extracted from social media data is quantified and fused to map and analyze 
waterlogging-prone areas, demonstrating satisfactory generalization and adaptability of the developed model 
under various flood scenarios. Our research offers valuable insights for rapid mapping and analysis of urban 
waterlogging severity.

1. Introduction

In recent decades, flooding has become more frequent and severe due 
to the increasing occurrence of extreme weather events driven by global 
climate change, coupled with the growth of populations and the 
expansion of impervious surfaces. Flooding caused by rainfall can range 
from minor inconveniences, such as disruption to transport systems and 
daily activities, to more severe consequences, such as damage to infra
structure, resulting in significant economic losses and presenting risks to 
public security (Moftakhari et al., 2018; Wang et al., 2021; Ouyang 
et al., 2022b). Collecting and extracting water depth information during 

flood events can provide insight into the severity of flooding in different 
areas, which is crucial for implementing emergency response plans. 
Moreover, data-driven monitoring also supports urban planning efforts, 
such as the design of flood-proof architecture, to mitigate the impacts of 
urban flooding (Feng et al., 2022; Mustafa, 2023).

Various methods have been developed to collect flooding depth in
formation (Huang et al., 2018; Liao et al., 2023; Saleh et al., 2024). 
Traditional methods, such as field surveys and stream gauges, though 
accurate in results, often require high labor or equipment costs and have 
limited detection ranges, making them unsuitable for large-scale moni
toring. Flood simulation methods based on complex physical 
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mechanisms require substantial computational resources, rendering 
them ineffective for real-time surveys. The method of monitoring using 
optical or Synthetic Aperture Radar (SAR) imagery is limited by the 
satellite’s revisit cycle, making it difficult to obtain timely images during 
flood events, particularly in cases of short-term heavy rainfall.

Compared to the above methods, massive social media data provide 
an opportunity to collect flood information in real time (Li et al., 2023b; 
Wang et al., 2024c). During extreme disasters or emergencies, the public 
often spontaneously uses social media platforms like X (formerly 
Twitter), TikTok, and Sina Weibo, to request assistance or disseminate 
disaster information (Hou et al., 2024). However, the primary challenge 
lies in the effective and robust extraction of flood depth and location 
data from multimodal social media content, including text, images, and 
videos. Current research primarily focuses on developing water depth 
estimation methods based on a single data type or modality (Wan et al., 
2024), potentially overlooking valuable information from other sources 
and introducing biases into flood mapping and analysis. An alternative 
approach involves integrating these models into a pipeline (Yan et al., 
2023), which not only increases model complexity and computational 
requirements but also hampers the collaborative optimization of 
multitasking and the modeling of interrelations between different 
modalities.

For extraction of flood location and water depth from text, single- 
task models struggle to establish the correspondence relationships be
tween these elements, making it difficult to accurately identify water 
depths at multiple locations. For estimation of water depth from images 
and videos, fixed-category image classification or detection models lack 
semantic associations and reasoning capabilities, limiting their scal
ability and flexibility. Moreover, with respect to flood information 
localization, most data lack geotags (Lamsal et al., 2022) and location 
information is typically conveyed through textual descriptions. The 
variety and flexibility of location descriptions, especially for non- 
contiguous geographic entities or complex spatial relationships (Stock 
et al., 2022), further hinder the application and analysis of water depth 
information (Sathianarayanan et al., 2024).

To tackle these challenges, Multimodal Large Language Models 
(MLLMs) (Bubeck et al., 2023; Wu et al., 2024b) are employed to 
construct a unified flooding depth estimation model for text, images and 
videos. These models possess cross-modal comprehension and semantic 
association capabilities and have been explored in several domains such 
as smart cities (Duan et al., 2024), social media analysis (Chu et al., 
2025), and cybersecurity (Ali and Ghanem, 2025). However, in practical 
applications, the results generated by MLLMs still exhibit hallucination 
(Huang et al., 2025). For example, although MLLMs can identify objects 
in images relatively accurately, they can generate missing or incorrect 
water depth descriptions. The behavior of MLLMs, which does not align 
well with human preferences, makes it challenging when applied to 
flood disaster scenarios.

Supervised fine-tuning (SFT) is a basic optimization method, but it 
may introduce or amplify hallucinations due to a mismatched learning 
objective (Ouyang et al., 2022a). An alternative approach is Reinforce
ment Learning with Human Feedback (RLHF) (Kaufmann et al., 2024), 
which builds on an SFT model. RLHF involves training an additional 
reward model using a large set of preference-labeled data to evaluate 
and guide the MLLMs. However, RLHF typically requires running three 
models simultaneously—the reference model, the reward model, and 
the policy model—which leads to increased computational complexity 
and memory usage. Direct Preference Optimization (DPO) (Rafailov 
et al., 2023) offers another alternative by directly parameterizing the 
reward model, thereby eliminating the need for separate reward model 
training and scoring during fine-tuning. DPO reduces computational 
overhead and often achieves comparable or better performance with 
fewer preference-labeled samples, improving sample efficiency. Despite 
these advancements, MLLMs often generate short, inaccurate fragments 
in the responses regarding flooding depth, particularly when describing 
the water depth of reference objects in images. These errors are typically 

overlooked by evaluation mechanisms that focus on overall response 
quality (Wang et al., 2024d). Therefore, developing a targeted fine- 
tuning method is essential to correct these segment-level errors and 
enhance the accuracy of the generate responses.

This paper proposes a Segment-level Direct Preference Optimization- 
based Multimodal Large Language Model (SDPO-MLLM) focused on the 
extraction of urban flooding depth from multimodal social media flood 
data. The multimodal water depth extraction task is first decomposed 
into three subtasks and a multimodal dataset is annotated for fine-tuning 
and evaluation of the model. Then, a SDPO loss combined with SFT loss 
is proposed to train the MLLM, while the Low-Rank Adaptation (LoRA) 
(Hu et al., 2022) method is used to decrease the computational cost 
during training. Finally, the performance on the multimodal tasks is 
comprehensively evaluated, while its effectiveness is further validated 
through water depth quantification as well as water depth mapping and 
analysis. Overall, the primary content and contributions of this paper are 
summarized as follows: 

• A novel SDPO-MLLM is proposed, which integrates a training strat
egy combining supervised fine-tuning with Segment-level Direct 
Preference Optimization, effectively facilitating model alignment for 
water depth information extraction by integrating image-text data.

• The efficient and accurate extraction methods for multimodal data 
are constructed in SDPO-MLLM to adapt the generative response of 
MLLM, including text water depth extraction, image water depth 
extraction, and water depth level classification.

• An event-based extraction method is proposed to enhance water
logged area localization, which improves the structured and orga
nized extraction of discontinuous and overlapping locations in the 
text.

• A water-level classification and quantification method is developed 
that establishes classification levels and estimates the depth range for 
each category based on multiple reference objects, enhancing the 
overall water depth estimation for waterlogged areas containing 
multiple objects.

• The innovative approach integrating multimodal image-text data is 
used to assess waterlogged areas, further validating the model’s 
effectiveness and contributing to waterlogging risk management and 
response strategies in a large-scale urban environment.

2. Related work

The estimation of urban flooding depth from social media data relies 
primarily on three data modalities: text, images, and videos. For text 
data, two main approaches are used to extract water depth information. 
The first approach (Khan et al., 2022) classifies the text into different 
water depth levels and assesses the overall water depth of the entire text. 
However, the method cannot handle multiple water depth descriptions 
presented simultaneously within the same text, such as several numer
ical values for water depth. The second approach (Aarthy et al., 2022) 
first extracts water depth descriptions and then estimates water depth 
using keyword matching or classification methods. While this approach 
can accurately identify multiple water depth descriptions, it fails to 
establish spatial associations between water depths and location de
scriptions because the extraction process of each is performed in isola
tion. To address these limitations, this study models the task as event- 
based water depth extraction, where each flood event contains both a 
water depth description and a location argument, allowing effective 
extraction of water depth information from complex textual content.

For image data, current methods attempt to estimate water depth 
information by analyzing visual cues within the images. One approach 
(Chaudhary et al., 2019; Feng et al., 2020; Liu et al., 2024) uses object 
detection models to classify reference objects at various water levels (e. 
g., people, cars, bicycles) into different categories, thereby estimating 
water depth. While this approach can stably identify multiple objects 
and their corresponding water levels when sufficient high-quality 
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training data is available, its implementation remains challenging and 
resource-intensive for data annotation. In addition, the method’s reli
ance on predefined reference object types limits the scalability of the 
model. Another approach (Wu et al., 2024a; Yan et al., 2023) estimates 
the overall water depth of an image using image classification or 

regression. For example, Chaudhary et al. (2020) uses a multi-task 
ranking method to regress the water depth. However, this method is 
susceptible to interference from the image background, and the water 
depth at which each reference object is submerged may differ. In addi
tion, some studies attempt to estimate water depth numerically by 

Fig. 1. The SDPO-MLLM framework.
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utilizing fixed-size reference objects or assuming ideal reference objects, 
such as road signs (Alizadeh Kharazi and Behzadan, 2021), traffic cones 
(Jiang et al., 2020), and pedestrians (Li et al., 2023a). For example, Qin 
and Shen (2025) estimate water depth by analyzing the refraction- 
induced displacement of road markings in images captured by traffic 
cameras. While these methods are reliable in specific environments, 
their implementation is challenging with diverse social media data. For 
the video data, research on water depth estimation is limited (Zhu et al., 
2024b). In most cases, key frames are obtained from videos and treated 
as separate frames for analysis. For example, Hao et al. (2022) extracts 
the time periods when vehicles appear in surveillance videos and detects 
their water levels using object detection. In this paper, the MLLMs that 
integrate image-text data are utilized to enhance the robustness and 
flexibility of water depth estimation.

For the localization of flooding-related data, one approach (Feng 
et al., 2020) is to use geotags from social media data, which provide the 
coordinates of the poster’s location. However, only 1–2 % of posts 
contain this information, and the location provided does not necessarily 
correspond to the actual flooding site. Another approach extracts loca
tion descriptions from text. The informal and irregular nature of location 
descriptions in social media data, along with the infrequent use of 
structured address formats, presents a challenge to accurately extracting 
this information. Previous methods (Berragan et al., 2023) mainly 
depend on Named Entity Recognition (NER) models to detect specific 
toponymies, like administrative divisions, streets, and points of interest 
(POIs). However, these models often struggle to model non-continuous 
or hierarchically nested locations (Chen et al., 2022). This study pre
sents a generative extraction method based on MLLMs to extract and 
organize complex location expressions, thereby improving the accuracy 
of subsequent location geocoding and fully exploiting social media data.

By constructing generative tasks, multi-task depth estimation models 
can be developed based on MLLMs that integrate multimodal data, 
facilitating collaborative modeling across tasks and improving both 
performance and robustness. These models have already been prelimi
narily explored for their potential in disaster management field (Zhang 
et al., 2024). For example, Hu et al. (2023) used geo-knowledge to guide 
Generative Pre-trained Transformer (GPT) in location information 
extraction from disaster messages. Zhu et al. (2024a) developed a flood 
knowledge-constrained Large Language Models (LLMs) to improve cit
izens awareness of flood disasters. Additionally, Akinboyewa et al. 
(2024) applied GPT-4 to estimate flood depth of social media images. 
However, current methods rely solely on carefully designed prompts to 
implement specific tasks, limiting the full potential of MLLMs. Efficient 
fine-tuning is therefore required. Existing approaches primarily focus on 
fine-tuning LLMs. The study proposes Kahneman-Tversky Optimization 
(KTO) (Ethayarajh et al., 2024), based on prospect theory, to model 
human preferences. Another approach introduces Odds Ratio Preference 
Optimization (ORPO) (Hong et al., 2024), which integrates an Odds 
Ratio loss into the SFT loss. Additionally, Simple Preference Optimiza
tion (SimPO) (Meng et al., 2024) method is developed by omitting the 
reference model in the DPO loss to reduce the computational cost. 
However, fine-tuning methods for task-specific MLLMs require further 
investigation (Yu et al., 2024). This paper presents a Segment-level DPO 
fine-tuning method to build a robust and generalizable system for 
extracting water depth and its location from various social media 
sources, including text, images, and videos.

3. Methodology

3.1. Model framework

The framework of SDPO-MLLM is presented in Fig. 1. The model 
consists of the following: (1) Data preprocess; (2) Water depth infor
mation extraction model (SDPO-MLLM); (3) Water depth quantification; 
(4) Water depth mapping and analysis; (5) Model evaluation.

3.2. Data preprocess

3.2.1. Data collection
The flood-related data is collected from Sina Weibo (https://weibo. 

com/) and the Wuhan City Message Board (https://liuyan.cjn.cn/). 
Data from Sina Weibo is retrieved using an Application Programming 
Interface (API) based on predefined keywords and a specified time 
range. To minimize the risk of missing flood-related posts, an extensive 
list of relevant keywords is incorporated. Table 1 details the keywords, 
which are manually refined and expanded by referencing previous 
studies (Li et al., 2023b). Additionally, to enhance the variety of the 
dataset, Wuhan City Message Board data is included as an additional 
data source. Each record from both data sources includes a textual 
description, with some records also containing multiple images or a 
video.

3.2.2. Data cleaning
The dataset collected using keywords contains irrelevant and 

duplicate posts. Irrelevant posts include advertisements, entertainment 
content, garbled text, posts that contain the keyword but are semanti
cally unrelated, and those describing other disasters or weather events. 
Duplicates consist of reposts or repeated posts with identical or highly 
similar text. Flood-related posts are required to indicate that flooding 
occurs at a specific location, either through a geo-tag or a textual 
geographic description to enable spatial localization, while information 
about the severity of flooding is not mandatory. Data cleaning is per
formed as follows: regular expressions remove emojis, user information, 
and URLs; duplicates are detected using the single-pass method with 
Sentence-BERT (Reimers and Gurevych, 2019) embeddings, discarding 
texts with cosine similarity above 0.8. Posts are retained only if they 
contain geo-tags or textual toponyms, the latter extracted using NER 
tools (He and Choi, 2021). The same tools are also used to identify and 
exclude posts mentioning celebrities or public figures. Finally, a binary 
classifier based on Bidirectional Encoder Representations from Trans
formers (BERT) (Devlin et al., 2019), fine-tuned on annotated data, fil
ters the remaining semantically irrelevant samples.

3.2.3. Multimodal dataset construction
As shown in Fig. 2, to effectively extract water depth information, 

this study decomposes the task into three subtasks based on the char
acteristics of MLLMs: text water depth extraction, image water depth 
description, and water depth level classification. The cleaned dataset is 
then used to construct a multimodal water depth dataset for training and 
evaluating MLLMs. In addition, the video task is treated as an image 
water depth description of multiple key frames. Therefore, the following 
sections primarily focus on modeling water depth extraction from text 
and images.

For text data, text water depth extraction is treated as an event 
extraction task, as texts often refer to waterlogging at multiple locations. 
The water depth description at each location is considered an event 
comprising two arguments: location description and water depth 
description. If certain information is missing, it will be left blank. The 
spatial description includes administrative divisions, points of interest, 

Table 1 
The keywords used for crawling flood messages.

Category Keywords

Flooding-related Ponding, flooding, inundation, water immersion, water 
rise, water disaster, urban waterlogging, flood, 
submersion, water depth

Weather-related Heavy rain, rainstorm, downpour, intense rainfall, heavy 
precipitation, rainwater, precipitation, storm

Natural environment- 
related

Low-lying terrain, river, waterway

Infrastructure-related Drainage system, drainage pipeline, flood resistance, flood 
prevention facilities, flood embankment
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Fig. 2. The multimodal data process.

Fig. 3. Prompt templates for the three water depth extraction subtasks.
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roads, addresses, etc., while also considering discontinuous location 
entities and complex spatial relationships. For example, in the sentence 
of “Due to heavy rain in Guangdong, Enping traffic police took to the 
streets to maintain traffic order and clear water accumulation at 
Ximengang Point and Nanhua Street” two discontinuous and over
lapping locations are mentioned: “Ximengang Point, Enping, Guang
dong” and “Nanhua Street, Enping, Guangdong”. Completely extracting 
both locations, rather than only “Ximengang Point” and “Nanhua Street” 
can reduce ambiguities caused by similarly named locations during 
subsequent geocoding and localization processes. The water depth de
scriptions generally fall into two categories. The first are absolute de
scriptions, such as ‘5cm’ or ‘20 cm’. The second are relative descriptions, 
which refer to the water depth in relation to a reference object, such as 

‘the water level reached the motorcycle seat’. Subjective terms such as 
‘very deep’ or ‘quite deep’ are ignored because they are difficult to 
quantify.

For image data, image water depth description involves instructing 
the MLLM to identify and describe the flooded parts of reference objects, 
like ‘knee’ for a person or ‘tire’ for a vehicle. The responses are first 
collected from the MLLMs, then incorrect segments, especially incorrect 
or missing water depth descriptions, are corrected to construct positive 
samples of the dataset. The image descriptions are then processed by the 
text water depth extraction task, which sets the location description to 
null or replaces it with the flooded object to extract the water depth of 
multiple targets in the image. This two-step approach allows the model 
to focus on identifying objects and their corresponding water depths in 

Fig. 4. Qwen2-VL-7b model structure.

Fig. 5. Model learning process with SFT and SDPO loss.
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the image during the first stage, while ensuring that the description task 
in MLLMs is more generalizable than directly classifying or detecting 
water depth levels for objects in the image. Finally, water depth level 
classification categorizes the extracted water depth descriptions from 
text and images into predefined levels.

To avoid model overfitting, a set of prompts is designed specifically 
for each of the three tasks, as shown in Fig. 3. These prompts consist of 
task instruction, few shot examples, and samples to process. Task in
struction specifies the task to be performed and the required output 
format, such as producing textual results in JSON format. Few shot ex
amples include three input samples along with their corresponding 
outputs in JSON format. Including more examples could exceed the 
maximum input length and increase the inference time, so the number of 
examples is limited to three. In addition, no examples are included for 
the image water depth description task. A separator is added between 
the examples and the samples to be processed to reduce the likelihood of 
the model replicating the examples provided.

3.3. Water depth information extraction model (SDPO-MLLM)

Since the collected social media data is mainly composed of Chinese, 
Qwen2-VL-7b (Wang et al., 2024b) is selected as the base model to 
construct the multimodal water depth information extraction model. 
The training set of this model contains more Chinese corpus, has rela
tively fewer parameters, so it has relatively better adaptability to the 
water depth dataset. Fig. 4 shows the two components of the model: A 
Vision Transformer (ViT) (Dosovitskiy et al., 2021) serving as the visual 
encoder, and a Qwen-2 (Yang et al., 2024) LLM for generating results.

To enable the model to generate the desired responses based on in
structions, especially when describing image content with water depth 
information, a training method for MLLMs is designed that combines 
SFT and SDPO losses, which can be represented as Eq. (1). 

L total = λL SFT + L SDPO# (1) 

where λ is weight parameter. The SFT loss is employed to prompt the 
model to mimic the dataset while adjusting the probability distribution 
of model to meet the requirements of SDPO, which is given by Eq. (2). 

L SFT = − E(x,y)[logπ(y|x) ]# (2) 

where π(y|x) is the model’s predicted probability for the expected output 
y given the input x, and logπ(y|x) is given by Eq. (3). 

logπ(y|x) =
∑

yi∊y
logp(yi|x,yi)# (3) 

where yi is the i-th token of the response y. As shown in Fig. 5, consid
ering the relatively long textual responses related to image water depth 
description task, where the part describing the water depth is relatively 
short, it is difficult to achieve fine-grained water depth alignment using 
DPO. Therefore, segment- level DPO is used to align text fragments 
where the model’s judgment of the water depth is incorrect. DPO 
transforms the reinforcement learning objective in RLHF into a super
vised learning objective that expresses the reward function r(x, y) in 
terms of both its optimal policy model π(y|x) and reference model 
πref (y|x). The reward function can be represented as Eq. (4). 

r(x, y) = βlog
π(y|x)

πref (y|x)
+ βlogZ(x)# (4) 

where β is a constant and Z(x) is the partition function. Furthermore, the 
DPD learning objective is defined by Eq. (5). 

L DPO = − E(x,yw ,yl)
[logσ(r(x, yw)

− r(x, yl) ) ] = − E(x,yw ,yl)

[

logσ
(

βlog
π(yw|x)

πref (yw|x)
− βlog

π(yl|x)
πref (yl|x)

)]

#

(5) 

where the reference model πref
(
yw|x

)
refers to the initial base model, 

whose parameters remain fixed, while only the policy model π(y|x) is 
updated i.e. DPO allows to optimize policy models directly from paired 
preference data without the reward model. To improve the learning 
ability from the corrected text fragment, especially the water depth text 
fragment, it is essential to increase its contribution to the overall score of 
the text. Therefore, the scoring method is refined to a weighted sum of 
the text fragments, which is given by Eq. (6). 

Fig. 6. The water levels corresponding to the reference objects.
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logπ(y|x) = 1
N

[
∑

yi∊yu
logp(yi|x,y<i) + γ

∑

yi∊yc
logp(yi|x,y<i)

]

# (6) 

where yu is the unchanged fragment, yc denotes the corrected text 
fragment, and γ > 1 is a weight parameter. As the value of γ increases, 
the impact of yc on the total score also grows. N is used for normalization 
to prevent longer responses from receiving higher scores, where N = |

yu| + γ|yc|.
In addition, LoRA is employed to improve the training efficiency. 

This method conceptualizes the model training as an incremental pro
cess applied to the original parameters. To encode the parameter in
crements with fewer parameters, a low-rank decomposition is 
performed for the pre-trained weight matrix W0 ∈ Rd×k to represent the 
parameter updates ΔW, which is given by Eq. (7). 

W0 + ΔW = W0 + BA# (7) 

where B ∈ Rd×r, A ∈ Rr×k, and r≪min(d, k), During fine tuning, W0 is 
fixed, while the parameters of A and B are trained. The forward process 
h = W0x can be represented as h = W0x + ΔWx = W0x + BAx.

3.4. Water depth quantification

In the water level classification task, the water levels are divided into 
11 categories, extending the criteria from previous studies (Yan et al., 
2023), as shown in Fig. 6. A person approximately 170 cm tall is used as 
a reference, and the height is then mapped to other reference objects, 
including bicycles, motorcycles, cars, etc. To better utilize the classified 
depth levels for estimating specific depth values, an estimated depth is 
constructed for each level, as shown in Table 2. This approach allows the 
conversion of depth levels into numerical values, which facilitates the 
calculation of the average depth of multiple targets in images or videos.

To evaluate the impact of reference objects on water depth estima
tion and to quantify the uncertainty introduced by ambiguous or vari
able reference objects, a sensitivity analysis was performed. For each 
level, the corresponding water depth was recalculated by perturbing the 
original reference heights by ± 10 %, and the results are presented in 
Table 2. The analysis shows that such perturbations lead to a maximum 
deviation of 0.01–0.17 m in the estimated water depth, depending on 
the level. Furthermore, in practical situations, extreme deep-water 
events are relatively rare, whereas shallow flooding events occur 
much more frequently. This results in a skewed distribution of water 
depths in the dataset, under which the overall average absolute devia
tion across all samples tends toward 0.01 m. Overall, these findings 
demonstrate that the water level classification method is robust, 
providing reliable depth estimations even under ambiguous or variable 
reference conditions.

In addition, to locate waterlogged areas, the structured location 
extracted by SDPO-MLLM is geocoded using the Gaode API to obtain 
coordinates, as it provides more reliable and accurate geocoding 

services within the study areas. However, the API has certain limitations 
in global applications. It is primarily optimized for Chinese address 
formats, such as processing abbreviations, misspellings, incomplete, or 
redundant address information. Moreover, its geographic coverage 
mainly focuses on mainland China. For studies requiring worldwide 
coverage, alternative services such as Google Maps or Mapbox may be 
more appropriate (Geoapify, 2021).

Then, flooding depth extracted from text, images, and videos is in
tegrated. During integration, records containing location information 
are first retained. The next step is to determine if the record specifies a 
water depth. If an exact depth value is provided, it is used as the water 
depth for that location, disregarding estimates from other modalities. If 
the depth is described relative to a reference object or is not explicitly 
mentioned, images and videos are used to estimate water depth. The 
final water depth for each location is calculated by averaging the depths 
derived from all three modalities.

3.5. Water depth mapping and analysis

To identify the spatio-temporal distribution and trends of water
logging hotspots in social media data, Kernel Density Estimation (KDE) 
is applied to analyze the multimodal water depth information at the city 
scale. The KDE can be used to identify urban waterlogging hotspot areas, 
which typically correspond to regions prone to waterlogging. These 
areas are strongly linked to factors such as urban geography, develop
ment, and rainfall intensity. For a spatial location (x, y), the KDE func
tion f(x, y) can be represented as the probability density of flood points 
{(x1, y1), (x2, y2), ⋯, (xn, yn)} over the spatial area, as given by the Eq. 
(8). 

f(x, y) =
1
r2

∑n

i=1

⎡

⎣3
π⋅ki

(

1 −

(
dr

r

)2
)2
⎤

⎦(dr < r)# (8) 

where r is the search radius, the weight of water depth at the flood point 
(xi, yi) is denoted by ki, while dr is the length between the flood point and 
the location (x, y). Only flood points within the radius r contribute to the 
calculation.

Additionally, clustering based on the Hierarchical Density-Based 
Spatial Clustering of Applications with Noise (HDBCSAN) algorithm is 
applied to identify regions with concentrated flood points, and by 
comparing the kernel density values of these clusters, the severity of 
flooding in these areas is assessed. HDBSCAN (Campello et al., 2013) is a 
clustering algorithm that extends DBSCAN by incorporating a hierar
chical approach, enabling it to handle datasets with varying densities 
effectively. It introduces the concept of mutual reachability distance to 
account for density differences. This distance is calculated as the 
maximum of the core distances of two points and the actual distance 
between them. HDBSCAN then uses these distances to construct a 
minimum spanning tree (MST) that represents the connectivity of points 
based on density. The MST is then condensed into a hierarchy of clusters 
by varying the density threshold. Clusters form and merge dynamically 
as the density level changes. HDBSCAN has an average-case time 
complexity of approximately O(nlogn), making it efficient and scalable 
for large datasets.

To further explore the impact and variation of various geographical 
factors on waterlogging hotspot regions, Geodetector (Wang et al., 
2024a) is employed to assess the spatial heterogeneity of waterlogging 
hotspots, which divides the geographic space into different regions and 
uses the q-value to quantify how effectively X explains Y. A higher q- 
value signifies a greater explanatory influence of the factor on Y, 
whereas the p-value indicates the statistical significance of the factor. 
The formula for calculating the q-value is calculated using Eq. (9). 

q(Y|X) = 1 −

∑n
i=1Ni • σ2

i
N⋅σ2 ∈ [0,1]# (9) 

Table 2 
The water level and estimation depth subject to a person.

Level Body 
parts

Height 
range (m)

Estimation of 
water depth (m)

Depth range under ±
10 % variation (m)

0 None 0.00 0.00 0.00 – 0.00
1 Instep 0.00 – 0.01 0.01 0.01 – 0.01
2 Ankle 0.01 – 0.10 0.10 0.09 – 0.11
3 Calf 0.10 – 0.20 0.20 0.18 – 0.22
4 Knee 0.20 – 0.40 0.40 0.36 – 0.44
5 Thigh 0.40 – 0.60 0.60 0.54 – 0.66
6 Hip 0.6 – 0.80 0.80 0.72 – 0.88
7 Waist 0.80 – 1.00 1.00 0.90 – 1.10
8 Chest 1.00 – 1.30 1.30 1.17 – 1.43
9 Neck 1.30 – 1.50 1.50 1.35 – 1.65
10 Temple, 

eyes
1.50 – 1.70 1.70 1.53 – 1.87
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where i refers to the category or division of X, N is the overall count of 
regional units, Ni is the count of regional units in category i, σ2

i is the 
variance of Y within category i, and σ2 is the total variance of the 
dependent variable across all regions.

3.6. Model evaluation

For the text water depth extraction task, precision, recall and F1- 
score are used to evaluate the results of location and water depth 
description, which is given by Eqs. (10)–(12). 

F1 =
2 × P*R
P + R

# (10) 

P =
TP

TP + FP
# (11) 

R =
TP

TP + FN
# (12) 

Since LLMs often add connective words to improve the flow of re
sponses, especially for discontinuous entities, this can prevent the 
extracted results from exactly matching the true labels. Therefore, 
extraction results with a sequence match similarity greater than 80 % to 
the true labels are considered correct (Han et al., 2024). In addition, the 
extracted location results are further verified by converting them to 

coordinates through geocoding, with a distance threshold of 500 m used 
to determine correct localization. MSE, MAE, and RMSE are used to 
further evaluate the water depth extraction results after classification 
and quantification. These metrics provide an overall estimation of the 
disparity between the true and estimated depth, which are given by Eqs. 
(13)–(15). 

MSE =
1
n
∑n

i=1
(yi − xi)

2
# (13) 

MAE =
1
n
∑n

i=1
|yi − xi|# (14) 

RMSE =
̅̅̅̅̅̅̅̅̅̅
MSE

√
# (15) 

where yi is predicted water depth and xi is true value. For the image 
water depth description task, Recall-Oriented Understudy for Gisting 
Evaluation (ROUGE) is utilized to examine the consistency of the output 
water depth text, which evaluates the degree of n-grams matching be
tween the output text and the target text. The F1-ROUGE score is 
calculated using Eq. (16). 

F1ROUGE =
2 × PROUGE*RROUGE

PROUGE + RROUGE
# (16) 

where PROUGE is the fraction of the count of matching texts to the output 

Fig. 7. Study area for urban waterlogging assessment.
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text, and RROUGE is the ratio of the count of overlapping texts to the target 
text. ROUGE-1, ROUGE-2 and ROUGE-L are used to measure concor
dance at different levels. These metrics calculate overlap based on 1- 
gram, 2-gram and longest common subsequence, respectively. Simi
larly, MSE, MAE and RMSE are used to assess the error after the image 
water depth descriptions are quantified. Finally, the F1-score is 
employed to assess the water level classification task, where words such 
as ‘very deep’ and ‘fairly deep’ are classified as a separate category and 
excluded from the subsequent water depth quantification.

4. Experiments and results

4.1. Experiments

The multimodal water depth dataset contains 2843 text records and 
1563 images derived from collected, cleaned and annotated social media 
data. A test set is constructed from three cities—Wuhan, Shenzhen, and 
Beijing—with each city contributing 100 texts and 50 images. The 
remaining data are divided into training and validation sets at an 8:2 
ratio. The text annotations include 4491 location descriptions and 1267 
water depth descriptions. Each image contains one or more water depth 
description texts, with each description corresponding to the water 
depth extraction results and water level classification labels.

The fine-tuning process is performed for 10 epochs on 4 RTX A6000 
GPUs, with the SFT loss weight parameter λ of 1, the SDPO loss 
parameter β of 0.1, and the corrected text fragment weight of 5. The 
LoRA parameters are configured to rank 8, alpha 32, and dropout 
probability 0.05. During model inference, repetition penalty is set to 1, 
temperature to 0.01, top p to 0.001, and top k to 1 to minimize 
randomness in the model outputs. Additionally, regular expressions are 
used to extract results in JSON format from the model’s responses. If the 
model does not return the correct format, the inference process is 
repeated until the output could be correctly recognized, with a 
maximum of 10 attempts.

As shown in Fig. 7, Wuhan, Shenzhen, and Beijing in China are 
selected as study areas to further evaluate the applicability and effec
tiveness of SDPO-MLLM in different urban environments. Wuhan, 
characterized by low-lying terrain, frequent extreme rainfall events, and 
rapid urban expansion, faces a heightened risk of waterlogging. The case 
study focuses on urban waterlogging in Wuhan in 2022, where SDPO- 
MLLM is employed to extract water depth information from flood- 
related multimodal social media data. The integrated multimodal 
water depth data is then used to map and analyze inundated areas.

Shenzhen and Beijing are chosen to further test the model’s appli
cability under different flooding conditions. Shenzhen, a coastal city in 

southern Guangdong Province adjacent to Hong Kong, experienced 
extreme rainfall from September 7 to 8, 2023, when Typhoon Haikui 
made landfall, leading to severe waterlogging risks. Flood-related mes
sages were collected from September 7 to 16 to extract and analyze 
water depth information. Beijing, an inland city in northern China 
bordering Tianjin and Hebei Province, suffered extraordinary rainfall 
from July 28 to August 2, 2023, due to Typhoon Doksuri. The event 
caused flooding in rivers such as the Yongding and Juma within the 
municipality. Posts were collected from July 28 to August 28 for 
experimentation.

4.2. Results

The performance of SDPO-MLLM on three subtasks related to 
multimodal water depth information extraction is assessed and con
trasted with other baseline models. For the text water depth dataset, the 
performance on location and water depth extraction tasks is evaluated 
and compared with BERT-BiLSTM-CRF, UIE, and SDPO-MLLM under 
different configurations. BERT-BiLSTM-CRF (Yan et al., 2023) combines 
the strengths of three components: BERT, which serves as an encoder 
layer that provides context-aware embeddings of input text; BiLSTM (Bi- 
directional Long Short-Term Memory), which models sequential de
pendencies bidirectionally; and CRF (Conditional Random Field), which 
acts as a decoder to produce globally optimal tag sequences. During 
training, water depth data is converted from dialog format to BIO 
format. UIE (Universal Information Extraction) (Lou et al., 2023) is a 
unified framework for information extraction tasks that treats these 
tasks as generative problems and uses the Structured Extraction Lan
guage for unified representation, which improves the adaptability and 
effectiveness across different extraction tasks. In addition, SDPO-MLLM 
is evaluated under different configurations: Few-shot, SFT, SFT + DPO, 
and SFT + SDPO. The Few-shot SDPO-MLLM performs the water depth 
information extraction task using a prompt and a few examples, without 
fine tuning. The SFT, SFT + DPO, and SFT + SDPO variants of SDPO- 
MLLM correspond to models trained with their respective loss functions.

Table 3 presents the location extraction and localization results. The 
SDPO-MLLM with SFT + SDPO achieved the best performance, with an 
improvement of 1.37–40.79 % on location extraction F1-score and 
0.53–32.95 % on localization F1-score compared to other models. The 
accuracy of location extraction and localization implemented by the 
MLLMs generally outperformed BERT-BiLSTM-CRF and UIE because 
these two models lack the capability to handle longer and non- 
contiguous location descriptions. For instance, the UIE model tends to 
show higher precision but lower recall, indicating that it fails to extract 
some location entities. On the other hand, due to the limited sample size, 

Table 3 
Location extraction and localization result on the text water depth dataset.

Method Extraction F1-score Extraction Precision Extraction Recall Localization F1-score Localization Precision Localization Recall

BERT-BiLSTM-CRF 42.40 % 36.84 % 49.93 % 56.79 % 50.77 % 64.44 %
UIE 50.19 % 82.45 % 36.08 % 54.56 % 90.35 % 39.08 %
SDPO-MLLM (Few shot) 63.24 % 64.98 % 61.59 % 70.44 % 72.85 % 68.19 %
SDPO-MLLM (SFT) 78.83 % 77.99 % 79.70 % 86.35 % 88.95 % 83.89 %
SDPO-MLLM (SFT + DPO) 81.82 % 80.94 % 82.72 % 86.98 % 89.20 % 84.86 %
SDPO-MLLM (SFT + SDPO) 83.19 % 81.91 % 84.50 % 87.51 % 88.95 % 86.11 %

Table 4 
Water depth extraction and quantification result on the text water depth dataset.

Method Extraction F1-score Extraction Precision Extraction Recall Quantification MSE Quantification MAE Quantification RMSE

BERT-BiLSTM-CRF 49.12 % 58.33 % 42.42 % 0.1048 0.1498 0.3237
UIE 57.42 % 77.92 % 45.45 % 0.0855 0.1284 0.2924
SDPO-MLLM (Few shot) 77.47 % 80.99 % 74.24 % 0.3431 0.2904 0.5857
SDPO-MLLM (SFT) 83.52 % 84.50 % 82.58 % 0.0517 0.0576 0.2274
SDPO-MLLM (SFT + DPO) 83.85 % 85.16 % 82.58 % 0.0276 0.0545 0.1660
SDPO-MLLM (SFT + SDPO) 86.26 % 86.92 % 85.61 % 0.0210 0.0324 0.1449
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these two models struggle to align with the requirements of this task. In 
contrast, the MLLMs, even in a Few-shot scenario using only three ex
amples, performed better than both BERT and UIE. Furthermore, the 
Few-shot model achieves an F1-score of 63.24 %. After fine-tuning with 
SFT, the performance improves by 15.59 %. The performance is further 
enhanced when trained with SFT + DPO, while the SFT + SDPO 
configuration provides the best results. The results show that segment- 
based weighting effectively scores text and facilitates the model to 
learn from specific segments. Finally, the localization accuracy after 
location extraction is further evaluated, given the challenges with 
generative models in extracting locations with precision. The experi
ments indicate that the performance of localization is generally better 
than that of location extraction, indicating that while MLLMs may not 
extract locations with complete precision, they still perform well in 
terms of localization. For example, the F1-score difference between the 
model trained with SFT and the model trained with SFT + DPO is 2.99 % 
for location extraction but only 0.63 % for localization. This suggests 
that the inability of the model to accurately extract locations has mini
mal impact on the final analysis of the geographic distribution of 
waterlogging.

Table 4 shows the performance of the models on the water depth 
extraction and quantification tasks. The SDPO-MLLM with SFT + SDPO 
achieves the best performance, with an F1-score improvement ranging 
from 2.41 % to 37.14 % in the water depth extraction tasks. For water 
depth quantification, the model also shows improvements in MAE, MSE, 
and RMSE. Compared to the Few-shot model, the performance of the 
trained model shows a noticeable improvement in water depth extrac
tion, especially after training with SFT + SDPO. This improvement can 
be attributed to the conciseness of the water depth expressions, allowing 
SDPO to focus on learning from these short fragments, resulting in sig
nificant gains.

As shown in Fig. 8, the examples of water depth extraction from text 
illustrate that SDPO-MLLM demonstrates a deep understanding of water 
depth-related information. The first example is related to the heavy 
rainfall in Wuhan, where three descriptions of water depth appear in the 
text: those of 1991, 1998, and the current situation. The model correctly 
extracted the current water depth. The second example describes a 
heavy rain event in Shaoguan. The results indicate that the model not 
only extracts waterlogging locations from complex textual descriptions 
of places but also organizes these place names systematically, facili
tating a clearer understanding of the flood situation and more accurate 
location localization. The third example is a road condition warning 
issued by the Kunming traffic police. The results show that both the 
locations of waterlogging and the corresponding water depths are 

correctly identified. However, certain deficiencies remain in the location 
extraction. For example, the phrase ‘Guomao Road and Jinzhi Road’ in 
the original text is ambiguous, as it could refer to either two separate 
locations or a single combined area. The model interprets it as the latter, 
and such ambiguity can lead to inaccuracies in the extraction. Further
more, in Section II, some extracted locations related to Guandu District 
lack the prefix ‘Guandu District’, such as ‘Chuncheng Road and 
Yongping Road Intersection, Kunming’. This problem may be due to the 
considerable textual distance between these locations and the mention 
of ‘Guandu District’, which weakens their contextual association.

Table 5 shows the evaluation results for the image water depth 
description task using SDPO-MLLM with different configurations. The 
model trained with SFT + SDPO performs best on three metrics. In 
addition, the models trained with SFT, SFT + DPO, and SFT + SDPO all 
outperform the Few-Shot model; however, the performance differences 
among these three training methods are minimal. This is because the 
training data is derived from minor modifications of erroneous segments 
in the MLLM output, resulting in high similarity between the generated 
and reference texts and minimal differences in accuracy.

To further evaluate the quantified water depth of the image, the 
generated descriptions are processed through a workflow for extraction, 
classification, and quantification, and then compared with ResNet (He 
et al., 2016) and ViT. In the extraction process, considering the de
scriptions do not include location information, the location argument is 
replaced with flooded object to better align with the content of the 

Fig. 8. Text water depth extraction examples.

Table 5 
F1-score for image water depth description result.

Method Rouge-1 Rouge-2 Rouge-L

SDPO-MLLM (Few shot) 76.45 % 66.59 % 72.13 %
SDPO-MLLM (SFT) 87.29 % 80.74 % 83.96 %
SDPO-MLLM (SFT + DPO) 86.72 % 80.15 % 83.37 %
SDPO-MLLM (SFT + SDPO) 87.51 % 80.94 % 83.99 %

Table 6 
Image-based water depth quantification result.

Method MSE MAE RMSE

ResNet 0.0524 0.1338 0.2288
VIT 0.0297 0.0925 0.1723
SDPO-MLLM (Few shot) 0.0293 0.0553 0.1713
SDPO-MLLM (SFT) 0.0104 0.0283 0.1020
SDPO-MLLM (SFT + DPO) 0.0110 0.0288 0.1047
SDPO-MLLM (SFT + SDPO) 0.0076 0.0249 0.0870
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descriptions. ResNet is a convolutional neural network (CNN) that in
corporates residual connections. During training, the ResNet-101 ar
chitecture is fine-tuned for image water level classification. ViT divides 
images into multiple tokens using a grid, serializes them, and leverages 
the Transformer to capture global dependencies within the image. The 
ViT model is trained using a 12-layer Transformer network for classifi
cation. Table 6 shows the quantification results for the image water 
depth dataset, where SDPO-MLLM with SFT + SDPO outperforms other 
methods in MSE, MAE and RMSE, indicating that the proposed approach 
improves the ability of MLLM to detect image water depth.

In addition, Fig. 9 presents examples of water depth extraction from 
images using the SDPO-MLLM with SFT + SDPO. In the first example, 

the image depicts a person wearing a pink raincoat riding a motorcycle 
through the water. The model successfully identifies both the person and 
the motorcycle, and infers the water level. In the second example, the 
model detects and estimates the flood depth of the car in the front and 
the motorcycle in the behind. The third example shows a police officer 
helping a resident cross a flooded area, with the model estimating the 
water level at the person’s location. These examples also illustrate 
certain limitations of the model. In example 1, the model does not ac
count for the person sitting on the motorcycle, resulting in an over
estimation of the water level compared to when the person is standing. 
Additionally, in example 3, the model incorrectly describes the resident 
as sitting on a motorcycle, whereas the person is actually standing beside 
it. This misinterpretation may be due to visual occlusion or ambiguity. 
Despite these errors, the model generally provides accurate descriptions 
of water depth in the images.

Furthermore, Fig. 10 presents examples of water depth information 
extraction from videos. Since the base model Qwen-2-VL supports video 
understanding, the keyframe extraction process prior to video input is 
unnecessary. However, the model basically treats the video as a 
sequence of frames, similar to processing multiple images. To avoid 
exceeding GPU memory limits, the maximum pixel value for the Qwen- 

Fig. 9. Image water depth extraction examples.

Fig. 10. Video water depth extraction examples.

Table 7 
Water level classification result.

Method F1-score MSE MAE RMSE

BERT 78.18 % 0.0826 0.0943 0.2875
SDPO-MLLM (Few shot) 45.65 % 0.2022 0.2052 0.4496
SDPO-MLLM (SFT) 85.67 % 0.0746 0.0629 0.2731
SDPO-MLLM (SFT + DPO) 88.09 % 0.0592 0.0532 0.2434
SDPO-MLLM (SFT + SDPO) 90.17 % 0.0176 0.0330 0.1327
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2-VL hyperparameters is set to 50,176 pixels (224 × 224) per frame, 
with a total of 40 frames. The hyperparameter setting limits the model’s 
ability to process longer duration content. However, the responses 
indicate that SDPO-MLLM is still able to detect the water depth of ob
jects in the video. For instance, in the first example, it correctly recog
nizes that the water level reaches the character’s knees. However, the 

description of the vehicle’s water level should state that it reaches the 
door handles rather than the windows. While the answer is not entirely 
accurate, it is fairly close, likely due to the down sampling of the video, 
which caused the targets to blur and resulted in recognition errors.

Finally, Table 7 show the water level classification result, where the 
SDPO-MLLM based on SFT + SDPO achieves the best performance, 

Table 8 
Text evaluation results in the three regions.

Method Wuhan Location 
Extraction F1-score

Wuhan Water 
Extraction F1-score

Shenzhen Location 
Extraction F1-score

Shenzhen Water 
Extraction F1-score

Beijing Location 
Extraction F1-score

Beijing Water 
Extraction F1-score

BERT-BiLSTM- 
CRF

45.74 % 57.47 % 40.29 % 56.57 % 27.54 % 53.19 %

UIE 47.62 % 59.04 % 56.34 % 77.97 % 34.30 % 61.05 %
SDPO-MLLM 

(Few shot)
83.37 % 91.92 % 57.98 % 66.17 % 68.50 % 68.25 %

SDPO-MLLM 
(SFT)

91.28 % 86.96 % 86.51 % 79.43 % 79.65 % 80.00 %

SDPO-MLLM 
(SFT + DPO)

88.48 % 93.04 % 78.89 % 84.93 % 75.76 % 77.17 %

SDPO-MLLM 
(SFT + SDPO)

94.58 % 96.58 % 92.57 % 87.84 % 92.18 % 81.16 %

Table 9 
Image water depth quantification results in the three regions.

Method Wuhan MAE Wuhan RMSE Shenzhen MAE Shenzhen RMSE Beijing MAE Beijing RMSE

ResNet 0.0086 0.0926 0.3029 0.4459 0.1017 0.1810
VIT 0.0247 0.1573 0.2427 0.3417 0.1645 0.2426
SDPO-MLLM (Few shot) 0.0781 0.2794 0.1116 0.3677 0.0908 0.3427
SDPO-MLLM (SFT) 0.0028 0.0528 0.0429 0.1441 0.0226 0.0941
SDPO-MLLM (SFT + DPO) 0.0090 0.0949 0.0345 0.1174 0.0188 0.0725
SDPO-MLLM (SFT + SDPO) 0.0014 0.0375 0.0246 0.0923 0.0120 0.0546

Fig. 11. The waterlogging spatial distribution in Wuhan in 2022.
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improving the F1-score from 2.08 % to 44.52 %. In addition, BERT, as an 
encoder-based model, excels in text embedding and classification, out
performing the Few-Shot MLLM. However, the fine-tuned MLLM still 
demonstrates superior performance. Furthermore, the SDPO-MLLM, 
based on SFT + SDPO, outperforms other training strategies, further 
improving performance.

4.3. Water depth mapping and analysis result

The adaptability of the model is evaluated using test sets from three 
regions: Wuhan, Shenzhen, and Beijing. The evaluation results of text 
extraction are presented in Table 8, while the image-based water depth 
quantification results are reported in Table 9. As shown in Table 8, 
SDPO-MLLM achieved the best overall performance in both location and 
water depth extraction tasks across the three regions. Compared with 
other models, the improvements are substantial, demonstrating the 
effectiveness of the SDPO strategy in cross-regional generalization. 
Table 9 presents the proposed SDPO-MLLM (SFT + SDPO) consistently 
achieved the lowest errors in Wuhan, Shenzhen and Beijing, further 
confirming the robustness of the model across diverse flood 
characteristics.

In addition, urban flooding in these regions is analyzed and mapped. 
As shown in Fig. 11, the waterlogging points in Wuhan in 2022 are 
mainly concentrated in the central urban area and extended along both 
banks of the Yangtze River. Specifically, Fig. 11(a) presents the spatial 
distribution of 2809 waterlogging points with depth information, while 
Fig. 11(b) shows their counts aggregated within a 1.5 km hexagonal 
grid. This area corresponds to the city’s densely populated core, where 
certain locations exhibit a higher density of waterlogging reports, sug
gesting more severe flooding conditions.

Fig. 12 shows the daily waterlogging record reports in Wuhan in 
2022, along with the corresponding precipitation. Normality tests 
(Shapiro-Wilk) indicated that neither variable follows a normal distri
bution. Therefore, a Spearman correlation analysis was conducted, 

resulting in a correlation coefficient of 0.37 (p < 0.001), suggesting a 
moderate positive relationship between the two variables over time. 
Most waterlogging records are concentrated between late March and 
May, and again in July, peaking around July 17.

The KDE method is then performed to assess the detailed water
logging situation. The water depth of each record is used as the kernel 
weight, with a search radius of 2000 m. The KDE results for water
logging in 2022, shown in Fig. 13(a), indicate the presence of several 
density centers with relatively severe waterlogging conditions. To assess 
the conditions of these density centers, the HDBSCAN algorithm is used 
to cluster the waterlogging points, with the minimum number of points 
per cluster set to 30. Fig. 13(b) presents the clustering results from 
HDBSCAN, suggesting that some of the clustered regions spatially 
correspond to areas with higher density values in KDE, such as clusters 
3, 8, 15, 17, and 18.

In addition, Table 10 shows the average KDE values of the points 
within each cluster and their corresponding locations in major street 
blocks, which presents the severity of waterlogging in each cluster, by 
ranking the KDE values. Among them, cluster 3 has the highest KDE 
value, which is mainly concentrated in Jiufeng. Close behind are cluster 
18, which is distributed across Yongfeng, and cluster 17, which is spread 
over Wuli Dun, Cuiwei Jie, and Jiangdi Jie. Meanwhile, three clusters (9, 
11, and 12) are located in the same region, Panlong Cheng. Although 
these clusters are not highly ranked, they still highlight the widespread 
and significant waterlogging problem in the area. The results show that 
the application of KDE and HDBSCAN to analyze waterlogging points 
extracted from SDPO-MLLM effectively identifies areas prone to 
waterlogging, thereby also validating the performance of the model.

Furthermore, the case study shows that, although both information 
extraction and situational analysis are important, accurate information 
extraction is more critical. Inaccuracies in the extraction of key elements 
can distort downstream spatial analyses and lead to incorrect in
terpretations. In contrast, situational analysis typically involves more 
subjective reasoning and judgment, allowing for interpretive flexibility, 

Fig. 12. Daily precipitation and waterlogging data distribution in Wuhan.
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and minor inaccuracies have a limited impact on the overall outcome. 
Therefore, accurate and robust information extraction is essential for 
trustworthy situational analyses.

Finally, a rainfall event occurring between July 17 and July 20, 
2022, along with the corresponding waterlogging KDE results, is 
analyzed. Spatial distribution maps of daily waterlogging severity are 
generated by applying KDE to the waterlogging points extracted from 

SDPO-MLLM. Daily precipitation data is sourced from the GPM (Global 
Precipitation Measurement) Level 3 Final data with a 10-kilometer 
resolution. Table 11 presents the results obtained using Geodetector’s 
factor analysis to assess the effect of precipitation on waterlogging 
severity. The findings indicate that daily precipitation explained the 
driving factors of waterlogging severity to varying degrees. On July 20, 
2022, the precipitation factor accounted for approximately 48.01 % of 
the spatial heterogeneity in water depth, reaching its maximum value. 
This suggests that precipitation significantly influences the spatial 
stratification heterogeneity of waterlogging severity.

Additionally, Fig. 14 presents the spatiotemporal distribution of 
precipitation and waterlogging severity between July 17 and July 20, 
2022, which shows a significant spatiotemporal consistency between 
waterlogging severity and precipitation. From July 17 to July 20, the 
precipitation area shows a trend of moving from south to north. On the 
17th, the precipitation is relatively low, but a significant number of 
waterlogging reports are still generated. This is due to the data pro
cessing method, which gives priority to retaining earlier records in case 

Fig. 13. The spatial clustering of waterlogging points in Wuhan.

Table 10 
The KDE values of spatial clusters and their corresponding street blocks.

Cluster ID KDE Value Street block

3 7.8321 Jiufeng
18 6.4682 Yongfeng Jie
17 5.1545 Wuli Dun, Cuiwei Jie, Jiangdi Jie
8 4.6805 Yangyuan, Xujia Peng, Heping Jie, Hongwei Lu
9 3.5894 Panlong Cheng
15 3.2077 Wansong Jie
11 2.4049 Panlong Cheng
13 2.1906 Jinyin Hu
14 1.7385 Houhu, Tazi Hu
7 1.5574 Hengdian
2 1.4346 Junshan
10 1.3635 Zhongnan Lu, Luonan, Shouyi Lu
6 1.1956 Jinhe, Wujia Shan, Changqing Jie
12 1.1507 Panlong Cheng
4 0.9383 Caidian
1 0.9278 Yangluo
16 0.9098 Hanxing Jie, Changqing Huayuan
5 0.2551 Guandong, Guanshan

Table 11 
Results of spatial heterogeneity detection of waterlogging severity and 
precipitation.

Date q-value p-value

July 17, 2022 0.3688 <0.01
July 18, 2022 0.3972 <0.01
July 19, 2022 0.179 <0.01
July 20, 2022 0.4801 <0.01

T. Chu et al.                                                                                                                                                                                                                                     ISPRS Journal of Photogrammetry and Remote Sensing 230 (2025) 895–917 

909 



of duplicates. As a result, a higher number of reports from the early 
stages of rainfall are retained, reducing the efficiency loss caused by 
processing duplicate reports. On the 18th, as the rain decreased, the 
number of waterlogging reports also decreased. On the 19th and 20th, as 
the rainfall moved northward, the spatial distribution of waterlogging 
also gradually shifted northward, consistent with the movement of the 
rainfall. Overall, waterlogging reports are closely related to the spatial 
pattern of daily rainfall.

Furthermore, Fig. 15 presents the results of urban waterlogging 

analysis in Shenzhen. Fig. 15(a) presents the distribution of water
logging points aggregated within a 1.5 km hexagonal grid, with a total of 
356 valid data points collected in the city. These points are mainly 
concentrated in the northern Longgang District and the southern Futian 
and Luohu Districts. Fig. 15(b) illustrates the KDE results based on 
extracted water depth information, which indicate that the severely 
affected areas extend inland from the southern coastline. Fig. 15(c)
shows the spatial clustering results, where the numbers assigned to each 
cluster represent their ranking based on KDE values in descending order. 

Fig. 14. The spatial distribution of precipitation and KDE analysis in Wuhan from July 17 to 20, 2022.

Fig. 15. The results of urban waterlogging analysis from waterlogging points in Shenzhen.

Fig. 16. The spatial distribution of precipitation and KDE analysis in Shenzhen, September 7–8, 2023.
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The most severe clusters are located in Longcheng Subdistrict of Long
gang District (1, 2, 5), Dongmeng Subdistrict of Luohu District (3, 8), 
and Fubao Subdistrict of Futian District (4).

Fig. 16 illustrates the spatial distribution of precipitation and flood 
severity from 20:00 on September 7 to 20:00 on September 8, 2023. The 
results indicate that precipitation was relatively high during the first 12 
h, accompanied by widespread waterlogging reports. In the subsequent 
12 h, precipitation decreased markedly, and waterlogging reports also 
declined, occurring only in a few rainfall centers, demonstrating a clear 
spatiotemporal consistency. Moreover, Fig. 16 presents the results of the 
Geodetector factor analysis. During the two periods, precipitation fac
tors explained 60.68 % and 92.00 % of the spatial heterogeneity in water 
depth, respectively, indicating that precipitation played a dominant role 
in flood occurrence.

Fig. 17 presents the results of urban waterlogging analysis in Beijing. 
Fig. 17(a) shows the distribution of waterlogging points aggregated 
within a 3 km hexagonal grid, with a total of 710 valid data points 
collected. These points are primarily concentrated in the southern and 
central parts of the city, including Fangshan, Mentougou, and Fengtai 
Districts. Fig. 17(b) illustrates the KDE results based on extracted water 
depth information, which reveal multiple flooding centers, indicating 
that the flooding event had a wide spatial impact. Fig. 17(c) displays 
several clustered areas, where the numbers next to each cluster repre
sent their ranking based on KDE values in descending order. The most 
severe clusters are located in Liangxiang Town of Fangshan District (1, 
5), Longquan Town of Mentougou District (2, 3), and Dingfuzhuang 
Township of Daxing District (4).

Fig. 18 illustrates the spatial distribution of precipitation and KDE- 
based waterlogging reports from July 29 to August 3, 2023. Overall, 
precipitation was mainly concentrated in the central and southern parts 
of Beijing, showing a temporal pattern of first increasing and then 
decreasing, with the peak occurring on July 30. Waterlogging reports 
exhibited a similar trend. Fig. 18 also presents the results of the Geo
detector factor analysis, which indicate that precipitation explained the 
spatial differentiation of waterlogging reports to varying degrees on 
different dates. These visualization results further demonstrate the 
model’s ability to accurately capture the spatial distribution of flood risk 
across regions with varying flood characteristics.

5. Discussion

5.1. Accuracy and efficiency after model quantization

Model quantization can reduce resource consumption and increase 
the speed of model inference, making it more applicable to large-scale 
social media data. In this section, the efficiency and performance of 
the quantization-applied SDPO-MLLM in extracting water depth infor
mation is further evaluated. Gradient-based Post-training Quantization 
(GPTQ) (Frantar et al., 2023) is used to quantize the model into INT3, 
INT4, and INT8 precision, which compresses the weights after training 
and adjusts the parameter errors through gradient optimization.

Fig. 19 compares the performance of different quantized models. 
Specifically, Fig. 19(a) demonstrates the inference time of each model 
on the test dataset, indicating that the time taken decreases linearly with 
the level of quantization. Fig. 19(b) illustrates the quantified perfor
mance of the model on three water depth information extraction tasks. It 
is evident that the location extraction task experiences minimal per
formance loss for the INT4 and INT8 models, while the loss is more 
significant for the INT3 model. In addition, the water depth extraction 
task shows little performance degradation across all quantized models, 
while the water level classification task shows a gradual performance 
degradation. In the image water depth description task, all models 
except the INT3 model exhibit relatively small Rouge-1, Rouge-2, and 
Rouge-L losses. Fig. 19(c) shows the results of the quantization of the 
water depth text extracted by the model. It becomes evident that the 
error gradually increases with the level of quantization, with the INT8 
model exhibiting relatively smaller errors. Overall, the INT8 model 
improves inference speed while minimizing accuracy loss, thereby 
enhancing the efficiency of water depth information extraction.

In practical scenarios, the proposed model can be extended to enable 
real-time or near real-time detection of floodwater depth. During the 
data collection phase, scheduled tasks and asynchronous requests can be 
employed to achieve high concurrency and rapid acquisition of relevant 
information. In the data cleaning phase, vector databases can be utilized 
to store and retrieve text embeddings of streaming data, followed by 
NER filtering and BERT-based binary classification filtering. This pro
cess substantially reduces the number of samples to be processed, 
thereby allowing subsequent model inference to efficiently handle peak 
traffic. Furthermore, the SDPO-MLLM model can be deployed locally 
using techniques such as vLLM and DeepSeed to optimize GPU 

Fig. 17. The results of urban waterlogging analysis from waterlogging points in Beijing.
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inference. Quantization techniques can also be adopted to accelerate 
inference speed. The multimodal workflow supports various combina
tions of data inputs, thereby enabling flexible and scalable real-time 
water depth detection. In summary, the proposed approach features a 
modular architecture that is well-suited for real-time applications, with 
strong scalability that facilitates adaptation to diverse scenarios.

5.2. Model generalization performance on different water depth 
estimation tasks

To further validate the model’s performance, it is evaluated on a 
different water depth dataset. The dataset (Wan et al., 2024) consists of 
2000 images of vehicles submerged in water, including sedans, SUVs, 
and trucks. The dataset annotations are provided in YOLO format, where 
each vehicle is assigned a water depth category and a bounding box for 
object detection. Water depth is classified into five levels, corresponding 
to levels 0, 3, 5, 6, and 8, based on the water level standards outlined in 
Section 3.4. During the evaluation, the detection results are quantified 

using the estimated water depth shown in Table 2, and the MSE, MAE, 
and RMSE are calculated to evaluate the average water depth for each 
image.

SDPO-MLLM is compared to YOLOv8 (Wan et al., 2024), DINO 
(Zhang et al., 2023), and Qwen2-VL-7b. YOLOv8 (You Only Look Once 
version 8) is an object detection method that balances accuracy and 
speed. DINO (Detection Transformer with Improved denoising anchor 
boxes) is an object detection model based on the Detection Transformer 
framework. It introduces improved denoising anchor boxes and en
hances detection capabilities through multi-scale feature fusion and 
efficient training strategies. Qwen2-VL-7b is the base model parameters 
without fine-tuning using the proposed method, while SDPO-MLLM is 
the model parameters fine-tuned on the multimodal water depth dataset 
using SFT + DDPO. Qwen2-VL-7b and SDPO-MLLM are further fine- 
tuned using a vehicle dataset with SFT. The prompt includes instruct 
model output detection box of vehicles and classification criteria for 
each water level. The response format follows the structure:

“<|object_ref_start|>L3 vehicle<|object_ref_end|><|box_start|>(x1, 

Fig. 18. The spatial distribution of precipitation and KDE analysis in Beijing, July 29-August 3, 2023.
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Fig. 19. Performance comparison on different quantized models.
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y1),(x2,y2)<|box_end|>”,
where multiple detection results are concatenated sequentially.
As shown in Table 12, the results indicate that the fine-tuned SDPO- 

MLLM achieved the best performance because its ability to estimate 
water depth is improved during prior training. Fig. 20 shows the 
detection results of four different methods alongside the ground truth. 
The results show that all methods have high accuracy in vehicle detec
tion, with only DINO missing a few vehicles. For water level estimation, 
MLLM-based methods, especially SDPO-MLLM, show superior accuracy. 
This improvement can be attributed to the language module’s ability to 
better understand the water level classification criteria. In addition, the 
integration of image and text effectively improves the ability to 
discriminate between different water depths.

5.3. Limitations and future enhancements

This study demonstrates that the proposed SDPO-MLLM achieves 
strong performance in extracting water depth information from multi
modal social media data. However, the results of the experiments and 
the subsequent analyses reveal several challenges and opportunities for 
future research.

Although the SFT + SDPO fine-tuning strategy effectively mitigates 
hallucination risks, potential risks remain, particularly in safety–critical 
contexts such as emergency response and urban flood management. 
Erroneous or fabricated information could mislead decision-makers, 
resulting in delayed or inappropriate actions. Several factors 
contribute to hallucinations. For instance, in extreme flood scenarios 
where reference objects are fully submerged or absent, the lack of reli
able visual anchors can lead to uncertain or biased predictions. This 
study focuses on cases where reference features are present. To address 
situations with very limited references, future work may incorporate 
additional information sources (Wieland et al., 2025), such as hydro
dynamic models, remote sensing imagery, and elevation data, to 
improve robustness.

The characteristics of input imagery also influence estimation ac
curacy. Shooting angle can affect the perceived size, clarity, and visi
bility of reference objects. Images captured from oblique or elevated 
viewpoints may distort spatial relationships. By contrast, ground-level 

Table 12 
The evaluation results on the vehicle water depth dataset.

Method MSE MAE RMSE

YOLOv8 0.0616 0.1913 0.2483
DINO 0.0475 0.1627 0.2178
Qwen2-VL-7b 0.0389 0.1062 0.1972
SDPO-MLLM (SFT + SDPO) 0.0378 0.1051 0.1944

Fig. 20. The detection examples of the vehicle water depth dataset.

T. Chu et al.                                                                                                                                                                                                                                     ISPRS Journal of Photogrammetry and Remote Sensing 230 (2025) 895–917 

914 



images in which the water surface and reference targets are clearly 
visible and unobstructed tend to yield more reliable results. In addition, 
incorporating images with fixed-height reference structures (e.g., 
lampposts) can reduce the effect of viewing angles, provided that such 
structures contain distinct and easily recognizable markers distributed 
along their height to enable accurate identification of submergence 
levels. Future studies may extend this approach by exploring other types 
of reference objects with similar properties.

There are several strategies that could reduce hallucinations and 
errors in complex or occluded environments. First, integrating 
reasoning-capable LLMs, such as DeepSeek-R1 (DeepSeek-AI, 2025), 
with vision encoders could improve reasoning and detection in chal
lenging flood scenarios. Second, incorporating human pose estimation 
models enables more accurate interpretation of human references (Feng 
et al., 2020). Third, applying confidence thresholds to flag uncertain 
predictions coupled with human-in-the-loop (HITL) systems would 
allow automated pipelines to operate while maintaining expert over
sight (Wilchek et al., 2023). Although SDPO-MLLM provides a fully 
automated framework that integrates multimodal inputs and minimizes 
human involvement in structuring water depth information from un
structured social media data, limited verification remains essential when 
dealing with low-quality or ambiguous imagery, or with misleading 
textual content such as sarcasm or irony. Furthermore, incorporating 
sensor data from IoT networks represents a promising direction for 
improving estimation accuracy and reliability (Kamel Boulos et al., 
2011). Data from water level sensors, rain gauges, and traffic cameras 
not only provide precise timestamps and georeferenced readings to 
calibrate and validate predictions but also enable correction mecha
nisms to identify noise or anomalous reports in social media data, as well 
as to address spatial ambiguity or temporal lag.

Beyond hallucination risks, potential biases in data sources also 
merit attention. The dataset is primarily derived from Sina Weibo and 
citizen message boards, which may not accurately reflect the diversity of 
all populations. Linguistic styles and expression patterns influence the 
training process and extraction performance. User-generated content is 
inherently heterogeneous in reliability, tone, and spatial precision, 
which in turn may affect model outputs. The current model relies on 
pretrained MLLMs primarily trained on high-resource languages and 
mainstream platforms. In regions with sparse social media activity or 
high linguistic diversity, performance may be limited by insufficient 
training samples, restricting both coverage and comprehensiveness. 
Future research should explore domain adaptation, cross-lingual trans
fer learning, and the model’s transferability to less structured platforms 
(e.g., TikTok videos) to improve robustness in multilingual and low- 
resource environments (Hong et al., 2025). Integrating complemen
tary data sources, such as official reports or sensor networks, could also 
counterbalance social media biases and enhance monitoring coverage.

In terms of data privacy, this study only extracted task-relevant in
formation from social media content, specifically water depth and 
location descriptions related to flood events. All data were collected 
from publicly accessible posts, and no private or restricted content was 
accessed. Personally identifiable information (e.g., names, contact de
tails, user handles) was removed during preprocessing. Geographic 
references were limited to public descriptions (e.g., streets or neigh
borhoods) and were not linked to individual users. Water depth values 
represent environmental observations rather than personal information. 
Data usage complied with the platforms’ terms of service, and all results 
were analyzed and presented at an aggregated level using statistics and 
mapping. Future work will explore stronger privacy-preserving tech
niques, such as differential privacy, to further enhance protection 
(Boulemtafes et al., 2020).

6. Conclusions

A novel model (SDPO-MLLM) is proposed to effectively extract 
multimodal water depth information by integrating image-text data, 

demonstrating advanced performance and robustness. To accommodate 
different social media data types and the generative responses of 
MLLMs, three water depth extraction subtasks are designed, and corre
sponding datasets are constructed: textual water depth extraction, image 
water depth description, and water depth level classification. These 
tasks are systematically integrated into a structured workflow to facili
tate multimodal water depth extraction from text, image, and video 
data.

To optimize the model parameters, the fine-tuning strategy SFT +
SDPO is introduced, which effectively reduces hallucinations in the 
model’s responses to water depth information. In addition, LoRA is 
incorporated to reduce computational resource consumption and 
improve training efficiency. Evaluation results demonstrate that SDPO- 
MLLM outperforms single-modal water depth extraction methods. In 
text water depth extraction, the proposed method generates structured 
and organized results by understanding textual content. In image water 
depth description, the model analyzes image content and specifies the 
water depth of observed objects. Furthermore, multimodal water depth 
extracted from multi-source social media data is quantified and fused to 
map and assess waterlogging severity. In the case study, waterlogging 
prone areas in Wuhan, Shenzhen and Beijing are delineated using KDE 
and HDBSCAN, providing valuable insights for urban flood manage
ment. Factor analysis using Geodetector reveals that precipitation 
significantly explains waterlogging severity, further validating the 
model’s capability.

Finally, the quantization and generalization performance are 
assessed. Results from post-training quantization using GPTQ (INT3, 
INT4, INT8) show that while lower-bit quantization significantly re
duces inference time, it may lead to varying degrees of accuracy loss. 
Notably, the INT8 quantized model achieves a favorable trade-off: it 
maintains high accuracy across the three water depth tasks while sub
stantially improving inference efficiency. These findings suggest that 
SDPO-MLLM can be effectively deployed in resource-constrained envi
ronments or real-time scenarios, balancing performance and efficiency. 
Additional experiments on other water depth datasets and in regions 
with different flood characteristics, such as Shenzhen and Beijing, 
confirm that after fine-tuning, the proposed model demonstrates strong 
generalization and applicability across diverse and complex scenarios.
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