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ABSTRACT

Electric vehicles (EVs) are advocated to combat the effects of tailpipe emissions. This study synergizes EV
charging consumption and charging stations from six cities in Guangdong (GD) province, China, to reveal the
potential impacts of EVs on four relevant air pollutants (PMs 5, NO2, SO, CO) based on a data-driven attention-
based Random Forest model and scenario analysis. Measurements from traffic-affected air pollution monitoring
stations show that NO, concentrations have a higher mean decrease trend (—2.39 year!) in the PRD region after
EV adoption, followed by PMy 5 (—0.29 year ). In contrast, the environmental benefits of EVs for SO, and CO
are relatively lower, with decreasing trends of —0.12 year ! and -0.013 year !, respectively. Pronounced alle-
viations of these four air pollutants were presented for most districts in other cities under the assumption of
conducting comparative EV policy, with mean reductions of —1.86 pg/m°, -1.08 pg/m°, -0.17 pg/m°® and -0.01
mg/m3 (by 7.8 %, 4.9 %, 1.9 % and 1.4 % with the reference of average values in 2023) for PM3 5, NO2, SO, and
CO, respectively. Moreover, the concentrations tend to decline as the increase in EV charging consumption and
the number of EV charging stations. Results show that a 30 % increase in both EV charging consumption and
stations results in a further decline in PMys (—0.46 pg/m>), NOy (—0.37 pg/m>), SO, (—0.048 pg/m>), and CO
(—0.0043 mg/ms) in Guang Dong (GD) province. To the best of our knowledge, it is the first time to assess

environmental benefits of EVs with the involvement of actual EV charging demand and charging stations.

1. Introduction

Air pollution is an environmental issue of global concern due to its
adverse impact on human health, environmental degradation and
climate change (Smith et al., 2009; Kan et al., 2012; Sicard et al., 2016;
Tagaris et al., 2009). Air pollution encompasses diverse components,
including natural sources like wildfires and volcanic eruptions, as well
as those resulting from anthropogenic activities like agricultural pro-
cesses, industrial and vehicular emissions (Daellenbach et al., 2020;
Cofala et al., 2007). Effective mitigation strategies and a comprehensive
understanding of the sources and dynamics of air pollution are imper-
ative to safeguard human health and preserve environmental quality. It

also aligns with multiple Sustainable Development Goals (SDGs) out-
lined by the United Nations (https://sdgs.un.org/goals), dedicated to
ensuring good health (SDG 3), fostering sustainable cities and commu-
nities (SDG 11), and combating climate change and its impact (SDG 13).

The consumption of non-renewable energy sources such as fossil
fuels, and various energy-related environmental issues are major chal-
lenges with far-reaching impacts. Conventionally fuelled vehicles like
using gasoline and diesel are deemed as the primary contributors to non-
renewable energy utilization and greenhouse gas emissions with the
continuing rise in the quantity of vehicles (Yan and Sun, 2021; Ramli
et al., 2019). As reported by Sun and Wang (2018), approximately half
of China’s overall consumption is attributed to fossil fuels in the
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Fig. 1. (a) Study area, (b) spatial location of air pollution monitoring stations and (c) EV charging stations.

transport sector, with new vehicles accounting for 70 % of the annual
increase in fossil fuel consumption. The increasing year-on-year demand
for vehicle ownership and energy consumption imposes a growing
burden on the sustainability of energy resources and the environment.
China is a leading contributor to greenhouse gas emissions in the world,
responsible for approximately 30 % of global emissions. Among these
emissions, around 5 % can be attributed to light-duty vehicles (Sun and
Wang, 2018; Qiao et al., 2017).

The implementation of the electric vehicle (EV) strategy is promoted
to reduce air pollution and greenhouse gases induced by traffic emis-
sions, which is an effective way for air quality improvement and energy
efficiency enhancement. Conventional fuel vehicles emit a variety of
harmful compounds through tailpipe emissions, including respirable
particulate matter (PMj s5), sulfur dioxide (SO3), nitrogen dioxide (NO5),
volatile organic compounds (VOC), and carbon monoxide (CO), etc.,
exerting a direct influence on air quality. According to data released by
the Shenzhen municipal government in China, vehicular exhaust
emerged as the predominant source of PMy s pollution in Shenzhen,
constituting 41 % of the total emissions in 2018 (SZMG, 2018). Thus, the
conversion from traditional fuel vehicles to electric vehicles (EVs) has
attracted strong support from the governments of China, which is mainly
manifested by financial benefits such as fiscal subsidies and tax in-
centives, expanding the construction of charging facilities, as well as
research and development investment (Zhang et al., 2017). With 1.2
million new EVs newly to be registered in 2020, EVs are also proposed as
an indispensable countermeasure for achieving carbon neutrality by
2060 (IEA, 2021; The State Council of China, 2021; Wang et al., 2021).

The growth in EV charging demand reflects the increasing adoption
of EVs and a decline in the adoption of internal combustion engine ve-
hicles (ICEVs), resulting in lower tailpipe emissions. Several studies
have been conducted to quantify the environmental impacts of EV
adoption compared to conventional vehicles. For example, Soret et al.

(2014) suggest that a reduction of over 10 % NOy emissions can be
attained with vehicle electrification, reaching 40 % in urban areas in
Spain. Li et al. (2019) present that the replacement of conventional
vehicles with EVs contributes to the mitigation of SO concentrations in
China by comparing the well-to-wheel life cycle of different vehicle
types. Results show that if the proportion of EVs among passenger ve-
hicles increases by 1 %, SO, and NOy emissions could decrease by 9934
tons and 228 kilotons, respectively. Li et al. (2016) illustrate that the
widespread use of EVs can significantly mitigate high pollution episodes
by assuming a complete replacement of current light-duty vehicles
based on the Community Multi-scale Air Quality model (CMAQ) model
in Taiwan, China. Similar implications were also reported by Schnell
et al. (2021), the adoption of EVs can effectively mitigate extreme air
pollution events in China. Wang et al. (2021) used the COVID-19 full
lockdown event to simulate the full switching to EVs, the results show
that a reduction in 30 %-80 % of NO5 and 30 %-70 % of PM, 5 across
China can be acquired. Even though some pollution may be generated
during electricity production and cause environmental injustice where
power plants are located (Bai et al., 2021a), the emission mitigation
benefits of EVs can be broadened from a long-term perspective with the
advancement of clean energy technologies (Li et al., 2018; Philippot
et al., 2019), which can also further enhance the environmental condi-
tions and promote human health. However, the majority of studies have
concentrated on investigating the influence of EVs on air pollution by
assuming the number of EVs in each city, with limited consideration
given to actual EV charging consumption in previous studies. This is not
capable of providing a factual basis to some extent, which is not
conducive to achieving a better understanding of the environmental
benefits of EVs.

To fill this gap, the number of EV charging stations and EV charging
consumption were synergized and used to provide fact-based insights
into the impacts of EVs on air pollution reduction. The purpose of this
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Fig. 2. Descriptive statistics of daily mean concentrations of four air pollutants from ground-based stations in (a) GD province; (b) PRD region and (c) other cities in

GD province.
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Fig. 3. Linear trends of (a—d) ground-based and (e—f) satellite-based CHAP air pollutants from 2015 to 2023.

study is to underscore the potential of EVs for air pollution abatement in
GD province. Quantitative analysis was conducted to quantify the im-
pacts of EV implementation on air pollution between the PRD region and
other cities in GD province. Additionally, scenario analysis was also
carried out at the district level based on a data-driven ARF model to
reveal the prospects of EV implementation in GD province.

2. Data and methods
2.1. Study area
Guangdong (GD) province, nestled in the southeastern part of China,

includes a major economic zone Pearl River Delta (PRD) region and
other 12 prefecture-level cities (Fig. 1). Geographically, bordered by the



X. Yuetal

Journal of Environmental Management 391 (2025) 126442

I

A Background station @ Representative station —— Road

Fig. 4. Representative stations with road networks in (a-f) the PRD region and (g-k) other cities in GD province. Background stations with road networks in (I-p)

other cities in GD province and (q-r) the PRD region.

South China Sea and neighbors the special administrative regions of
Macau and Hong Kong, GD province covers an area of over 179,000 km?
and serves as a major gateway to international trade and commerce. It
also stands as a pivotal region in China with dense population and high
urbanization, renowned for its thriving economy driven by industries
such as manufacturing, trade and technology. Inevitably, air pollution
has become increasingly serious and attracted extensive concerns due to
rapid urbanization and industrialization in GD province. To alleviate air
pollution, the PRD Region has been vigorously promoting EVs in the past
decade to reduce vehicle emissions and prioritize the implementation of
the EV Strategy (State Council of China, 2013).

2.2. Data collection and data processing

2.2.1. In-situ air pollution measurements

According to China’s “Air Pollution Prevention and Control Action
Plan”, over 1436 air pollution monitoring stations were constructed in
China by the end of 2014 and the new air quality standard monitoring
data was released in real time from 2015 (https://www.gov.cn/
xinwen/2015-01/16/content_ 2805618.htm). Hourly ground-based air
pollution concentrations, including PMj 5, PM;, O3, NO3, SO and CO,
are provided by the China Environmental Monitoring Center since 2015
(https://www.cnemc.cn/). The spatial distribution of air pollution
monitoring stations is displayed in Fig. 1b. As we aim to investigate the
impact of EVs on air pollution in this study, PM3 5, NO3, SO2 and CO,
these four air pollutants, which are highly associated with vehicle
emissions, are considered. Hourly ground-based air pollution measure-
ments from 2015 to 2023 were used, which is also consistent with the
implementation period of the EVs strategy in GD province.

2.2.2. Satellite-based CHAP air pollution data

The ChinaHighAirPollutants (CHAP, https://weijing-rs.github.io
/product.html) data can provide daily averages of PMys5, NO3, SOy
and CO with full coverage. The CHAP dataset is derived by using ma-
chine learning models based on the synergy of satellite-based

observations and ground-based measurements with high spatio-
temporal resolution, broader coverage and high quality, which have
been elaborated in previous studies (Wei et al., 2021, 2022, 2023a,
2023b). The CHAP dataset has been widely applied in exploring the
impacts of air pollution on human health (Yao et al., 2025; Li et al.,
2025), or used as comparative data to verify the effectiveness of other
studies (Bai et al., 2021b; Lei et al., 2022). Daily PM, 5 concentrations at
1 km spatial resolution from 2000 to 2023 can be obtained. For NO3, SO»
and CO, daily averaged concentrations from 2019 to 2023 are at 1 km
resolution, whereas the spatial resolution is 10 km during 2000-2018.
To be consistent with ground-based measurements, daily averages from
the CHAP dataset from 2015 to 2023 in GD province were extracted to
compensate for ground-based measurements and jointly investigated the
EV impacts on air pollution. Daily NO,, SO2 and CO data during
2015-2018 are resampled to 1 km to allow for an aligned spatial
resolution.

2.2.3. EV charging stations and electricity consumption data

Many EV charging stations have been constructed and scattered all
over the city due to the crucial role of EV charging services in promoting
EV strategy for environmental pollution reduction. As depicted in
Fig. 1c, the spatial distribution of the EV charging stations in six cities in
the PRD region is displayed and used in this study, which is provided by
our partners. For each EV charging station, EV charging records are
composed of station ID, coordinate information and power consumption
with an interval of 5 min from December 11, 2022 to January 14, 2023.
Abnormal values are identified and removed when the values are over
three standard deviations away from the averages of each EV charging
station. After data filtering, the number of EV charging stations and the
total electricity consumption during this period in these six cities are
described in the Supplementary material (Table S1).

2.2.4. Auxiliary data
Auxiliary data, in conjunction with ground-based and satellite-based
CHAP air pollution data, are employed to delve into the impacts of EVs,
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Fig. 5. (a) PMys, (b) NOy, (¢) SO, and (d) CO variation trends of representative stations affected by traffic in the PRD region and other cities during 2015-2023.

Table 1
Comparison of mean variation trends of representative stations in the PRD re-
gion (fp) and other cities (Bo).

PMz5 NO> SOy Co
B —0.29 -2.39 —0.12 —0.013
Bo —0.07 —0.18 —0.03 —0.011

including population density, road density, meteorological factors,
greenness, DEM, GDP and the capacity of power plants. Population
density data at 1 km resolution in GD province are obtained from the
LandScan dataset (https://landscan.ornl.gov/). Road density at 1 km is
derived based on the OpenStreetMap and the road types like footbridge
and pedestrian are excluded, which are less related to the vehicle
emissions. Meteorological data in GD province are extracted from the
ERA-5 reanalysis data, including pressure, air temperature, northward/
eastward wind speed, total precipitation at 0.1° resolution, and
boundary layer height and specific humidity at 0.25° resolution.
Greeness is derived from the MODIS 500-m land use product
(MCD12Q1) and 90-m DEM data from Shuttle Radar Topography
Mission (SRTM) are also used. GDP data at 1 km in China from 1995 to
2020 with 5-year intervals are available at the Resource and Environ-
mental Science Data Platform. Power plant data in 2021 are downloaded
from the Global Power Plant Database, including power plant name,
latitude, longitude, primary fuel types and capacity (Yin et al., 2021).
The power plants with clean energy sources like nuclear, hydroelectric,

solar, wind, etc. as the primary fuel types are omitted because generally
do not produce direct air pollution.

2.3. Analytical methods

2.3.1. Analysis for traffic-affected air pollution monitoring stations

The transition from traditional ICEV to EV is conducive to reducing
air pollution induced by traffic emissions (Soret et al., 2014; Li et al.,
2019). To analyze the EV impact on traffic-induced air pollution
changes, several in-situ air pollution representative stations affected by
traffic were selected. Generally, stations for monitoring traffic-affected
air pollution are typically located in transportation hubs or areas with
heavy traffic flow. Therefore, we introduced three indices of road net-
works to explain the complexity of road networks. The three indices are
defined as follows: (1) [; means the total length of road for station i in the
1 km-radius circular area centered at each air quality monitoring station.
It is a well-known index that is highly and fundamentally related to
traffic flows. (2) n; is the total number of road intersections for station i;
and (3) s; denotes the number of road segments at all the intersections
for station i. n; is considered as vehicles frequently halt at intersections
due to traffic signals, resulting in emission accumulation during idling
(Minoura and Ito, 2010). Similarly, s; can indicate the temporary stop-
ping conditions, as well as the road connectivity along with the road
intersections (Wong et al., 2021). Due to the differences in road network
complexity in PRD and other cities in GD province (hereinafter other
cities), the three indices of each station in PRD and other cities were
normalized, respectively.
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Fig. 6. (a) Density distribution histogram of daily charging consumption (Mwh/daily) for each EV charging station during December 11, 2022-January 14, 2023,

and (b) daily mean EV charging consumption (Mwh/daily) in each district.

Table 2
Comparison of validation accuracy of ARF model after the involvement of EV
data.

Validation accuracy (without EV Validation accuracy (with EV

data) data)
R? RMSE  MAE R? RMSE  MAE
PM,s 0.89 3.25 2.28 0.91 3.19 2.20
NO, 0.86 3.74 2.88 0.89 3.56 2.66
S0, 0.83  0.65 0.50 0.84 0.63 0.49
co 0.79  0.039  0.030 0.80 0.037  0.029
I; — min (;
Nor,=—————— (l) D)
max(l;) — min ()
n; —min (n;)
Nor,, = —— T @)
max(n;) — min (n;)
s; —min (s;
Nor;, =—— (s) 3

max(s;) — min (s;)

where Nor;,, Nory,, and Nor;, are the normalized road indices for station i.
The three indices are compiled as follows to reflect the characteristics of
road networks:

RI; = Sum{Nory, Nor,, Nor;,} 4)

In this way, stations with higher RI; can be deemed as representative
stations affected by traffic pollution.

Afterwards, yearly averages x; of representative station i during the
year 2015-2023 were calculated based on hourly observations, and the
stations with over 30 % missing values were excluded. To reduce the
impacts of meteorological factors, measurements from air pollution
background stations were involved. Background stations were estab-
lished by the government or relevant institutes, and used to monitor
regional background air quality unaffected by anthropogenic pollution
(MEE of State Council of China, 2013). Traffic-related pollution T; is

quantified by deducting the annual averages B; of the nearest back-
ground station j from the representative station values.

Ti =Xi — B] (5)

Y0 =T -T)

R

(6)

where B is the variation trend of representative stations; T means mean
traffic-related pollution; y; and y are the years 2015-2023 and the
corresponding mean value. Finally, comparison of mean variation trends
in representative stations between the PRD region (fp) and other cities
(Po) was conducted to assess the impacts of EVs.

2.3.2. EV-attributed changes derived by the attention-based RF model

Attention-based RF (ARF) proposed by Utkin et al. (2023) was used
in this study to investigate the impacts of EVs on air pollution. The
self-attention mechanism was introduced and integrated with RF model
to promote the capture of the internal correlation from the input data.
Self-attention mechanism is an enhanced iteration of the attention
mechanism, focusing on highlighting essential features in inputs and
within inputs and allocating greater emphasis to these specific factors.
(Vaswani et al., 2017). Three main components are composed, namely
value (V), key (K), and query (Q) which can be described as:

Attention(Q,K, V) :softrnax(Q—KT> 1% @
o Vi

where dy means dimensional size of keys. The principle of integrating
self-attention mechanism with RF involves leveraging the self-attention
mechanism to optimize training parameters and assign weights to de-
cision trees in the RF model.

In this study, the ARF model is mainly used to estimate the variations
of air pollution at the district level when the number of EV charging
stations and EV charging consumption change based on two simulated
scenarios.

Scenario 1. To estimate the variations of air pollution at the district
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Fig. 7. Variations of (a) PMy s, (b) NO3, (c) SO, and (d) CO based on simulated EV charging consumption and the number of charging stations.

level resulting from the comparative implementation of EV strategy in
the remaining cities in GD province, except the six cities mentioned
above;

Scenario 2. To derive the variations of air pollution at the district
level resulting from the increase in the number of EV charging stations
and EV charging consumption.

The meteorological variables, DEM, greenness, population density,
road density, GDP, the capacity of power plants, the number of EV
stations, EV charging consumption and air pollution concentrations
from CHAP were matched spatially and temporally at district level with
daily intervals from December 11, 2022 to January 14, 2023. Daily
mean SO,, CO, NO,, and PM; 5 concentrations at the district level are
deemed as the ground truth and other factors are used as input data to
train the ARF model. Data used for the scenario analysis can be found in
Supplementary materials (Table S2). The data with valid EV charging
stations and charging consumption acquired in Dongguan, Guangzhou,
Foshan, Shenzhen, Zhongshan and Zhuhai are split into training and
validation datasets based on 10-fold cross validation. The dataset was
divided into ten groups and nine sub-samples were used as training data,
remaining sub-sample for validation data. The dataset from other cities
is used as a testing dataset and is not involved during the training pro-
cess. The model performance will be examined using some statistical
metrics, including R2, root mean squared error (RMSE) and mean ab-
solute error (MAE).

For scenario 1, data at the district level in Dongguan, Guangzhou,
Foshan, Shenzhen, Zhongshan and Zhuhai were extracted and used as
the training dataset. The number of training and validation samples is
1050. Due to the limitation of data availability, the EV charging con-
sumption and the number of EV charging stations are assumed to be
0 first in the remaining cities in GD province, except for the

abovementioned six cities, which will be concatenated with other
auxiliary data and used as testing data. The number of testing samples is
3290. The estimated air pollution based on the testing dataset will be
compared to the CHAP observations to evaluate the model performance.
Once a satisfactory model performance is acquired, the pre-trained ARF
model can be used to reveal the air pollution variations when the EV
strategy was implemented in these areas. How to accurately simulate the
number of EV charging stations and EV charging consumption required
in these districts is a major concern when using the pre-trained model to
examine the impacts of the EV strategy implementation. In this study,
the simulated number of EV charging stations and EV charging con-
sumption in these areas were calculated based on the size of population,
the number of EV charging stations per capita and charging consump-
tion per capita. Specifically, the size of population for each district was
derived from the 1-km population density data. The number of EV
charging stations per capita and daily charging consumption per capita
were calculated based on the existing EV charging stations and daily
charging consumption for each district in the aforementioned six cities.
The simulated number of EV charging stations and charging consump-
tion are then substituted for the assumed data when both are 0 and in-
tegrated with other data and input into the ARF model. For scenario 2,
we aim to assess how the air pollution concentrations in the whole GD
province respond when the number of EV charging stations and charging
consumption increase by 10 %, 20 % and 30 %, respectively. Finally, for
the aforementioned two simulated scenarios, the differences in air
pollution concentrations derived from the simulated and assumed data
during the same period are considered to be the impacts of EVs.
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Fig. 8. Variations in PMj 5, NO,, SO, and CO when there are 10 %, 20 % and 30 % increases in EV daily mean charging demand.

3. Results and discussion
3.1. Descriptive statistics

Ground-based monitored air pollutant concentrations are generally
deemed as the most correct observations with hourly temporal resolu-
tion, which can truly reflect the air quality conditions during the study
period. We divided the GD province into two regions according to the
first-tier EV implementation strategy, namely the PRD region and other
cities. To exploit the air pollution injustice in the study area, daily
averaged concentrations of PMs 5, NOy, SO and CO during 2015-2023
were derived based on the hourly records and the density distribution
histograms of different air pollutants in the whole GD province, PRD
region and other cities are depicted in Fig. 2. PMjy 5 in the whole prov-
ince, the PRD region and other cities have a similar distribution pattern,
with more concentrations around 20-30 pg/m°>. Differently, NO, con-
centrations in other cities are concentrated around 20 pg/m>, but more
data pairs in the PRD region are located around 30 pg/m®. It indicates
that local emissions of NO2 in the PRD region are the major pollution
source for the GD province, affirming the desirability of promoting EV
strategy in this region. By contrast, SO5 and CO in other cities (10.02 pg/
m® and 0.77 mg/m?®) are slightly higher than those in the PRD region
(8.53 pg/m® and 0.73 mg/m>). It may be ascribed to higher industrial
emissions and greater reliance on polluting energy sources such as coal
in other cities than in the PRD region.

Additionally, pixel-based multi-year mean concentrations of these
four air pollutants were calculated to elucidate the spatial characteristics
based on daily CHAP values from 2015 to 2023 (Fig. S1). Other cities in
the GD province present lower PMy 5 concentrations, around 26 pg/m3
except for two cities in the northern parts of the GD province, which tend
to be affected by long-term distance transport in addition to the local
emissions (Zheng et al., 2022; Yu et al., 2023). Especially, most NOy
concentrations in other cities are generally less than 20 pg/m>, while

central areas in the PRD region have significantly elevated values, even
higher than 50 pg/m®. It further implies the principal contributions of
local emissions on NOy pollution in the GD province. Northern and
western areas in GD province have higher SO,, but lower concentrations
are in eastern regions with values of less than 10 pg/m®. Similarly,
northern regions and central areas of the PRD region have higher CO
values. Moreover, coastal zones generally show lower concentrations of
these four air pollutants, presumably due to the favourable meteoro-
logical conditions to facilitate the dissipation and dilution of pollutants
(He et al., 2017).

3.2. Comparison between monthly in-situ and CHAP data

Linear trends were derived first based on monthly averaged in-situ
and CHAP air pollutant concentrations, respectively (Fig. 3). Pro-
nounced decline trends of these four air pollutants during 2015-2023
can be observed for both ground-based and satellite-based CHAP data.
Despite there being slight disparities in the derived varying values be-
tween ground-based and satellite CHAP data, consistently varying di-
rections and magnitudes can still be observed in the whole GD province,
PRD region and other cities. PMys and NO; decrease trends are
noticeably higher in the PRD region relative to other cities. A lower
decline trend of SO, is also presented in other cities than in the PRD
region, but the discrepancy is comparatively small. However, the
downward trend of CO in other cities is higher than that in the PRD
region. It implies that conducting the EV strategy may be less efficient in
markedly reducing CO concentrations compared to other air pollutants.
In addition to vehicle exhaust, industrial emissions are also vital sources
of CO pollution. On the other hand, the advancements in vehicle tech-
nology, particularly the integration of advanced catalytic converters,
have resulted in substantial reductions in CO emissions over time
(Yli-Tuomi et al., 2005).
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3.3. Trend analysis of representative stations affected by traffic

Summarized road indices of each city in the PRD region and other
cities are presented in Fig. S2. The top 10 % of the stations with elevated
RI in the PRD region and other cities were selected as representative
stations mainly affected by traffic, respectively. These stations, along
with background stations with surrounding road networks, are dis-
played in Fig. 4. Variation trends of the representative station affected
by traffic during 2015-2023 are derived and shown in Fig. 5. As
depicted, representative stations in the PRD region exhibit more pro-
nounced decrease trends than those in other cities. Especially for NO,,
significant decreasing trends in representative stations in PRD can be
observed, ranging from around —2 to —3.7 year . Conversely, the
decreasing trends of representative stations in other cities are generally
below —1 year™!, even with two stations showing increasing variations.
This is partly because of the rise in vehicle fleet size, coupled with the
absence of EV policy, air pollutants from representative stations in other
cities have a greater increase than those in the PRD region. Mean vari-
ation trends of representative stations in the PRD region and other cities
were also calculated for further comparison. Given the similar meteo-
rological conditions and air pollution control policies in the PRD region
and other cities, the comparative analysis of the variation trends of
representative stations between the two areas can more directly reflect
the impacts of EVs on air pollution. As illustrated in Table 1, notable
mean decreasing trends in the four air pollutants are found at repre-
sentative stations in the PRD region compared to those in other cities.
These findings highlight the positive contributions and effectiveness of
EVs in reducing air pollution concentrations and improving air quality.

3.4. Potential analysis

Previous studies focused on revealing the current improvement of air
quality benefits from EVs (Li et al., 2019; Lyu et al., 2024; Hata et al.,
2025), insights into air pollution variations of the cities without EV
strategy but are considering the implementations of EVs cannot be
provided. In this study, fact-based air pollution variations induced by
EVs at a district level were conducted using the ARF model based on
CHAP data, EV charging consumption, the number of EV charging sta-
tions and other auxiliary data. Fig. 6a shows the density distribution
histogram of daily EV charging consumption based on the records of
each EV charging station from December 11, 2022 to January 14, 2023.
It can be found that the majority of EV charging stations exhibit a
consumption of less than 10 Mwh, and the charging consumption of
most remaining stations is lower than 40 Mwh. The stations with
charging consumption exceeding 50 Mwh occupy a fraction of the total.
Daily mean EV charging consumption for each district in PRD six cities
during the study period is displayed in Fig. 6b. Districts in Zhuhai and
Zhongshan have lower consumption, with values of less than 100 Mwh.
Central districts in Guangzhou and Foshan have higher charging con-
sumption (>200 Mwh). The EV charging consumption in most districts
in Shenzhen has the highest values with a wide range from around 300
Mwh to over 2000 Mwh. The charging consumption is also consistent
with the ranking of EV ownership in these six cities (https://www.sz.
gov.cn/cn/xxgk/zfxxgj/zwdt/content/post_10692371.html), indicating
that a higher number of EVs typically necessitates increased charging
consumption.

As demonstrated in Table 2, considering the number of EV stations
and EV charging consumption as predictive variables can improve the
model fit by reaching a higher accuracy of the ARF model. It highlights
the important significance of EVs on air pollution estimation. A good
agreement is also observed between the CHAP data and simulations
when the EV charging consumption and the number of EV charging
stations are assumed to be 0 (Fig. S3). Nevertheless, a few disparities can
be found between the simulated results and the CHAP data. To reduce
uncertainty and improve reliability, instead of CHAP values, the simu-
lated results when both EV charging consumption and the number of EV
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charging stations are 0, are used directly as the reference. The variations
of air pollution at the district level are displayed in Fig. 7. It can be found
air pollution in most districts presents a further decrease after the EV
strategy implementation. PMy 5 has a mean reduction of 1.86 pg/m?®.
Northeastern regions have a lower decrease (around —0.5 pg/m3), while
western areas have larger reductions, with a range of —4 to —2 pg/m°®.
The variations in NO, concentrations vary from —2.5 to 0.5 pg/m?>, with
only a rare few coastal districts showing increases. And a decrease of
exceeding 1 pg/m® can be observed in most districts. If implementing
the EV strategy, an average decrease of around —0.2 pg/m® in SO, is
observed, with significant reductions in western regions. For CO, the
reductions are relatively small, with values lower than —0.02 mg/m>. In
conclusion, the results indicate that the enforcement of policies aimed at
expanding the adoption of EVs in GD Province can significantly enhance
air quality, especially for PM3 5 and NO,.

As reported by the GD government and related institutions
(Guangdong Energy Bureau, 2021), the construction of EV charging
stations is ongoing to encourage the usage of EVs. With the increase in
charging stations, there will be a corresponding rise in charging con-
sumption. We also simulate the variations of these four air pollutants
when the number of EV charging stations and EV charging consumption
in each district increased by 10 %, 20 % and 30 %, respectively. Fig. 8
illustrates the variations of air pollution as compared to the values
derived from the simulated EV charging consumption and the number of
charging stations. As depicted, further decreases in air pollution in most
districts can be observed as the increase in EV charging consumption
and the number of EV charging stations. Specifically, when there is a 10
% increase in EV charging consumption and EV charging stations, mean
PM; 5 and NO; in GD province tend to decrease by —0.31 pg/m3 and
-0.2 pg/m?, respectively. Decreases by —0.46 pg/m> and -0.37 pg/m? are
more likely to be reached in terms of 30 % increases in EV charging
consumption and stations. Although the decreases in SO, and CO are
relatively lower, the beneficial impacts of enhancing the adoption of EVs
on SO, and CO mitigation are still recognized.

3.5. Policy implications and limitations

The results have confirmed the beneficial impacts of EVs on the
improvement of air quality in GD province. Moreover, most regions
present a continued decrease trend when the number of EV charging
stations and EV charging demand increase. It means that the continuous
promotion of EV policy is necessary for mitigating air pollution in other
cities that do not have high levels of EV facilitation, especially for the
regions with high reductions. Targeted incentives such as subsidies, tax
breaks and preferential parking for EV holders in pollution hotspots like
the PRD region can intensify efforts to promote EV adoption and alle-
viate local traffic emissions. However, an excessive increase in the
construction of charging stations may not guarantee a commensurate
decrease in air pollution levels. The charging demands and charging
capacity should also be taken into consideration. The results also lay a
foundation for urban planners to inform decisions regarding urban
development and the integration of industries associated with clean
energy.

Nevertheless, there are still some limitations in this study. First, due
to the limitation of EV data availability, EV charging demands over a
one-month period can be used for the analysis of simulated scenarios.
Second, the quantitative analysis is conducted based on a data-driven
model in GD province, thus we are cautious about the results in
different regions with distinct characteristics. We aim to address these
limitations by enhancing our methodology through the comprehensive
analysis of multifaceted data in future research endeavors.

4. Conclusions

In this study, the impacts of EVs on four relevant air pollutants
(PM25, NOj, SOz and CO) were qualitatively and quantitatively
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analyzed in GD province. The main findings are summarized as follows.
Results show that local emissions of NO; in the PRD region are the major
pollution source for the GD province. That is also the partial reason why
NO; concentrations have higher mean decrease trends (—2.39 year’l) in
the PRD region after EV adoption. The evidence is derived from isolating
the measurements of traffic pollution-related monitoring stations, which
illustrate the positive contributions of EVs to improving air quality. By
introducing the number of EV charging stations, EV charging demands,
and other auxiliary data, the potential impacts of EVs on air pollution in
cities without a strong emphasis on EV strategy implementation were
also quantified using the ARF model. Significant reductions can be
achieved when these regions have comparative EVs, with a decrease of
over —2 pg/m° of PMj 5 in western areas, as well as exceeding —1 pg/m>
decline of NO; in most districts. Moreover, further enhancements in air
quality are exhibited with the increase in the number of EV charging
stations and EV charging consumption, as simulated in ambitious sce-
narios. Specifically, the mean decreases by —0.46 pg/m> and -0.37 g/
m® in PM; 5 and NO, in GD province are more likely to be achieved
through a 30 % increase in EV charging consumption and the addition of
stations. The environmental benefits are still recognized although the
decreases in SO, (about —0.05 pg/m3) and CO (around —0.004 mg/m3)
are relatively lower. Our findings can deepen the understanding of EV
impacts on air pollution mitigation and enhance the prospective benefits
of EVs, which can also provide insightful implications for policymakers
in urban planning.
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