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A B S T R A C T

Electric vehicles (EVs) are advocated to combat the effects of tailpipe emissions. This study synergizes EV 
charging consumption and charging stations from six cities in Guangdong (GD) province, China, to reveal the 
potential impacts of EVs on four relevant air pollutants (PM2.5, NO2, SO2, CO) based on a data-driven attention- 
based Random Forest model and scenario analysis. Measurements from traffic-affected air pollution monitoring 
stations show that NO2 concentrations have a higher mean decrease trend (− 2.39 year− 1) in the PRD region after 
EV adoption, followed by PM2.5 (− 0.29 year− 1). In contrast, the environmental benefits of EVs for SO2 and CO 
are relatively lower, with decreasing trends of − 0.12 year− 1 and -0.013 year− 1, respectively. Pronounced alle
viations of these four air pollutants were presented for most districts in other cities under the assumption of 
conducting comparative EV policy, with mean reductions of − 1.86 μg/m3, -1.08 μg/m3, -0.17 μg/m3 and -0.01 
mg/m3 (by 7.8 %, 4.9 %, 1.9 % and 1.4 % with the reference of average values in 2023) for PM2.5, NO2, SO2 and 
CO, respectively. Moreover, the concentrations tend to decline as the increase in EV charging consumption and 
the number of EV charging stations. Results show that a 30 % increase in both EV charging consumption and 
stations results in a further decline in PM2.5 (− 0.46 μg/m3), NO2 (− 0.37 μg/m3), SO2 (− 0.048 μg/m3), and CO 
(− 0.0043 mg/m3) in Guang Dong (GD) province. To the best of our knowledge, it is the first time to assess 
environmental benefits of EVs with the involvement of actual EV charging demand and charging stations.

1. Introduction

Air pollution is an environmental issue of global concern due to its 
adverse impact on human health, environmental degradation and 
climate change (Smith et al., 2009; Kan et al., 2012; Sicard et al., 2016; 
Tagaris et al., 2009). Air pollution encompasses diverse components, 
including natural sources like wildfires and volcanic eruptions, as well 
as those resulting from anthropogenic activities like agricultural pro
cesses, industrial and vehicular emissions (Daellenbach et al., 2020; 
Cofala et al., 2007). Effective mitigation strategies and a comprehensive 
understanding of the sources and dynamics of air pollution are imper
ative to safeguard human health and preserve environmental quality. It 

also aligns with multiple Sustainable Development Goals (SDGs) out
lined by the United Nations (https://sdgs.un.org/goals), dedicated to 
ensuring good health (SDG 3), fostering sustainable cities and commu
nities (SDG 11), and combating climate change and its impact (SDG 13).

The consumption of non-renewable energy sources such as fossil 
fuels, and various energy-related environmental issues are major chal
lenges with far-reaching impacts. Conventionally fuelled vehicles like 
using gasoline and diesel are deemed as the primary contributors to non- 
renewable energy utilization and greenhouse gas emissions with the 
continuing rise in the quantity of vehicles (Yan and Sun, 2021; Ramli 
et al., 2019). As reported by Sun and Wang (2018), approximately half 
of China’s overall consumption is attributed to fossil fuels in the 
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transport sector, with new vehicles accounting for 70 % of the annual 
increase in fossil fuel consumption. The increasing year-on-year demand 
for vehicle ownership and energy consumption imposes a growing 
burden on the sustainability of energy resources and the environment. 
China is a leading contributor to greenhouse gas emissions in the world, 
responsible for approximately 30 % of global emissions. Among these 
emissions, around 5 % can be attributed to light-duty vehicles (Sun and 
Wang, 2018; Qiao et al., 2017).

The implementation of the electric vehicle (EV) strategy is promoted 
to reduce air pollution and greenhouse gases induced by traffic emis
sions, which is an effective way for air quality improvement and energy 
efficiency enhancement. Conventional fuel vehicles emit a variety of 
harmful compounds through tailpipe emissions, including respirable 
particulate matter (PM2.5), sulfur dioxide (SO2), nitrogen dioxide (NO2), 
volatile organic compounds (VOC), and carbon monoxide (CO), etc., 
exerting a direct influence on air quality. According to data released by 
the Shenzhen municipal government in China, vehicular exhaust 
emerged as the predominant source of PM2.5 pollution in Shenzhen, 
constituting 41 % of the total emissions in 2018 (SZMG, 2018). Thus, the 
conversion from traditional fuel vehicles to electric vehicles (EVs) has 
attracted strong support from the governments of China, which is mainly 
manifested by financial benefits such as fiscal subsidies and tax in
centives, expanding the construction of charging facilities, as well as 
research and development investment (Zhang et al., 2017). With 1.2 
million new EVs newly to be registered in 2020, EVs are also proposed as 
an indispensable countermeasure for achieving carbon neutrality by 
2060 (IEA, 2021; The State Council of China, 2021; Wang et al., 2021).

The growth in EV charging demand reflects the increasing adoption 
of EVs and a decline in the adoption of internal combustion engine ve
hicles (ICEVs), resulting in lower tailpipe emissions. Several studies 
have been conducted to quantify the environmental impacts of EV 
adoption compared to conventional vehicles. For example, Soret et al. 

(2014) suggest that a reduction of over 10 % NOx emissions can be 
attained with vehicle electrification, reaching 40 % in urban areas in 
Spain. Li et al. (2019) present that the replacement of conventional 
vehicles with EVs contributes to the mitigation of SO2 concentrations in 
China by comparing the well-to-wheel life cycle of different vehicle 
types. Results show that if the proportion of EVs among passenger ve
hicles increases by 1 %, SO2 and NOx emissions could decrease by 9934 
tons and 228 kilotons, respectively. Li et al. (2016) illustrate that the 
widespread use of EVs can significantly mitigate high pollution episodes 
by assuming a complete replacement of current light-duty vehicles 
based on the Community Multi-scale Air Quality model (CMAQ) model 
in Taiwan, China. Similar implications were also reported by Schnell 
et al. (2021), the adoption of EVs can effectively mitigate extreme air 
pollution events in China. Wang et al. (2021) used the COVID-19 full 
lockdown event to simulate the full switching to EVs, the results show 
that a reduction in 30 %–80 % of NO2 and 30 %–70 % of PM2.5 across 
China can be acquired. Even though some pollution may be generated 
during electricity production and cause environmental injustice where 
power plants are located (Bai et al., 2021a), the emission mitigation 
benefits of EVs can be broadened from a long-term perspective with the 
advancement of clean energy technologies (Li et al., 2018; Philippot 
et al., 2019), which can also further enhance the environmental condi
tions and promote human health. However, the majority of studies have 
concentrated on investigating the influence of EVs on air pollution by 
assuming the number of EVs in each city, with limited consideration 
given to actual EV charging consumption in previous studies. This is not 
capable of providing a factual basis to some extent, which is not 
conducive to achieving a better understanding of the environmental 
benefits of EVs.

To fill this gap, the number of EV charging stations and EV charging 
consumption were synergized and used to provide fact-based insights 
into the impacts of EVs on air pollution reduction. The purpose of this 

Fig. 1. (a) Study area, (b) spatial location of air pollution monitoring stations and (c) EV charging stations.
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study is to underscore the potential of EVs for air pollution abatement in 
GD province. Quantitative analysis was conducted to quantify the im
pacts of EV implementation on air pollution between the PRD region and 
other cities in GD province. Additionally, scenario analysis was also 
carried out at the district level based on a data-driven ARF model to 
reveal the prospects of EV implementation in GD province.

2. Data and methods

2.1. Study area

Guangdong (GD) province, nestled in the southeastern part of China, 
includes a major economic zone Pearl River Delta (PRD) region and 
other 12 prefecture-level cities (Fig. 1). Geographically, bordered by the 

Fig. 2. Descriptive statistics of daily mean concentrations of four air pollutants from ground-based stations in (a) GD province; (b) PRD region and (c) other cities in 
GD province.

Fig. 3. Linear trends of (a–d) ground-based and (e–f) satellite-based CHAP air pollutants from 2015 to 2023.
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South China Sea and neighbors the special administrative regions of 
Macau and Hong Kong, GD province covers an area of over 179,000 km2 

and serves as a major gateway to international trade and commerce. It 
also stands as a pivotal region in China with dense population and high 
urbanization, renowned for its thriving economy driven by industries 
such as manufacturing, trade and technology. Inevitably, air pollution 
has become increasingly serious and attracted extensive concerns due to 
rapid urbanization and industrialization in GD province. To alleviate air 
pollution, the PRD Region has been vigorously promoting EVs in the past 
decade to reduce vehicle emissions and prioritize the implementation of 
the EV Strategy (State Council of China, 2013).

2.2. Data collection and data processing

2.2.1. In-situ air pollution measurements
According to China’s “Air Pollution Prevention and Control Action 

Plan”, over 1436 air pollution monitoring stations were constructed in 
China by the end of 2014 and the new air quality standard monitoring 
data was released in real time from 2015 (https://www.gov.cn/ 
xinwen/2015-01/16/content_2805618.htm). Hourly ground-based air 
pollution concentrations, including PM2.5, PM10, O3, NO2, SO2 and CO, 
are provided by the China Environmental Monitoring Center since 2015 
(https://www.cnemc.cn/). The spatial distribution of air pollution 
monitoring stations is displayed in Fig. 1b. As we aim to investigate the 
impact of EVs on air pollution in this study, PM2.5, NO2, SO2 and CO, 
these four air pollutants, which are highly associated with vehicle 
emissions, are considered. Hourly ground-based air pollution measure
ments from 2015 to 2023 were used, which is also consistent with the 
implementation period of the EVs strategy in GD province.

2.2.2. Satellite-based CHAP air pollution data
The ChinaHighAirPollutants (CHAP, https://weijing-rs.github.io 

/product.html) data can provide daily averages of PM2.5, NO2, SO2 
and CO with full coverage. The CHAP dataset is derived by using ma
chine learning models based on the synergy of satellite-based 

observations and ground-based measurements with high spatio- 
temporal resolution, broader coverage and high quality, which have 
been elaborated in previous studies (Wei et al., 2021, 2022, 2023a, 
2023b). The CHAP dataset has been widely applied in exploring the 
impacts of air pollution on human health (Yao et al., 2025; Li et al., 
2025), or used as comparative data to verify the effectiveness of other 
studies (Bai et al., 2021b; Lei et al., 2022). Daily PM2.5 concentrations at 
1 km spatial resolution from 2000 to 2023 can be obtained. For NO2, SO2 
and CO, daily averaged concentrations from 2019 to 2023 are at 1 km 
resolution, whereas the spatial resolution is 10 km during 2000–2018. 
To be consistent with ground-based measurements, daily averages from 
the CHAP dataset from 2015 to 2023 in GD province were extracted to 
compensate for ground-based measurements and jointly investigated the 
EV impacts on air pollution. Daily NO2, SO2 and CO data during 
2015–2018 are resampled to 1 km to allow for an aligned spatial 
resolution.

2.2.3. EV charging stations and electricity consumption data
Many EV charging stations have been constructed and scattered all 

over the city due to the crucial role of EV charging services in promoting 
EV strategy for environmental pollution reduction. As depicted in 
Fig. 1c, the spatial distribution of the EV charging stations in six cities in 
the PRD region is displayed and used in this study, which is provided by 
our partners. For each EV charging station, EV charging records are 
composed of station ID, coordinate information and power consumption 
with an interval of 5 min from December 11, 2022 to January 14, 2023. 
Abnormal values are identified and removed when the values are over 
three standard deviations away from the averages of each EV charging 
station. After data filtering, the number of EV charging stations and the 
total electricity consumption during this period in these six cities are 
described in the Supplementary material (Table S1).

2.2.4. Auxiliary data
Auxiliary data, in conjunction with ground-based and satellite-based 

CHAP air pollution data, are employed to delve into the impacts of EVs, 

Fig. 4. Representative stations with road networks in (a–f) the PRD region and (g–k) other cities in GD province. Background stations with road networks in (l–p) 
other cities in GD province and (q–r) the PRD region.
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including population density, road density, meteorological factors, 
greenness, DEM, GDP and the capacity of power plants. Population 
density data at 1 km resolution in GD province are obtained from the 
LandScan dataset (https://landscan.ornl.gov/). Road density at 1 km is 
derived based on the OpenStreetMap and the road types like footbridge 
and pedestrian are excluded, which are less related to the vehicle 
emissions. Meteorological data in GD province are extracted from the 
ERA-5 reanalysis data, including pressure, air temperature, northward/ 
eastward wind speed, total precipitation at 0.1◦ resolution, and 
boundary layer height and specific humidity at 0.25◦ resolution. 
Greeness is derived from the MODIS 500-m land use product 
(MCD12Q1) and 90-m DEM data from Shuttle Radar Topography 
Mission (SRTM) are also used. GDP data at 1 km in China from 1995 to 
2020 with 5-year intervals are available at the Resource and Environ
mental Science Data Platform. Power plant data in 2021 are downloaded 
from the Global Power Plant Database, including power plant name, 
latitude, longitude, primary fuel types and capacity (Yin et al., 2021). 
The power plants with clean energy sources like nuclear, hydroelectric, 

solar, wind, etc. as the primary fuel types are omitted because generally 
do not produce direct air pollution.

2.3. Analytical methods

2.3.1. Analysis for traffic-affected air pollution monitoring stations
The transition from traditional ICEV to EV is conducive to reducing 

air pollution induced by traffic emissions (Soret et al., 2014; Li et al., 
2019). To analyze the EV impact on traffic-induced air pollution 
changes, several in-situ air pollution representative stations affected by 
traffic were selected. Generally, stations for monitoring traffic-affected 
air pollution are typically located in transportation hubs or areas with 
heavy traffic flow. Therefore, we introduced three indices of road net
works to explain the complexity of road networks. The three indices are 
defined as follows: (1) li means the total length of road for station i in the 
1 km-radius circular area centered at each air quality monitoring station. 
It is a well-known index that is highly and fundamentally related to 
traffic flows. (2) ni is the total number of road intersections for station i; 
and (3) si denotes the number of road segments at all the intersections 
for station i. ni is considered as vehicles frequently halt at intersections 
due to traffic signals, resulting in emission accumulation during idling 
(Minoura and Ito, 2010). Similarly, si can indicate the temporary stop
ping conditions, as well as the road connectivity along with the road 
intersections (Wong et al., 2021). Due to the differences in road network 
complexity in PRD and other cities in GD province (hereinafter other 
cities), the three indices of each station in PRD and other cities were 
normalized, respectively. 

Fig. 5. (a) PM2.5, (b) NO2, (c) SO2 and (d) CO variation trends of representative stations affected by traffic in the PRD region and other cities during 2015–2023.

Table 1 
Comparison of mean variation trends of representative stations in the PRD re
gion (βP) and other cities (βO).

PM2.5 NO2 SO2 CO

βP − 0.29 − 2.39 − 0.12 − 0.013
βO − 0.07 − 0.18 − 0.03 − 0.011
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Norli =
li − min (li)

max(li) − min (li)
(1) 

Norni =
ni − min (ni)

max(ni) − min (ni)
(2) 

Norsi =
si − min (si)

max(si) − min (si)
(3) 

where Norli , Norni , and Norsi are the normalized road indices for station i. 
The three indices are compiled as follows to reflect the characteristics of 
road networks: 

RIi = Sum
{
Norli ,Norni ,Norsi

}
(4) 

In this way, stations with higher RIi can be deemed as representative 
stations affected by traffic pollution.

Afterwards, yearly averages xi of representative station i during the 
year 2015–2023 were calculated based on hourly observations, and the 
stations with over 30 % missing values were excluded. To reduce the 
impacts of meteorological factors, measurements from air pollution 
background stations were involved. Background stations were estab
lished by the government or relevant institutes, and used to monitor 
regional background air quality unaffected by anthropogenic pollution 
(MEE of State Council of China, 2013). Traffic-related pollution Ti is 

quantified by deducting the annual averages Bj of the nearest back
ground station j from the representative station values. 

Ti = xi − Bj (5) 

β=
∑n

i=1(yi − y)(Ti − T)
∑n

i=1(yi − y)2 (6) 

where β is the variation trend of representative stations; T means mean 
traffic-related pollution; yi and y are the years 2015–2023 and the 
corresponding mean value. Finally, comparison of mean variation trends 
in representative stations between the PRD region (βP) and other cities 
(βO) was conducted to assess the impacts of EVs.

2.3.2. EV-attributed changes derived by the attention-based RF model
Attention-based RF (ARF) proposed by Utkin et al. (2023) was used 

in this study to investigate the impacts of EVs on air pollution. The 
self-attention mechanism was introduced and integrated with RF model 
to promote the capture of the internal correlation from the input data. 
Self-attention mechanism is an enhanced iteration of the attention 
mechanism, focusing on highlighting essential features in inputs and 
within inputs and allocating greater emphasis to these specific factors. 
(Vaswani et al., 2017). Three main components are composed, namely 
value (V), key (K), and query (Q) which can be described as: 

Attention(Q,K,V)= softmax
(

QKT
̅̅̅̅̅
dk

√

)

V (7) 

where dk means dimensional size of keys. The principle of integrating 
self-attention mechanism with RF involves leveraging the self-attention 
mechanism to optimize training parameters and assign weights to de
cision trees in the RF model.

In this study, the ARF model is mainly used to estimate the variations 
of air pollution at the district level when the number of EV charging 
stations and EV charging consumption change based on two simulated 
scenarios.

Scenario 1. To estimate the variations of air pollution at the district 

Fig. 6. (a) Density distribution histogram of daily charging consumption (Mwh/daily) for each EV charging station during December 11, 2022–January 14, 2023, 
and (b) daily mean EV charging consumption (Mwh/daily) in each district.

Table 2 
Comparison of validation accuracy of ARF model after the involvement of EV 
data.

Validation accuracy (without EV 
data)

Validation accuracy (with EV 
data)

R2 RMSE MAE R2 RMSE MAE

PM2.5 0.89 3.25 2.28 0.91 3.19 2.20
NO2 0.86 3.74 2.88 0.89 3.56 2.66
SO2 0.83 0.65 0.50 0.84 0.63 0.49
CO 0.79 0.039 0.030 0.80 0.037 0.029
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level resulting from the comparative implementation of EV strategy in 
the remaining cities in GD province, except the six cities mentioned 
above;

Scenario 2. To derive the variations of air pollution at the district 
level resulting from the increase in the number of EV charging stations 
and EV charging consumption.

The meteorological variables, DEM, greenness, population density, 
road density, GDP, the capacity of power plants, the number of EV 
stations, EV charging consumption and air pollution concentrations 
from CHAP were matched spatially and temporally at district level with 
daily intervals from December 11, 2022 to January 14, 2023. Daily 
mean SO2, CO, NO2, and PM2.5 concentrations at the district level are 
deemed as the ground truth and other factors are used as input data to 
train the ARF model. Data used for the scenario analysis can be found in 
Supplementary materials (Table S2). The data with valid EV charging 
stations and charging consumption acquired in Dongguan, Guangzhou, 
Foshan, Shenzhen, Zhongshan and Zhuhai are split into training and 
validation datasets based on 10-fold cross validation. The dataset was 
divided into ten groups and nine sub-samples were used as training data, 
remaining sub-sample for validation data. The dataset from other cities 
is used as a testing dataset and is not involved during the training pro
cess. The model performance will be examined using some statistical 
metrics, including R2, root mean squared error (RMSE) and mean ab
solute error (MAE).

For scenario 1, data at the district level in Dongguan, Guangzhou, 
Foshan, Shenzhen, Zhongshan and Zhuhai were extracted and used as 
the training dataset. The number of training and validation samples is 
1050. Due to the limitation of data availability, the EV charging con
sumption and the number of EV charging stations are assumed to be 
0 first in the remaining cities in GD province, except for the 

abovementioned six cities, which will be concatenated with other 
auxiliary data and used as testing data. The number of testing samples is 
3290. The estimated air pollution based on the testing dataset will be 
compared to the CHAP observations to evaluate the model performance. 
Once a satisfactory model performance is acquired, the pre-trained ARF 
model can be used to reveal the air pollution variations when the EV 
strategy was implemented in these areas. How to accurately simulate the 
number of EV charging stations and EV charging consumption required 
in these districts is a major concern when using the pre-trained model to 
examine the impacts of the EV strategy implementation. In this study, 
the simulated number of EV charging stations and EV charging con
sumption in these areas were calculated based on the size of population, 
the number of EV charging stations per capita and charging consump
tion per capita. Specifically, the size of population for each district was 
derived from the 1-km population density data. The number of EV 
charging stations per capita and daily charging consumption per capita 
were calculated based on the existing EV charging stations and daily 
charging consumption for each district in the aforementioned six cities. 
The simulated number of EV charging stations and charging consump
tion are then substituted for the assumed data when both are 0 and in
tegrated with other data and input into the ARF model. For scenario 2, 
we aim to assess how the air pollution concentrations in the whole GD 
province respond when the number of EV charging stations and charging 
consumption increase by 10 %, 20 % and 30 %, respectively. Finally, for 
the aforementioned two simulated scenarios, the differences in air 
pollution concentrations derived from the simulated and assumed data 
during the same period are considered to be the impacts of EVs.

Fig. 7. Variations of (a) PM2.5, (b) NO2, (c) SO2 and (d) CO based on simulated EV charging consumption and the number of charging stations.
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3. Results and discussion

3.1. Descriptive statistics

Ground-based monitored air pollutant concentrations are generally 
deemed as the most correct observations with hourly temporal resolu
tion, which can truly reflect the air quality conditions during the study 
period. We divided the GD province into two regions according to the 
first-tier EV implementation strategy, namely the PRD region and other 
cities. To exploit the air pollution injustice in the study area, daily 
averaged concentrations of PM2.5, NO2, SO2 and CO during 2015–2023 
were derived based on the hourly records and the density distribution 
histograms of different air pollutants in the whole GD province, PRD 
region and other cities are depicted in Fig. 2. PM2.5 in the whole prov
ince, the PRD region and other cities have a similar distribution pattern, 
with more concentrations around 20–30 μg/m3. Differently, NO2 con
centrations in other cities are concentrated around 20 μg/m3, but more 
data pairs in the PRD region are located around 30 μg/m3. It indicates 
that local emissions of NO2 in the PRD region are the major pollution 
source for the GD province, affirming the desirability of promoting EV 
strategy in this region. By contrast, SO2 and CO in other cities (10.02 μg/ 
m3 and 0.77 mg/m3) are slightly higher than those in the PRD region 
(8.53 μg/m3 and 0.73 mg/m3). It may be ascribed to higher industrial 
emissions and greater reliance on polluting energy sources such as coal 
in other cities than in the PRD region.

Additionally, pixel-based multi-year mean concentrations of these 
four air pollutants were calculated to elucidate the spatial characteristics 
based on daily CHAP values from 2015 to 2023 (Fig. S1). Other cities in 
the GD province present lower PM2.5 concentrations, around 26 μg/m3 

except for two cities in the northern parts of the GD province, which tend 
to be affected by long-term distance transport in addition to the local 
emissions (Zheng et al., 2022; Yu et al., 2023). Especially, most NO2 
concentrations in other cities are generally less than 20 μg/m3, while 

central areas in the PRD region have significantly elevated values, even 
higher than 50 μg/m3. It further implies the principal contributions of 
local emissions on NO2 pollution in the GD province. Northern and 
western areas in GD province have higher SO2, but lower concentrations 
are in eastern regions with values of less than 10 μg/m3. Similarly, 
northern regions and central areas of the PRD region have higher CO 
values. Moreover, coastal zones generally show lower concentrations of 
these four air pollutants, presumably due to the favourable meteoro
logical conditions to facilitate the dissipation and dilution of pollutants 
(He et al., 2017).

3.2. Comparison between monthly in-situ and CHAP data

Linear trends were derived first based on monthly averaged in-situ 
and CHAP air pollutant concentrations, respectively (Fig. 3). Pro
nounced decline trends of these four air pollutants during 2015–2023 
can be observed for both ground-based and satellite-based CHAP data. 
Despite there being slight disparities in the derived varying values be
tween ground-based and satellite CHAP data, consistently varying di
rections and magnitudes can still be observed in the whole GD province, 
PRD region and other cities. PM2.5 and NO2 decrease trends are 
noticeably higher in the PRD region relative to other cities. A lower 
decline trend of SO2 is also presented in other cities than in the PRD 
region, but the discrepancy is comparatively small. However, the 
downward trend of CO in other cities is higher than that in the PRD 
region. It implies that conducting the EV strategy may be less efficient in 
markedly reducing CO concentrations compared to other air pollutants. 
In addition to vehicle exhaust, industrial emissions are also vital sources 
of CO pollution. On the other hand, the advancements in vehicle tech
nology, particularly the integration of advanced catalytic converters, 
have resulted in substantial reductions in CO emissions over time 
(Yli-Tuomi et al., 2005).

Fig. 8. Variations in PM2.5, NO2, SO2 and CO when there are 10 %, 20 % and 30 % increases in EV daily mean charging demand.
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3.3. Trend analysis of representative stations affected by traffic

Summarized road indices of each city in the PRD region and other 
cities are presented in Fig. S2. The top 10 % of the stations with elevated 
RI in the PRD region and other cities were selected as representative 
stations mainly affected by traffic, respectively. These stations, along 
with background stations with surrounding road networks, are dis
played in Fig. 4. Variation trends of the representative station affected 
by traffic during 2015–2023 are derived and shown in Fig. 5. As 
depicted, representative stations in the PRD region exhibit more pro
nounced decrease trends than those in other cities. Especially for NO2, 
significant decreasing trends in representative stations in PRD can be 
observed, ranging from around − 2 to − 3.7 year− 1. Conversely, the 
decreasing trends of representative stations in other cities are generally 
below − 1 year− 1, even with two stations showing increasing variations. 
This is partly because of the rise in vehicle fleet size, coupled with the 
absence of EV policy, air pollutants from representative stations in other 
cities have a greater increase than those in the PRD region. Mean vari
ation trends of representative stations in the PRD region and other cities 
were also calculated for further comparison. Given the similar meteo
rological conditions and air pollution control policies in the PRD region 
and other cities, the comparative analysis of the variation trends of 
representative stations between the two areas can more directly reflect 
the impacts of EVs on air pollution. As illustrated in Table 1, notable 
mean decreasing trends in the four air pollutants are found at repre
sentative stations in the PRD region compared to those in other cities. 
These findings highlight the positive contributions and effectiveness of 
EVs in reducing air pollution concentrations and improving air quality.

3.4. Potential analysis

Previous studies focused on revealing the current improvement of air 
quality benefits from EVs (Li et al., 2019; Lyu et al., 2024; Hata et al., 
2025), insights into air pollution variations of the cities without EV 
strategy but are considering the implementations of EVs cannot be 
provided. In this study, fact-based air pollution variations induced by 
EVs at a district level were conducted using the ARF model based on 
CHAP data, EV charging consumption, the number of EV charging sta
tions and other auxiliary data. Fig. 6a shows the density distribution 
histogram of daily EV charging consumption based on the records of 
each EV charging station from December 11, 2022 to January 14, 2023. 
It can be found that the majority of EV charging stations exhibit a 
consumption of less than 10 Mwh, and the charging consumption of 
most remaining stations is lower than 40 Mwh. The stations with 
charging consumption exceeding 50 Mwh occupy a fraction of the total. 
Daily mean EV charging consumption for each district in PRD six cities 
during the study period is displayed in Fig. 6b. Districts in Zhuhai and 
Zhongshan have lower consumption, with values of less than 100 Mwh. 
Central districts in Guangzhou and Foshan have higher charging con
sumption (>200 Mwh). The EV charging consumption in most districts 
in Shenzhen has the highest values with a wide range from around 300 
Mwh to over 2000 Mwh. The charging consumption is also consistent 
with the ranking of EV ownership in these six cities (https://www.sz. 
gov.cn/cn/xxgk/zfxxgj/zwdt/content/post_10692371.html), indicating 
that a higher number of EVs typically necessitates increased charging 
consumption.

As demonstrated in Table 2, considering the number of EV stations 
and EV charging consumption as predictive variables can improve the 
model fit by reaching a higher accuracy of the ARF model. It highlights 
the important significance of EVs on air pollution estimation. A good 
agreement is also observed between the CHAP data and simulations 
when the EV charging consumption and the number of EV charging 
stations are assumed to be 0 (Fig. S3). Nevertheless, a few disparities can 
be found between the simulated results and the CHAP data. To reduce 
uncertainty and improve reliability, instead of CHAP values, the simu
lated results when both EV charging consumption and the number of EV 

charging stations are 0, are used directly as the reference. The variations 
of air pollution at the district level are displayed in Fig. 7. It can be found 
air pollution in most districts presents a further decrease after the EV 
strategy implementation. PM2.5 has a mean reduction of 1.86 μg/m3. 
Northeastern regions have a lower decrease (around − 0.5 μg/m3), while 
western areas have larger reductions, with a range of − 4 to − 2 μg/m3. 
The variations in NO2 concentrations vary from − 2.5 to 0.5 μg/m3, with 
only a rare few coastal districts showing increases. And a decrease of 
exceeding 1 μg/m3 can be observed in most districts. If implementing 
the EV strategy, an average decrease of around − 0.2 μg/m3 in SO2 is 
observed, with significant reductions in western regions. For CO, the 
reductions are relatively small, with values lower than − 0.02 mg/m3. In 
conclusion, the results indicate that the enforcement of policies aimed at 
expanding the adoption of EVs in GD Province can significantly enhance 
air quality, especially for PM2.5 and NO2.

As reported by the GD government and related institutions 
(Guangdong Energy Bureau, 2021), the construction of EV charging 
stations is ongoing to encourage the usage of EVs. With the increase in 
charging stations, there will be a corresponding rise in charging con
sumption. We also simulate the variations of these four air pollutants 
when the number of EV charging stations and EV charging consumption 
in each district increased by 10 %, 20 % and 30 %, respectively. Fig. 8
illustrates the variations of air pollution as compared to the values 
derived from the simulated EV charging consumption and the number of 
charging stations. As depicted, further decreases in air pollution in most 
districts can be observed as the increase in EV charging consumption 
and the number of EV charging stations. Specifically, when there is a 10 
% increase in EV charging consumption and EV charging stations, mean 
PM2.5 and NO2 in GD province tend to decrease by − 0.31 μg/m3 and 
-0.2 μg/m3, respectively. Decreases by − 0.46 μg/m3 and -0.37 μg/m3 are 
more likely to be reached in terms of 30 % increases in EV charging 
consumption and stations. Although the decreases in SO2 and CO are 
relatively lower, the beneficial impacts of enhancing the adoption of EVs 
on SO2 and CO mitigation are still recognized.

3.5. Policy implications and limitations

The results have confirmed the beneficial impacts of EVs on the 
improvement of air quality in GD province. Moreover, most regions 
present a continued decrease trend when the number of EV charging 
stations and EV charging demand increase. It means that the continuous 
promotion of EV policy is necessary for mitigating air pollution in other 
cities that do not have high levels of EV facilitation, especially for the 
regions with high reductions. Targeted incentives such as subsidies, tax 
breaks and preferential parking for EV holders in pollution hotspots like 
the PRD region can intensify efforts to promote EV adoption and alle
viate local traffic emissions. However, an excessive increase in the 
construction of charging stations may not guarantee a commensurate 
decrease in air pollution levels. The charging demands and charging 
capacity should also be taken into consideration. The results also lay a 
foundation for urban planners to inform decisions regarding urban 
development and the integration of industries associated with clean 
energy.

Nevertheless, there are still some limitations in this study. First, due 
to the limitation of EV data availability, EV charging demands over a 
one-month period can be used for the analysis of simulated scenarios. 
Second, the quantitative analysis is conducted based on a data-driven 
model in GD province, thus we are cautious about the results in 
different regions with distinct characteristics. We aim to address these 
limitations by enhancing our methodology through the comprehensive 
analysis of multifaceted data in future research endeavors.

4. Conclusions

In this study, the impacts of EVs on four relevant air pollutants 
(PM2.5, NO2, SO2 and CO) were qualitatively and quantitatively 
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analyzed in GD province. The main findings are summarized as follows. 
Results show that local emissions of NO2 in the PRD region are the major 
pollution source for the GD province. That is also the partial reason why 
NO2 concentrations have higher mean decrease trends (− 2.39 year− 1) in 
the PRD region after EV adoption. The evidence is derived from isolating 
the measurements of traffic pollution-related monitoring stations, which 
illustrate the positive contributions of EVs to improving air quality. By 
introducing the number of EV charging stations, EV charging demands, 
and other auxiliary data, the potential impacts of EVs on air pollution in 
cities without a strong emphasis on EV strategy implementation were 
also quantified using the ARF model. Significant reductions can be 
achieved when these regions have comparative EVs, with a decrease of 
over − 2 μg/m3 of PM2.5 in western areas, as well as exceeding − 1 μg/m3 

decline of NO2 in most districts. Moreover, further enhancements in air 
quality are exhibited with the increase in the number of EV charging 
stations and EV charging consumption, as simulated in ambitious sce
narios. Specifically, the mean decreases by − 0.46 μg/m3 and -0.37 μg/ 
m3 in PM2.5 and NO2 in GD province are more likely to be achieved 
through a 30 % increase in EV charging consumption and the addition of 
stations. The environmental benefits are still recognized although the 
decreases in SO2 (about − 0.05 μg/m3) and CO (around − 0.004 mg/m3) 
are relatively lower. Our findings can deepen the understanding of EV 
impacts on air pollution mitigation and enhance the prospective benefits 
of EVs, which can also provide insightful implications for policymakers 
in urban planning.
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