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A B S T R A C T

An accurate estimation of land surface solar irradiation (LSSI) is crucial to address the solar intermittency
for optimizing solar photovoltaic (PV) installation and mitigrating PV curtailment. This involves enhancing
solar photovoltaic (PV) system efficiency by optimizing layout and maximizing solar energy capture and
conversion. While deep learning methods have significantly improved the rapid and accurate estimation of
solar irradiation, they face challenges in handling geographical heterogeneity and providing interpretable
results. To address these challenges, this study proposes the Dual-gate Temporal Fusion Transformer (DGTFT),
a novel interpretable deep learning network, to improve LSSI estimation. By integrating the Temporal Fusion
Transformer with the Dual-gate Gated Residual Network and Dual-gate Multi-head Cross Attention, the optimal
network achieved 𝑅2=0.93, MAE=0.022 (𝑘𝑊 ℎ∕𝑚2), RMSE=0.038 (𝑘𝑊 ℎ∕𝑚2), rRMSE=0.13, and nRMSE=0.048
through ablation experiments. When applied to datasets observed from Australia, China, and Japan, DGTFT
outperformed traditional machine learning methods with a minimum 𝑅2 increase of 23.88%, MAE decrease of
43.18%, RMSE decrease of 9.09%, rRMSE decrease of 32.25%, and nRMSE decrease of 62.79%. Furthermore,
the interpretability results of the DGTFT model indicate that clear-sky solar irradiation significantly contributed
to the model’s performance from Australia and Japan; and the maximum temperature and humidity were the
largest importance variables in the Chinese dataset. Accurately estimating LSSI, providing interpretable results,
and generating continuous solar irradiation maps for large-scale areas, this study aids in quantifying solar
potential and offers scientific guidance for the PV industry’s development.
1. Introduction

Achieving carbon neutrality goals and advancing the development
of renewable energy sources are critical imperatives in contemporary
times [1]. Solar energy, as a clean and renewable energy source,
offers notable advantages in this regard. Accurately estimating solar
irradiation facilitates a comprehensive understanding of its distribu-
tion patterns, thereby providing essential insights for optimizing the
deployment of photovoltaic (PV) systems. Through the optimization
of PV system layouts, maximal utilization of solar resources can be
achieved, leading to enhanced system efficiency and capacity. This not
only reduces reliance on traditional energy sources but also mitigates
carbon emissions, fostering environmental preservation and sustainable
development. Hence, accurate estimation of solar irradiation plays a
pivotal role in driving the development of renewable energy sources
and the realization of carbon neutrality objectives.

∗ Corresponding author at: Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China.
E-mail address: Ls.charles@polyu.edu.hk (M.S. Wong).

Recently, methods for solar irradiation estimation have been devel-
oped using empirical methods [2–4], time series statistical methods [5–
7], and artificial intelligence (AI) methods [8,9]. They suggested that
AI methods can achieve high accuracy and fast computation in solar
radiation estimation, and time series AI methods, such as Long Short
Term Memory (LSTM), are capable of estimating solar radiation via
effectively capturing the time-dependence relationship of solar data.

As deep learning networks have shown competitiveness in con-
structing dynamic non-linear relationships between multi-factors and
the target, deep learning algorithms represent a promising approach
to modeling and estimating solar radiation more accurately and com-
prehensively [10], such as Recurrent Neural Network (RNN), LSTM,
and Temporal Convolutional Network (TCN). However, general deep
learning methods still encounter difficulties in spatio-temporal series
solar radiation estimation. Previous studies indicate that (i) in solar
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List of Abbreviations
𝑅2 Coefficient of determination
AdaBoost Adaptive Boosting
AI Artificial intelligence
AOT Aerosol optical thickness
ARIMA Auto-Regressive Integrated Moving Av-

erage
COT Cloud optical thickness
CSI Clear-sky solar irradiation
DGMCA Dual-gate Multi-head Cross Attention
DGRN Dual-gate Gated Residual Network
DGTFT Dual-gate Temporal Fusion Transformer
DP Dew point
GBM Gradient Boosting Machine
GeoAI Geospatial Artificial Intelligence
H Humidity
LSSI Land surface solar irradiation
LSTM Long Short Term Memory
MAE Mean absolute error
MASE Mean absolute scaled error
MIs Meteorological indice
MLP Multi-Layer Perceptron
nRMSE Normalized Root Mean Square Error
P Atmospheric pressure
PV Photovoltaic
RF Random Forest
RMSE Mean square error
RNN Recurrent Neural Network
rRMSE Relative Root Mean Square Error
SI Solar irradiation
T Air temperature
TA Apparent temperature
TCN Temporal Convolutional Network
TFT Temporal Fusion Transformer
TN Minimum temperature
WS Wind speed
XGBoost Extreme Gradient Boosting

radiation estimation using machine learning, feature selection is typ-
cally employed to reduce network complexity and redundancy and
t is generally conducted before modeling, but this may not ensure
ptimal parameter selection, potentially overlooking critical features or
nteractions relevant to solar radiation [11]; (ii) they are also limited

in investigating the impact of geographic variability on solar irradia-
tion [12]; and (iii) it is challenging for end-users to understand and
rust machine learning methods because of their black-box nature [13].

Furthermore, sophisticated Transformer architectures were used to
stimate solar irradiation. One study developed a vision transformer-
ased machine learning model to measure solar irradiation, which pro-
uces highly accurate estimates for both global horizontal irradiance
RMSE = 52 W∕m2) and diffuse irradiance (RMSE = 31 W∕m2) [14].

Most recently, Temporal Fusion Transformer (TFT), which is a type
of Transformer employing an LSTM structure and utilizing Multi-head
Attention, has been used to predict time-series data, such as solar PV
power [15,16], traffic speed [17], building energy consumption [18],
and wind speed [19]. These studies indicated that TFT was compet-
tive compared to models such as RNN, LSTM, and TCN. For ex-
mple, a further study [15] examined the hourly day-ahead solar
V power estimation performance of several models using data from
2 
six different facilities located in Germany and Australia, including
the Auto-Regressive Integrated Moving Average (ARIMA), Long Short-
Term Memory (LSTM), Multi-Layer Perceptron (MLP), Extreme Gra-
dient Boosting (XGBoost), and TFT. It found that TFT outperformed
the other four models in terms of root mean square error (RMSE),
mean absolute error (MAE), mean absolute scaled error (MASE), co-
fficient of determination (𝑅2), and quantile loss. It was also noticed
hat the TFT algorithm can learn long-term and short-term temporal
elationships, respectively, and also helps to efficiently build feature
epresentations of static variables, observed and known time-varying
nputs, whereas the other four models only learn the temporal features
rom the dataset and face challenges in geographic heterogeneity.
herefore, TFT is preferable to ARIMA, LSTM, MLP, and XGBoost for
stimating spatio-temporal solar data.

Current research indicates that the variability of solar radiation
is influenced by various factors, including meteorological time series
variables and static spatial variables such as climate categories and
geographical locations [12]. One of the mainstream approaches to
address this geographic variability is through the utilization of GeoAI,
which applies artificial intelligence techniques to geospatial data like
solar irradiation. However, the current application of the TFT method
for solar radiation estimation exhibits certain limitations. Existing stud-
ies employing the TFT algorithm lack sufficient geographic spatial
attributes in their static variables, thus hindering the network’s capacity
to fully capture the geographic spatial characteristics inherent in solar
radiation variations. Consequently, if TFT models are to be employed
for large-scale continuous solar irradiation estimation, it becomes im-
perative to bolster their capability to learn static geographic spatial
attributes. As TFT has demonstrated the best performance, depend-
ability, and interpretability among the studied deep learning methods,
this study will propose a novel deep learning network based on TFT
to address the above limitations. Specifically, this study will preserve
the overall framework of the TFT to ensure that the optimized network
retains interpretability and feature selection capabilities, enhance the
GRN network layer of the original model to improve the estimation
accuracy, and optimize the attention layer to strengthen the network’s
ability to learn the spatiotemporal features from the solar dataset,
thereby effectively addressing geographical heterogeneity issues. This
study aims to introduce an interpretable deep learning network de-
signed to improve land surface solar irradiation (LSSI) estimation using
spatio-temporal data. The contributions of this work are threefold.
Firstly, a novel spatio-temporal deep learning network is developed,
termed DGTFT, for accurate LSSI estimation. DGTFT demonstrates
competitiveness with basic TFT methods and other state-of-the-art net-
works in terms of both estimation accuracy and model interpretability.
Secondly, a GeoAI framework is proposed to effectively address geo-
graphical heterogeneity challenges. Thirdly, the well-trained network
enables transfer learning for solar irradiation estimation across differ-
ent datasets, facilitating the generation of large-scale continuous solar
potential maps.

2. Methodology

2.1. Research framework

Fig. 1 describes the research framework of this study. Firstly, we
cleaned the collected multi-source data. Then, the geographical spatio-
emporal dataset was constructed in GIS. Next, novel interpretable deep
earning networks with improved structures were proposed to improve

the estimation capability of spatio-temporal land surface solar irradi-
ation, and the optimal network was determined based on a series of
ablation experiments. After that, to evaluate the capabilities of transfer
learning and the effectiveness of the proposed networks, the optimal
network was trained using the hourly dataset in Australia, and the well-
trained network was applied to the hourly dataset in Japan and the
daily dataset in China. Additionally, the interpretability of the models
applied in three countries was offered. Finally, the annual continuous
LSSI in three countries was generated using the proposed network.
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Fig. 1. The framework of this study.
2.2. Study area and data

2.2.1. Data introduction and data preprocessing
Building upon the work of Liao et al. [8], who investigated the

influence of various variables (including air temperatures, humidity,
wind, atmospheric pressure, aerosol optical thickness (AOT), cloud
optical thickness (COT), and clear-sky solar irradiation (CSI)) on LSSI
in Australia and China, this study extends the analysis to include five
additional stations in Japan. However, it is noteworthy that the data
source for Japan differs from that of the other regions. Specifically, the
observed hourly LSSI data in Japan is sourced from the Japan Meteo-
rological Agency, which provides direct and diffuse solar irradiation
data separately, without global solar irradiation data. Consequently,
the sum of direct and diffuse solar irradiation is utilized as a proxy
for global solar irradiation in the Japanese dataset. Table 1 lists the
specific category, source, and spatial resolution of all data.

The highest temporal resolution that can be freely obtained from
Australia, China, and Japan are 10-minute, daily, and hourly, but
MIs from these countries are hourly updated. Therefore, to obtain the
same resolution for building the deep learning models, all data in
each country are aggregated to the same temporal resolution, with
the lowest resolution serving as the benchmark, i.e., daily in China
and hourly in Australia and Japan. The original AOT and COT data
have a temporal resolution of 10 min, and these data and MIs were
accumulated daily in China and hourly in Australia and Japan. The
original data of observed solar irradiation from Australia was updated
every minute, and this study rescaled the temporal resolution to hourly-
based updates for the constancy of the dataset in Japan. Furthermore,
data imputation was performed on the merged dataset. Specifically,
the MissForest method [20], a machine learning-based technique for
simulating missing data, was utilized to fill in the gaps in the dataset.
3 
The proportion of missing values in the datasets from Australia, China,
and Japan was found to be 0.02%, 0.001%, and 0.01%, respectively.

2.2.2. Research area
To assess the transfer learning capability of the proposed DGTFT

model, we conduct experiments on three distinct datasets: the hourly
dataset from Australia, the daily dataset from China, and the hourly
dataset from Japan. The selection of Australia, China, and Japan as
the study regions is estimated on the incorporation of Himawari-8
satellite images within our dataset, given its coverage of these three
nations. Furthermore, the substantial geographical disparities among
these countries serve to enhance the validation of the generalizability
of the proposed model. Given that the temporal resolution of LSSI data
varies across the three countries, each dataset exhibits different tempo-
ral resolutions. These datasets consist of observations from 28 publicly
available meteorological stations spanning six consecutive years from
2015 to 2020. Specifically, there are 13 stations in Australia (Fig. 2(d)),
10 stations in China (Fig. 2(b)), and five stations in Japan (Fig. 2(c)).
Table 2 provides detailed information on the climates and observed
solar irradiation ranges at the 28 meteorological stations.

2.3. Construction of spatio-temporal datasets

2.3.1. Spatial data and temporal data
The data can be categorized into two main types: spatial data

and temporal data. As illustrated in Fig. 3, temporal data includes
meteorological indices (MIs), solar irradiation measurements from sta-
tions, clear-sky solar irradiation (CSI), cloud optical thickness (COT),
and aerosol optical thickness (AOT). On the other hand, spatial data
comprises geographical coordinates, station names, and climate cate-
gories. In this study, each meteorological station is treated as a discrete
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Table 1
The category, source, and spatial resolution of all data used in this study.
Data name Data category Data source Resolution

AOT Temporal Himawari-8 5 km
satellite images [21]

COT Temporal Himawari-8 5 km
satellite images

CSI Temporal Calculation values Discrete-point data,
by Pysolar [22] no spatial resolution

MIs Temporal Openweather website Discrete-point data,
[23] no spatial resolution

Observed solar irradiation Target Meteorological stations Discrete-point data,
[24–26] no spatial resolution

Elevation Spatial Meteorological stations Discrete-point data,
no spatial resolution

Latitude Spatial Meteorological stations Discrete-point data,
no spatial resolution

Longitude Spatial Meteorological stations Discrete-point data,
no spatial resolution

Climate category Spatial Meteorological stations Discrete-point data,
no spatial resolution
Fig. 2. The distribution of 28 stations in three countries. (a) the geographical positions of Australia, China, and Japan in the Himawari-8 satellite COT image; (b) 10 stations in
China; (c) five stations in Japan; (d) 13 stations in Australia.
geographic point. Spatial attributions were then assigned to these
geographic points, as depicted in Fig. 3. Specifically, temporal data
refers to data that change over time at specific geographic coordinates,
encompassing both geographic and temporal information to describe
the changes in attributes of a location over different time points. The
structure of temporal data is based on the geographic coordinates of the
station as the spatio-temporal correlation, including the data variables,
i.e., category name, the geographic coordinates, and a time-series of
data. As shown in Table 1, temporal data include MIs, observed solar
4 
irradiation from stations, CSI, COT, and AOT. Spatial static data refers
to time-invariant data related to specific geographic coordinates or
space, containing geographic coordinates (e.g., latitude and longitude)
and associated attribute information (e.g., elevation and climate cate-
gory). The structure of such data also uses the geographic coordinates
of the station as the spatio-temporal correlation, including the station’s
geographic coordinates, station name, elevation, and climate category.
As shown in Table 2, spatial data include geographic coordinates,
elevation, station name, and climate category.
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Table 2
Climates and ranges of observed solar irradiation of the 28 meteorological stations.
Country Station Climate Range of observed

name solar irradiation (kWh/m2)

Adelaide Mediterranean 0–1.38
Alice Springs Subtropical hot desert 0–1.48
Broome Hot semi-arid 0–1.44
Cape Grim Temperate oceanic 0–1.31
Cocos Island Tropical rainforest 0–1.37
Darwin Tropical savanna 0–1.45

Australia Geraldton Mediterranean 0–1.44
Kalgoorlie-Boulder Semi-arid 0–1.39
Learmonth Hot semi-arid 0–1.36
Melbourne Temperate oceanic 0–1.41
Rockhampton Humid subtropical 0–1.51
Townsville Tropical savanna 0–1.57
Wagga Humid subtropical 0–1.43

Beijing Humid continental 0–9.66
Guangzhou Humid subtropical 0.24–7.81
Harbin Humid continental 0.13–12.13
Kau Sai Chau Humid subtropical 0–1.09
King’s Park Humid subtropical 0–1.08

China Shanghai Humid subtropical 0.16–8.65
Urumqi Continental cold semi-arid 0–11.75
Wenjiang Humid subtropical 0.21–8.39
Wuhan Humid subtropical 0.14–8.40

Fukuoka Humid subtropical 0.00–1.09
Ishigakijima Humid subtropical 0.00–1.14

Japan Minamitorishima Tropical savanna 0.00–1.10
Sapporo Humid continental 0.00–1.14
Tsukuba Humid continental 0.00–1.12
Fig. 3. The process of the GIS representation for constructing the spatio-temporal dataset.
2.3.2. GeoAI dataset
Fig. 3 illustrates the processing for constructing the spatio-temporal

dataset. After the reconstruction of spatial and temporal data, the
following method was employed for constructing the spatio-temporal
dataset: (i) the spatial data and temporal data were merged based on
their spatio-temporal correlation, which is the geographic coordinates
5 
of the data, (ii) Given that the DGTFT model offers distinct network
layers for processing static and time-varying inputs, spatial and tempo-
ral input variables were labeled accordingly in the dataset. Therefore,
the constructed spatio-temporal dataset comprises geographical coordi-
nates, time information, types of temporal data variables (AOT, COT,
CSI, and MIs), corresponding data values, climate category, elevation,
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and their respective station names. Additionally, the hourly/daily ob-
served LSSI from the stations was assigned as the training target in this
dataset.

This study created three datasets for Australia, China, and Japan,
with 1825 samples, 261 samples, and 1825 samples. Each sample
from Australia and Japan consists of a nine-hour timestep, while that
rom China consists of a seven-day timestep. The structure of each
our’s data includes geographical coordinates, time information, types
f temporal data variables (AOT, COT, CSI, and MIs), corresponding
ata values, climate category, elevation, and their respective station

names. To facilitate model training and evaluation, the entire dataset
was divided into three subsets: a training dataset, a validation dataset,
nd a test dataset, constituting 80%, 10%, and 10% of the samples,
espectively.

2.4. Dual-gate temporal fusion transformer

In this study, a novel framework for estimating LSSI is proposed
named Dual-gate Temporal Fusion Transformer (DGTFT), which ad-
ances the backbone using the TFT [13] module. To greatly forecast
ime-series solar data, we propose: (i) a novel Dual-gate Gated Residual
etwork (DGRN) that modifies from the GRN of the original TFT for
ore accurate estimation performance. (ii) a novel Dual-gate Multi-
ead Cross Attention (DGMCA) that integrates the interpretable Multi-
ead Attention that inherits the TFT with Cross Attention [20] for
ffectively learning the spatio-temporal features from the dataset and
reatly integration the static spatial features with the temporal features.

2.4.1. Model overview
As shown in Fig. 4, the proposed DGTFT is composed of a multi-data

ncoder and a temporal fusion decoder. There are three modules in the
multi-data encoder, namely, a static encoder, a past-observed encoder,
and a future-known decoder. The input data is classified into three cat-
egories (i.e., static metadata, past inputs, and known-future inputs) for
feeding into the corresponding layers, and this aims to greatly distinct
and extract useful static and temporal features. In the static encoder,
the static metadata is first embedded and fed into the variable selection,
and then the output is transformed into four static context vectors for
integrating with time-varying features. In the past-observed encoder
and future-known decoder, the data processing is the same. Specifically,
the inputs are also embedded and fed into the variable selection, and
then the LSTM module is employed for learning temporal features. The
variable selection module and LSTM model inherit from the TFT [19].
After the multi-data encoder, the outputs are fed into the temporal
fusion decoder. The temporal fusion decoder is composed of a DGRN,
a DGMCA, and position-wise feed-forward layer. The static context
vectors are integrated with the outputs of the past-observed encoder
and future-known decoder using the DGRN for the static enrichment,
respectively, and then the two outputs of the DGRN are concatenated to
be fed into the DGMCA for picking up long-range dependencies. Finally,
non-linear processing in position-wise feed-forward layer is applied to
the outputs of the DGMCA.

2.4.2. Dual-gate gated residual network
GRN plays a crucial role in TFT to flexibly provide non-linear

rocessing, which is applied in data encoding, variable selection, and
nhancing the temporal features with static data. Although the simple
esign of GRN aims to enable the model flexible to give precise in-
ights into the non-linear relationship between inputs and targets, the
xcessively simple structure of this design may not accurately describe
he non-linear relationship. Therefore, we propose a novel Dual-gate
ate Residual Network (DGRN) to improve the non-linear processing
bility of GRN. In this section, we detailed the proposed DGRN, which is

composed of two branches of non-linear processing. Since the DGRN is
applied in different modules for processing the single input 𝑋 and dual-
branch inputs (i.e., 𝑋 and static context 𝑐 ), the DGRN contains two
𝑠

6 
modules to greatly process the inputs, namely, a single-input module
and a dual-input module. In the single-input module, to greatly con-
truct the non-linear relationship, 𝑋 is fed into two branches in parallel
nd each branch contains one Linear layer and a Tanh activation
unction. Then, the outputs of the two branches are concatenated to be
ed into one Linear layer and the Tanh activation function. To avoid the
egradation of the model, the residual connection is conducted, and the
utput is fed into the gate layer. In the dual-input module, the inputs
ontain 𝑋 and static context 𝑐𝑠, 𝑋 is also fed into two branches for
rocessing one Linear layer and a Tanh activation function. 𝑐𝑠 is also
ed into two branches for integrating with the features of 𝑋. After that,
he outputs of both branches are fed into the layers that are the same
s those in the single-input module.

2.4.3. Dual-gate multi-head cross attention
In this section, we detail the proposed DGMCA, which is composed

of a self attention and a cross attention. The output of a past-observed
encoder and the output of a future-known decoder are fed into the

GMCA to learn long-term temporal dependency. To greatly learn the
nformation of past time and the estimation information, we design a
ual-gate structure using a self attention and a cross attention. Since a
elf attention module and a cross attention module are in parallel, the
utput of a past-observed encoder and the output of a future-known
ecoder are fed into two modules. Specifically, in the self attention
odule, the output of a past-observed encoder is first concatenated
ith the output of a future-known decoder, and then the concatenated

output 𝐶𝑡𝑠 are transformed into the query, the key, and the value for
performing the self attention. In the cross attention module, only the
utput of a future-known decoder serves as the query, and the output
f a past-observed encoder are transformed as the key and the value.
fter this dual-gate attention structure, the output of the self attention
odule is concatenated with the output of the cross attention module.
e detail a self attention and a cross attention next.
The self attention is performed using the concatenated output 𝐶𝑡𝑠 of

a past-observed encoder and a future-known decoder. To enhance the
forecasting performance, the query is transformed from intercepted 𝐶𝑡𝑠
related to the known-future time-series data, and the key and value are
transformed from 𝐶𝑡𝑠.

Cross attention (𝐶 𝐴) is performed between the output of a past-
observed encoder 𝐸𝑝 and the output of a future-known decoder 𝐷𝑓 .
Mathematically, 𝐶 𝐴 can be expressed as

𝑞 = 𝐷𝑓𝑊𝑞 , 𝑘 = 𝐸𝑝𝑊𝑘, 𝑣 = 𝐸𝑝𝑊𝑣 (1)

𝐴 = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(𝑞 𝑘𝑇 ∕
√

𝐶∕ℎ) (2)

𝐶 𝐴 = 𝐴𝑣 (3)

where 𝑊𝑞 , 𝑊𝑘, 𝑊𝑣 are learnable parameters, 𝐶 and ℎ are the embed-
ding dimension and number of heads, and 𝐴 denotes the attention map.
It is noticed that the computation and memory complexity of generating
A in cross attention are linear rather than quadratic as in all-attention
because we only employ 𝐷𝑓 in the query, and it leads to enhanced
efficiency of the entire process [27]. Furthermore, as in self attention,
a multi-head mechanism is also used in 𝐶 𝐴.

2.4.4. Implementation details
The TFT model was implemented using Python 3.8 in conjunc-

ion with TensorFlow 2.12.0, PyTorch-forecasting 0.10.3, and PyTorch-
ightning 1.8.6. Data splitting was conducted using the Python li-
rary ‘‘TimeSeriesDataset’’. To prevent overfitting, early stopping tech-
iques were employed. The computations were performed on a high-
erformance computer featuring an Intel (R) Core (TM) i7-6800K CPU,
perating at 3.40 GHz, with 6.0 TB of RAM, and running on the Ubuntu

16.04 LTS system.
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Fig. 4. The proposed network architecture. (a)DGTFT architecture; (b) DGRN architecture; (c) DGMCA architecture. The proposed network employed TFT architecture as the
ackbone, mainly including Gated Residual Network, Variable Selection Network, Static Covariate Encoders, and Temporal Fusion Decoder. The specific process is shown in (a).
he network is advanced by two improved architectures, including DGRN and DGMCA. The aim of dual-gate design is to greatly process two types of features (temporal features
nd static features) and to increase the accuracy of estimation.
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2.4.5. Evaluation metrics
In assessing the proposed network’s estimation performance, widely

sed evaluation metrics were employed, including the coefficient of
he determination (𝑅2), the mean absolute error (MAE), Root Mean
quare Error (RMSE), Relative Root Mean Square Error (rRMSE), and
he normalized Root Mean Square Error (nRMSE) were adopted, given
s:

𝑅2 = 1 −
∑𝑛

𝑖=1 (𝑦𝑖 − 𝑦𝑖)
2

∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦𝑖)

2
(4)

𝑀 𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1

|

|

𝑦𝑖 − 𝑦𝑖|| (5)

𝑛𝑅𝑀 𝑆 𝐸 =

√

1
𝑛
∑𝑛

𝑖=1 (𝑦𝑖 − 𝑦𝑖)
2

1
𝑛
∑𝑛

𝑖=1 𝑦𝑖
(6)

𝑅𝑀 𝑆 𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2 (7)

𝑟𝑅𝑀 𝑆 𝐸 =

√

∑𝑛
𝑖=1(𝑦𝑖 − 𝑦𝑖)2
∑𝑛

𝑖=1 𝑦
2
𝑖

(8)

where 𝑦𝑖 and 𝑦𝑖 are estimated and observed LSSI values, respectively.
𝑦𝑖 is the average value of observed land surface solar irradiation.

To assess the correlation between observed land surface solar irra-
iation, MIs, AOT, COT, and CSI, we calculated Pearson correlation
oefficient (PCC) between the target variable (LSSI) and variables
entioned in Section 2. PCC is a statistical metric that measures the

strength and direction of a linear relationship between two random
variables [28]. The Pearson correlation coefficient, which measures the
linear relationship between two variables, x and y, is formally defined
as the covariance of these two variables divided by the product of their
standard deviations (serving as a normalization factor). This coefficient
can also be equivalently defined as follows:

𝑟𝑥𝑦 =
∑

(𝑥𝑖 − �̄�)
∑

(𝑦𝑖 − �̄�)
√

∑

(𝑥𝑖 − �̄�)2
√

∑

(𝑦𝑖 − �̄�)2
(9)

where �̄� denotes the mean of x. �̄� denotes the mean of y. The coefficient
𝑟𝑥𝑦 ranges from −1 to 1 and it is invariant to linear transformations of
either variable.

2.5. Generation annual land surface solar irradiation maps

After training the models using datasets in Australia, China, and
apan, these well-trained models were employed to generate annual
7 
land surface solar maps at a 5-km spatial resolution in three countries
in 2020. The meteorological, COT, AOT, and CSI images are well-
prepared and used as the input parameters of the trained model. In
addition, a set of meteorological images are obtained by using the
Kriging interpolation method.

3. Results and discussion

3.1. Ablation study

To verify the effectiveness of each component in the proposed
DGTFT, we conduct ablation studies on the dataset in Australia. We use
the TFT as the backbone, and we substitute a novel DGRN and DGMCA
for the original GRN and interpretable multi-head attention, respec-
tively. The components being evaluated contain DGRN and DGMCA.
We also further conduct ablation studies on the Linear layers in DGRN
with different activation functions (i.e., null, Tanh, Sigmoid, and Soft-
max) to explore the optimal combination of the Linear layer and the
activation function. Five indicators are employed to evaluate the per-
formance of different combinations, namely, 𝑅2, MAE, RMSE, rRMSE,
and nRMSE. The results are shown in Table 3.

Overall, the combination of ‘‘Baseline+DGRN+ DGMCA’’ shows the
est prediction performance based on five indicators, with 𝑅2 = 0.9260,
AE = 0.02198 (k Wh∕m2), RMSE = 0.03823 (k Wh∕m2), rRMSE =

0.1338, and nRMSE = 0.04845, followed by the ‘‘Baseline+DGMCA’’.
Although the nRMSE value of this combination is slightly higher than
that of the ‘‘Baseline+DGMCA’’, it outperforms other combinations
based on the values of 𝑅2 and MAE. Therefore, ‘‘Baseline+DGRN+
DGMCA’’ shows the best performance for predicting the LSSI based
on the comprehensive evaluation of these indicators. Furthermore, it
outperforms the benchmark ‘‘Baseline’’ by 2%, 13%, 7%, 9%, and 7%
for 𝑅2, MAE, RMSE, rRMSE, and nRMSE. These results suggest that
he ‘‘Baseline+DGRN+ DGMCA’’ effectively improves the estimation

capability for land surface solar irradiation.

3.1.1. Effect of DGMCA
Compared to the benchmark, the ‘‘Baseline+DGMCA’’ increases by

% for 𝑅2 and decreases by 12%, 3%, 6%, and 8% for MAE, RMSE,
rRMSE, and nRMSE. This suggests that the designed DGMCA module is
able to learn better long-term temporal dependance and spatial features
than the original TFT model.
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Table 3
The performance of different components of our model on the test dataset of the dataset in Australia.
Architecture 𝑅2 MAE (k Wh∕m2) nRMSE RMSE (k Wh∕m2) rRMSE

Baseline 0.9091 0.02535 0.05253 0.04089 0.1475
Baseline+DGRN 0.9150 0.02411 0.05054 0.04067 0.1409
Baseline+DGMCA 0.9257 0.02226 0.04828 0.03971 0.1391
Baseline+DGRN 0.9260 0.02198 0.04845 0.03823 0.1338
+DGMCA
Baseline+DGRN 0.9186 0.02318 0.05053 0.04098 0.1396
+ DGMCA+Tanh
Baseline+DGRN 0.9166 0.02270 0.05073 0.04103 0.1388
+ DGMCA+sigmoid
Baseline+DGRN 0.9197 0.02326 0.05015 0.03980 0.1409
+ DGMCA+softmax
d

i

3.1.2. Effect of DGRN
Compared to the benchmark, the ‘‘Baseline+DGRN’’ increases by

1% for 𝑅2 and decreases by 5%, 3%, 6%, and 4% for MAE RMSE,
rRMSE, and nRMSE, which indicates that the proposed DGRN module
improve the prediction capability. Furthermore, we give the insights
into the effect of the combination of DGRN and DGMCA. The result
of the ‘‘Baseline+DGRN+ DGMCA’’ is superior in 𝑅2 and MAE than
the ‘‘Baseline’’, ‘‘Baseline+DGRN’’, and ‘‘Baseline+DGMCA’’. Addition-
ally, we also investigate the impact of the commonly used activation
functions on the prediction performance, including Tanh, Sigmoid, and
Softmax. From the results, although the performance of these three
combinations is better than that of the benchmark, their performance is
worse than that of the ‘‘Baseline+DGRN+ DGMCA’’. And this suggests
that these activation functions are not suitable for adding the DGRN
module.

3.2. Evaluation of the performance of DGTFT

3.2.1. The performance of transfer learning
To evaluate the capability of transfer learning of the proposed

GTFT, we employ three datasets in Australia, China, and Japan to
alculate the estimation accuracy based on 𝑅2, MAE, RMSE, nRMSE,

rRMSE, and execution time. The results are shown in Tables 4, 5,
and 6. To greatly illustrate the estimation results, the scatter plots
are provided in Figs. 5, 6, and 7. Overall, the performance of the
proposed DGTFT is superior to other traditional machine learning
methods(i.e., Adaptive Boosting (Adaboost), Gradient Boosting Ma-
chine (GBM), Multi-Layer Perceptron (MLP), and Random Forest (RF))
and time series deep learning methods (LSTM, Transformer), which
suggests that the DGTFT can provide a high accurate and reliable
prediction performance and has the excellent capability of transfer
learning. The capability of integrating static spatial data with temporal
data of the DGTFT may lead to highly accurate estimation performance.
Tradition machine learning methods make it difficult to use static
information to enhance the model learning ability. Distinct from the
methods [8] that train the individual model for each station, we just
rain the one model for each dataset. Therefore, we can notice that
achine learning methods are limited in processing spatio-temporal
ata, while the DGTFT shows a good capability to investigate this non-
inear relationship integrated static spatial data with temporal data.
dditionally, the estimation performance of time-series deep learning
ethods outperformed traditional machine learning methods in the

datasets of these three countries, but they were surpassed by the DGTFT
model. These findings indicate the DGTFT model exhibits advantages
in estimating spatio-temporal data. Furthermore, we found that our
method and Transformer have longer execution time, while GBM re-
quires the shortest amount of time. Despite the prolonged execution
time of our model, its notably high estimation accuracy positions this
time within an acceptable range.

Additionally, it is noticed that there are multiple data points with
ery close predicted values but differing observed values in Figs. 5(a),

6(e), and 7(a). This phenomenon may arise from the poor general-
zation capability of some machine learning models and overfitting
8 
Table 4
The estimation performance of the dataset from Australia using the DGTFT.

Model 𝑅2 MAE RMSE nRMSE rRMSE Execution
(k Wh∕m2) (k Wh∕m2) time (s)

AdaBoost 0.57 0.18 0.22 0.14 0.50 220.83
RF 0.74 0.12 0.17 0.11 0.39 171.93
GBM 0.69 0.14 0.19 0.13 0.43 46.98
MLP 0.68 0.14 0.19 0.17 0.44 187.64
LSTM 0.76 0.11 0.17 0.12 0.37 1346.12
Transformer 0.86 0.083 0.13 0.09 0.25 2344.81
Our method 0.93 0.022 0.038 0.048 0.13 2123.58

Table 5
The estimation performance of the dataset from China using the DGTFT.

Model 𝑅2 MAE RMSE nRMSE rRMSE Execution
(k Wh∕m2) (k Wh∕m2) time (s)

AdaBoost 0.35 3.98 5.66 0.18 0.38 22.39
RF 0.46 3.76 4.45 0.19 0.43 21.62
GBM 0.64 2.32 3.88 0.13 0.48 4.54
MLP 0.19 4.75 5.02 0.33 0.79 23.15
LSTM 0.68 2.42 3.01 0.14 0.43 320.24
Transformer 0.75 1.04 2.85 0.12 0.33 530.45
Our method 0.88 1.72 2.08 0.09 0.21 518.68

due to constraints imposed by the training data. Specifically, from the
results of Figs. 5 and 7, we found that AdaBoost performed the worst,
suggesting its struggle to accurately capture complex relationships
among spatio-temporal data features in multi-station long time series
data, leading to limited generalization in prediction. As for the result
of Fig. 6(e), it is highly likely that the poorer performance is due to the
smaller sample size of the dataset from China compared to the other
two countries.

Furthermore, among the three datasets, the estimation results of the
ataset in Australia are better than those of the other two datasets,

which indicates that the DGTFT model is slightly more adaptable to
the Australian dataset than the other two datasets. it is noticed that the
estimation results using our model are far better than other traditional
machine learning methods using the dataset in China. The smaller
dataset size in China compared to the other datasets may contribute to
this discrepancy. Given that the dataset in China has a daily temporal
resolution while the others are hourly, it is evident that the dataset
size in China is relatively smaller when considering the consistent study
time. These findings suggest that traditional machine learning methods
may struggle with smaller datasets, whereas DGTFT exhibits robustness
regardless of dataset size. Particularly, when faced with a limited
number of training samples, DGTFT’s estimation accuracy far surpasses
that of other machine learning models, underscoring the robustness of
the proposed network architecture to smaller sample sizes.

3.2.2. Generation of annual land surface solar irradiation maps
Figs. 8(a), 9(a), and 10(a) describe the distribution of annual LSSI

n Australia, China, and Japan, respectively. Overall, the land surface
solar irradiation levels across Australia predominantly reside within
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Fig. 5. Distribution of annual land surface solar irradiation in Australia.
Table 6
The estimation performance of the dataset from Japan using the DGTFT.

Model 𝑅2 MAE RMSE nRMSE rRMSE Execution
(k Wh∕m2) (k Wh∕m2) time (s)

AdaBoost 0.54 0.17 0.28 0.21 0.58 224.74
RF 0.66 0.15 0.17 0.18 0.49 113.60
GBM 0.64 0.15 0.17 0.19 0.51 67.64
MLP 0.63 0.16 0.18 0.19 0.52 124.37
LSTM 0.74 0.11 0.17 0.12 0.38 1419.83
Transformer 0.81 0.11 0.15 0.10 0.31 2156.32
Our method 0.83 0.077 0.12 0.087 0.21 2315.33

higher ranges, contrasting with Japan where they mostly fall within
lower ranges, with China positioned intermediate to the two. This
underscores Australia’s abundant solar energy resources. Specifically, in
Australia, land surface solar irradiation levels are generally high, except
for a small portion near the southern coastal areas where values are
relatively lower. Across China, land surface solar irradiation diminishes
gradually from the northwest to the southeast. Conversely, in Japan,
solar irradiation levels predominantly register within lower ranges,
with sporadic higher values scattered across its southern and central
regions. Furthermore, based on the respective areas of each region,
the share of solar resources for each region was analyzed, as depicted
in Figs. 8(b), 9(b), and 10(b). Notably, in Australia, the area located
near the equator, had the highest mean annual solar irradiation of
2023.94 k Wh∕m2, representing 16.46% of the nation’s solar irradiation
resources. In contrast, Tasmania had the lowest mean annual solar
irradiation resources, with 1250.90 k Wh∕m2, representing 0.95% of the
national solar irradiation resources. In China, Xinjiang, Inner Mongolia,
9 
and Tibet provinces possess the highest solar energy resources, account-
ing for 16.27%, 14.58%, and 11.89% of the national total, respectively.
Across the prefectures of Japan, there is minimal variation in the
proportion of solar energy contribution. These results indicate that
the northern regions of Australia and the northwest regions of China
possess a high potential for solar energy development. Policymakers
can utilize this information to design targeted solar energy harvesting
development.

To evaluate the estimation accuracy of the generated maps, we
calculated the annual cumulative absolute errors between estimated
values and measured values in 28 stations in three countries. Fig. 11
shows the results. Overall, the annual cumulative absolute error values
across these 28 stations are relatively small, with 92.86% of stations
exhibiting annual cumulative error values below 400 (k Wh∕m2). Specif-
ically, the annual cumulative error values at Australian sites are slightly
lower compared to those in China and Japan. These findings suggest
the high precision of our trained model in generating large-scale solar
irradiation maps, thus affirming the strong generalization capability
and broad applicability of the proposed neural network model. Fur-
thermore, we compared our generated maps with the published maps
by Solargis [29]. Solargis develops proprietary algorithms and provides
high-quality solar data and energy evaluation software based on satel-
lite image processing and atmospheric and meteorological models. The
model of Solargis [30] has been validated for 189 sites worldwide,
and the results show that the Standard deviation of Global Horizon-
tal Irradiation is ±3.0%, suggesting its high accuracy. The products
of Solargis have been applied in the fields of site selection, energy
yield simulation, optimization of power plant design, evaluation of
power plant performance, forcasting, and ground data verification [31].
Therefore, the map from Solargis is the reliable benchmark. Figs. 12(a),
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Fig. 6. Distribution of annual land surface solar irradiation in China.
13(a), and 14(a) show the spatial distribution of the annual land surface
solar irradiation map from Solargis in Australia, China, and Japan,
respectively. A comparison of the quantitative ranges and distribution
patterns shows that our results of three countries are consistent with
the published maps. Additionally, we calculated the absolute error
maps between the generated maps using our method and the maps
from Solargis in Australia, China, and Japan, respectively. As shown in
Figs. 12(b), 13(b), and 14(b), the majority of error values in Australia
and Japan fall within the 0–100 range, and those in China are mostly
under 300 (k Wh∕m2). Overall, the error values are relatively small,
further demonstrating the high accuracy of our estimated method.

3.3. Interpretability of DGTFT

3.3.1. Importance of input variables
The DGTFT enables its network structure interpretive by quantifying

the importance of variables in the different layers, including past-
observed encoder, future-known decoder, and static encoder. Figs. 15,
16, and 17 show the importance of variables in the past-observed en-
coder, future-known decoder, and static encoder of the models trained
by datasets in Australia, China, and Japan. In the Decoder network
layer, for models trained on the Australian and Japanese datasets, CSI
emerged as the variable contributing the most to network training,
with importance indices of approximately 40% and 50%, respectively.
Conversely, for the model trained on the Chinese dataset, the variables
of highest importance were the maximum temperature and humidity,
with importance indices exceeding 20%. In the Encoder network layer,
solar irradiation emerged as the variable contributing the most to
network training for models trained on the Australian and Japanese
datasets, with importance indices of approximately 85% and 40%,
10 
respectively. However, for the model trained on the Chinese dataset,
CSI was the most important variable, with an importance index of
approximately 24%. In the Static network layer, it incorporates four
types of static inputs: target center, target scale, the identification of
the facility providing additional information and context to the model,
and spatial variables mentioned in Section 2. In this case, the first
two, 𝑠𝑜𝑙 𝑎𝑟𝑐 𝑒𝑛𝑡𝑒𝑟, and 𝑠𝑜𝑙 𝑎𝑟𝑠𝑐 𝑎𝑙 𝑒 are related to the standardization of the
land surface solar irradiation, both serving as static variables in the
model. 𝑠𝑜𝑙 𝑎𝑟𝑐 𝑒𝑛𝑡𝑒𝑟 has a value of 0, and 𝑠𝑜𝑙 𝑎𝑟𝑠𝑐 𝑎𝑙 𝑒 is the median of
the time series. For the model trained on the Australian dataset, the
most important variable was 𝑠𝑜𝑙 𝑎𝑟𝑠𝑐 𝑎𝑙 𝑒, with an importance index of
approximately 33%; for the model trained on the Chinese dataset, the
most important variable was 𝑆 𝑡𝑎𝑡𝑖𝑜𝑛𝐼 𝐷, with an importance index of
approximately 86%; and for the model trained on the Japanese dataset,
the most important variables were Longitude and 𝑠𝑜𝑙 𝑎𝑟𝑐 𝑒𝑛𝑡𝑒𝑟, with im-
portance indices of approximately 23%. These findings elucidate the
varying contributions of different variables across different network
layers during model training, thereby enhancing the interpretability of
deep learning networks.

We also conducted the correlation analysis among the time-varying
variables using datasets in Australia, China, and Japan. Fig. 18 de-
scribes correlation heatmaps. Overall, CSI has the strongest positive
correlation with the observed solar irradiation in all datasets, fol-
lowed by the variables related to the temperature. Furthermore, the
humidity shows the strongest negative correlation with the observed
solar irradiation in datasets in Australia and Japan, whereas the air
pressure shows the strongest negative correlation with the observed
solar irradiation in the dataset in China. Combining these results with
the importance results in Figs. 15, 16, and 17, it is noted that both
results are consistent, which suggests that the interpretability of the
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Fig. 7. Distribution of annual land surface solar irradiation in Japan.
Fig. 8. Annual solar radiation resources in 2020 in Australia. (a) Spatial distribution of annual total land surface solar irradiation across Australia. (b) Share of solar irradiation
resources in states.
DGTFT by providing the variable’s importance in different layers is
reliable.

3.3.2. Hidden feature analysis
The DGTFT model not only shows good interpretability by providing

the importance of variables in the different layers but also reflects the
interpretability through attention values. It is possible to notice what
DGTFT has learned by showing the attention values for each time step.

Three typical attention value trend and their corresponding samples
of the dataset in each country are presented in Figs. 19, 20, and 21. The
observation period of each sample for datasets in Australia and Japan
11 
is 36 h(four days × nine hours), which consists of four-day data, and
that in China is 28 days, which consists of four-week data(four weeks ×
seven days). Overall, the trend of Attention weight of the three samples
in each country is similar. In Australia, the attention weight gradually
increases over time, reaching its peak at around the 18th hour, which
is the end of the second day. Subsequently, it declines and reaches its
lowest point at the 25th hour before slowly rising again. In China, the
attention weight exhibits cyclical variations, with approximately a two-
day cycle. In Japan, the attention weight reaches its maximum at the
beginning and then immediately drops to a minimum close to zero,
maintaining this low level until about the 20th hour. Afterward, slight
fluctuations appear, but it remains at the lowest level.
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Fig. 9. Annual solar radiation resources in 2020 in China. (a) Spatial distribution of annual total land surface solar irradiation across China.(b) Share of solar irradiation resources
in provinces.
Fig. 10. Annual solar radiation resources in 2020 in Japan. (a) Spatial distribution of annual total land surface solar irradiation across Japan. (b) Share of solar irradiation
resources in prefectures.
Fig. 11. Annual absolute errors between estimated values and measured values of 28 stations in Australia, China, and Japan.
4. Disscusion and conclusion

This study proposes the state-of-the-art deep learning model DGTFT
to provide the interpretive and high-accuracy method for estimating
LSSI. With a series of well-designed ablation experiments, the op-
timal network is obtained that exceeds TFT in terms of 𝑅2, MAE,
12 
RMSE, rRMSE, and nRMSE by 2%, 13%, 7%, 9%, and 7%, respec-
tively. The developed network remains competitive compared to the
traditional machine learning models(i.e., Adaboost, GBM, MLP, and RF)
and time series deep learning methods (LSTM and Transformer) using
datasets in Australia, China, and Japan. These improvements mainly
come from the capability of the proposed network for extracting and
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Fig. 12. Accuracy evaluation between the generated annual land surface solar irradiation map using our method and the annual map from Solargis in Australia. (a) annual land
surface solar irradiation map from Solargis. (b) absolute error map between the generated map using our method and the map from Solargis.
Fig. 13. Accuracy evaluation between the generated annual land surface solar irradiation map using our method and the annual map from Solargis in China. (a) annual land
surface solar irradiation map from Solargis. (b) absolute error map between the generated map using our method and the map from Solargis.
Fig. 14. Accuracy evaluation between the generated annual land surface solar irradiation map using our method and the annual map from Solargis in Japan. (a) annual land
surface solar irradiation map from Solargis. (b) absolute error map between the generated map using our method and the map from Solargis.
learning spatio-temporal features from geo-datasets, which illustrates
a significant contribution to accurately estimating LSSI at large-scale
regions.

Four important findings are revealed from this study. First, the
improved network based on the Dual-gate mechanism can effectively
increase the estimation accuracy of land surface solar irradiation.
Specifically, the estimation performances were all improved using
‘‘baseline+DGRN’’, ‘‘baseline+DGMCA’’, and ‘‘baseline+ DGRN +
13 
DGMCA’’, respectively. DGRN network employed the Dual-gate mech-
anism to deepen the data processing in the network, and DGMAC
integrated the cross Attention with self Attention to increase the
channels for extracting and learning the spatial features and temporal
features from the geo-dataset. Second, the network demonstrates strong
transferability. In this study, datasets from three different countries
were utilized to evaluate the performance of the proposed network in
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Fig. 15. The importance of variables in the past-observed encoder, future-known decoder, and static encoder in Australia.
Fig. 16. The importance of variables in the past-observed encoder, future-known decoder, and static encoder in China.
estimation. Observed LSSI in these datasets was sourced from local me-
teorological stations in each respective country, with varying temporal
resolutions. Despite these disparities among the datasets, the proposed
network exhibited remarkably high estimation accuracy across all three
datasets, significantly surpassing other machine learning models. Third,
based on the importance values of various variables computed by the
network, it is evident that CSI and variables related to temperature
play crucial roles in estimating solar irradiation. This provides scientific
guidance for studying factors influencing solar irradiation. Finally, the
generated maps using our method have been compared with Solargis
maps and ground station measurements, as shown in Figs. 11, 12, 13,
and 14. The results indicate that our method exhibits high accuracy
and reliability. In terms of estimated accuracy, the solar irradiation
distribution in three countries is fairly consistent with the Solargis
maps, although China shows slightly higher errors compared to Aus-
tralia and Japan, possibly due to the fewer training samples available
14 
in China. Despite Solargis’ capability to provide high-accuracy solar
irradiation distribution maps, our proposed method holds a competitive
edge. The merits of our method lie in its high data accessibility
and strong transferability, enabling the cost-effective acquisition of
high-temporal-resolution solar irradiation maps.

This study is significant in three aspects. First, this study is in-
novative in accurately estimating different temporal resolution LSSI
across different countries using the proposed network. The significant
improvement in 𝑅2, nRMSE, RMSE, rRMSE, and MAE in three datasets
suggests the new network has the strong capability of transfer learn-
ing. Second, this study is vital for providing a reliable and effective
GeoAI framework to handle the issue of geographical heterogeneity.
Specifically, by constructing spatio-temporal datasets to annotate static
geographic spatial attributes and temporal variables and employing a
dual-gate mechanism in the novel network to enhance learning of both
static and temporal features, the well-trained model can effectively
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Fig. 17. The importance of variables in the past-observed encoder, future-known decoder, and static encoder in Japan.

Fig. 18. The correlation heatmap among used variables in three countries. (a)the dataset in Australia; (b) the dataset in China; (c) the dataset in Japan.
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Fig. 19. Three selected typical attention values of DGTFT using the dataset in Australia.(A: attention weight).
Fig. 20. Three selected typical attention values of DGTFT using the dataset in China.(A: attention weight).
Fig. 21. Three selected typical attention values of DGTFT using the dataset in Japan.(A: attention weight).
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capture geographic spatial relationships and temporal dependencies
within the dataset, thus addressing geographic heterogeneity issues.
Third, this study holds significant implications for the interpretability of
eep learning. The proposed network not only computes the important
ontributions of various variables to different layers of the network
ut also calculates the attention of the network at different time steps.
his aids users in gaining a concrete understanding of the model’s
ecision-making process, thereby enhancing the model’s credibility.

Although our proposed DGTFT model performs well in estimating
patio-temporal solar radiation data, there is still room for improve-
ent in the algorithm. This algorithm requires the construction of a
eoAI dataset from multiple sources, including remote sensing imagery,

tation data, and geographical information data. Additionally, it neces-
itates the annotation of whether variables in the dataset are temporal
r static, a process that is rather complex and increases the difficulty of
lgorithm generalization. In future algorithm enhancements, the input
tructure will be optimized to accommodate multiple data formats.

In conclusion, the DGTFT model proposed in this study can provide
high-accuracy, interpretive, and reliable estimation results for land
surface solar irradiation, which can provide a reliable reference for the
design of solar power generation systems. The new network contributes
to studies related to solar potential estimation, which is also deliverable
for other spatio-temporal data estimation.
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