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H I G H L I G H T S

• Developed a DL-augmented framework to estimate city-scale EV charging capacity.
• Enhanced street-view-image segmentation with transfer learning and refined labels.
• Calculated geo-object areas by developing 3D space geometric projection method.
• Combined GIS and DL to improve parking station planning efficiency and reliability.
• Integrated EV charging records with GIS to estimate roadside charging capacity.
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A B S T R A C T

In response to the escalating sales of electric vehicles (EVs), roadside parking and charging have been developed 
to facilitate EV penetration in many cities. However, its city-scale capacity is usually unknown, hindering 
effective planning of parking and charging infrastructures. To tackle this problem, we develop a deep learning 
augmented street-view-image (SVI) data mining and analytic framework, consisting of three hierarchical mod-
ules. The first module retrieves geo-locations along roads in the government authorized parking zones (APZs) and 
obtains SVIs that present both sides of roads centralized at these geo-locations, which is used to identify suitable 
roadside parking locations. The second module conducts transfer learning that determines a suitable SVI dataset 
with well-defined classes of interested street-view geo-objects and obtains the optimal DL model capable of 
refined segmentation of various types of roads. The third module identifies different urban functional zones to 
suggest locations suitable for roadside parking, develops a 3D space geometric projection method that estimates 
parking areas in each location, and unravel roadside charging capacity through geospatial statistics of existing EV 
charging records. As a case study using 55,724 SVIs in Singapore, the IoU of segmented avenues, paths, and 
sidewalks is as high as 92.51 % to 89.71 %, and we suggest 54,812 roadside parking stalls available from 6761 
locations in the APZs, which can support up to 590,315 kWh/day and 5,685,923 kWh/day in the commercial 
zones and residential zones, respectively. Our study is significant in fundamental geospatial data construction 
and scaling roadside EV parking and charging in dense urban areas.

1. Introduction

1.1. Background

In recent years, Electric Vehicles (EVs) have met an irreversible trend 

in increasingly penetrating people’s daily life. Three key factors driving 
this shift are their ability to reduce greenhouse gas emissions by 40 %– 
60 % over their lifecycle compared to traditional fuel vehicles [1], the 
significant increase in endurance mileage over the past five years [2], 
and the decrease of battery costs by 86 % in the last decade, significantly 
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lowering purchase prices [3]. Additionally, government incentives, such 
as Singapore’s SGD 25,000 “Green Vehicle Rebate”, stimulate EV sales 
[4]. Global EV sales reached 6.6 million vehicles in 2021 – double the 
sales in 2020 [5], and the expansion of EV charging infrastructure, 
including over 250,000 public EV Charging Stations (EVCSs) in the 
European Union as of 2023 with rising fuel prices, promotes the shift 
towards EVs [6].

As EV adoption accelerates worldwide, the demand for EVCSs has 
surged, particularly for flexible roadside charging. This flexibility is 
essential in densely populated urban areas where dedicated charging 
stations may be limited, addressing the needs of EV users and alleviating 
range anxiety. With the acceleration of modern life, the convenience 
offered by roadside EV parking and charging is crucial for enabling EVs 
to compete with gasoline vehicles in terms of refueling efficiency. The 
existing roadside parking and charging facilities are insufficient to meet 
the growing demand, and the distances between them are often inade-
quate to alleviate range anxiety. Accurately estimating roadside EV 
charging capacity at a city scale is crucial for promoting efficient 
roadside EV parking infrastructure. Without fundamental EVCS data-
sets, the current roadside charging infrastructure falls short by not fully 
accounting for actual streetscapes and local traffic regulations, leading 
to inefficient placement and potential regulatory conflicts.

The integration of Geographic Information Science (GIS), Deep 
Learning (DL), and Street View Images (SVIs) is indispensable in this 
context [7]. The DL model can utilize SVIs to detect suitable locations for 
roadside EV parking and charging based on factors such as parking 
availability and proximity to power sources. Recent research on EVCS 
site selection has employed various methodologies, including GIS 
models, Multi-Criteria Decision-Making (MCDM) models, and optimi-
zation algorithms [8,9]. MCDM models can introduce bias due to sub-
jective weight assignments, impacting decision accuracy, and subjective 
judgments may also overlook local traffic legality. Unlike MCDM, this 
study aims to use cutting-edge technology to provide a comprehensive 
analysis of roadside EV parking and charging capacity while ensuring 
site selection complies with traffic regulations by using the data of APZs.

1.2. Geospatial analysis for site selection of EVCSs

Geospatial analysis is an effective approach for planning EVCSs, 
allowing evaluation of numerous factors crucial to the placement of 
charging stations, such as proximity to static power infrastructure, road 
information, traffic patterns, and land availability [10]. By identifying 
various parking locations based on these spatial indicators, geospatial 
analysis can strategically determine the optimal ones to effectively serve 
high-demand areas [11]. Furthermore, a more detailed investigation, 
which integrates dynamic population density and traffic flow with the 
distribution of existing charging stations, power network capacity, and 
land use, can further help identify optimal charging station locations. 
For instance, a study in Athens, Greece, employed GIS-based multi- 
criteria analysis to ascertain the best locations for charging stations [12].

In addition, another approach combines geospatial technologies with 
the Analytic Hierarchy Process (AHP), assigning weights to various 
factors to select the optimal charging station locations [13]. This method 
not only considers geospatial data but also incorporates expert opinions 
and socio-economic factors, thus enhancing the scientific basis for site 
selection. A relevant study successfully identified optimal locations for 
EVCSs using GIS and AHP methods [14]. In terms of methodology, the 
AHP method is effective for planning charging stations. By applying 
spatial modeling after fundamental GIS data integration using AHP, 
criteria such as environmental impact, cost-effectiveness, and user de-
mand can be comprehensively evaluated to ensure a well-rounded and 
rational siting decision [15]. However, these studies face challenges due 
to a lack of fundamental GIS data regarding EV roadside parking. 
Specially, identifying roadside EV parking zones solely based on road 
types without considering the surrounding geo-environment is unreli-
able and unconvincing. Therefore, effectively tackling this challenge 

through the analysis of SVIs and an understanding of the street-view 
environment is urgently needed.

1.3. Measurement of geo-objects in SVIs

SVIs can be used to obtain detailed information about streets and the 
associated urban landscape, including road width [16], roadside facil-
ities [17], vehicle parking conditions [18], and pedestrian activities 
[19], all of which are useful for identifying suitable parking locations. 
Although these studies have extracted various urban information from 
SVIs, there remains a lack of research focused on the extraction of spe-
cific geo-objects that can affect roadside EV parking. This gap encour-
ages us to integrate this demand into the research framework. Numerous 
studies have utilized SVIs to estimate the geometry of geo-objects in the 
real world [20]. These studies often combine depth estimation tech-
niques with pixel counting, analyzing the distribution of pixels in im-
ages, along with camera parameters, to accurately infer the real size of 
geo-objects [21]. This approach has been applied in a wide range of 
fields, including urban planning [22] and traffic monitoring [23], 
demonstrating the feasibility and accuracy of geometric measurements 
based on SVIs.

While there are several robust studies on estimating the size of geo- 
objects, research that relies on SVIs to estimate the area of specific geo- 
objects remains limited. This limitation arises from the challenges 
associated with interpreting SVIs for area estimation. Additionally, the 
variability in image quality, occlusions, and perspectives in SVIs further 
complicates the process. In contrast, most existing studies focus on non- 
SVIs method, where pixel counting techniques, combined with precise 
camera calibration and known scales, are employed to convert pixel 
counts into real-world area measurements [24]. Therefore, to suggest 
roadside locations suitable for EV parking, our study will explore a 
method that integrates robust semantic segmentation of SVIs with a 
geometric measurement technique, projecting pixels from two- 
dimensional (2D) images into three-dimensional (3D) space to calcu-
late the area of geo-objects.

1.4. DL-based semantic segmentation

In the context of semantic segmentation, DL has significantly 
enhanced the ability to understand and classify every pixel in an image, 
allowing for more precise interpretation of complex scenes [25]. Recent 
advancements in infrastructure planning have incorporated smart 
charging strategies, such as joint models for shared electric vehicles, 
which optimize charging demand and energy distribution. For example, 
a study on the electrification of vehicles in Turin highlights the impor-
tance of smart charging strategies. The research uses modeling and 
simulation of EV user behavior to forecast charging scenarios, identify 
management challenges, and improve EV infrastructure [26]. It applies 
discrete choice modeling based on socio-economic and transport data to 
describe user charging behavior geographically, estimating the number 
of EVs and user characteristics. These insights provide tools to evaluate 
modifications and indicate an adequate charging network to facilitate 
EV diffusion. Early models, such as Fully Convolutional Network (FCN), 
U-Net, and SegNet, enabled end-to-end learning and pixel-level pre-
dictions but faced disadvantages due to trade-offs between resolution 
and efficiency [27]. To address these limitations, advanced models like 
PSPNet and DeepLabV3+ addressed these issues through multi-scale 
context aggregation and improved geo-objects representation [28]. 
For model training, MXNet offers distinct advantages in scalability and 
deployment [29]. Unlike PyTorch [30], MXNet supports both dynamic 
and static computational graphs, and its built-in distributed training 
capabilities make it more efficient for large-scale production across 
multiple devices. Additionally, MXNet is more memory-efficient, which 
is beneficial for handling larger models in production environments 
[31]. Thus, MXNet will be used in our study for loading pre-trained 
models and tuning the environment for the well-trained model.
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In the comparison of three datasets in heatmap segmentation ex-
periments based on DeepLabV3+, the Cityscapes dataset achieved better 
segmentation results than the SCUT-SEG and SODA datasets [32]. These 
studies inspired us to conduct a similar approach to compare various 
semantic segmentation models with control variables to segment SVIs 
and determine suitable roadside EV parking zones. A GIS-based study 
conducted EVCSs site selection by analyzing the traffic accessibility of 
public commercial zone [33]. Although it does not utilize GIS data 
related to roadside parking, this approach provides valuable insights 
into actual parking demand and behavioral patterns, supporting the 
effective deployment of EVCSs in high-demand areas.

Cross-domain transfer learning addresses data scarcity and model 
generalization challenges in street view image segmentation by 
leveraging deep convolutional networks to extract features from source 
and target domains [34]. Models pre-trained on rich source data (e.g., 
Cityscapes) are fine-tuned on limited target data using domain adapta-
tion techniques like MMD or DANN to reduce domain shift [35]. This 
approach enhances model robustness and mitigates annotation costs. 
Applications include transferring knowledge from remote sensing to 
street view, using synthetic data with domain adaptation, and cross-city 
street view transfer [36]. Challenges like class imbalance are addressed 
through weighted loss functions, while multi-scale feature fusion im-
proves object detection across sizes. Practical recommendations involve 
selecting suitable pre-trained models (e.g., PSPNet, DeepLabV3+), 
integrating domain adaptation, and using incremental fine-tuning to 
prevent overfitting [37]. Data augmentation and multimodal fusion 
further improve accuracy in complex scenes. Future research could 
explore cross-modal transfer and lightweight deployment for practical 
applications such as autonomous driving [38].

1.5. Datasets for SVI-based semantic segmentation

Semantic segmentation classifies each pixel in an image into geo- 
objects like avenues, buildings, pedestrians, vehicles, and trees, enabling 
detailed SVI analysis critical for autonomous driving and smart city 
development [34]. Standard datasets support model training and eval-
uation. For example, the ADE20K dataset, with over 25,000 images 
covering 150 types, is widely used for tasks such as semantic segmen-
tation and geo-objects detection [35,36]. However, for complex sce-
narios, it may be necessary to increase the representation of specific geo- 
objects in the training tasks to improve their segmentation accuracy. For 
the Cityscapes dataset, focusing on urban street scenes with 5000 high- 
resolution images annotated with 30 types, is well-suited for urban 
traffic tasks but may struggle in more diverse environments [37]. 
Similarly, the COCO dataset contains over 200,000 images covering 80 
types but presents challenges with complex backgrounds and many 
small geo-objects [38]. Vision Transformers (ViT) have more parameters 
but similar mIoU and Dice scores to UNet CNN models [39]. ViT out-
performs UNet in some metrics [40] but struggles with background 
categories, limiting its practical use in tasks requiring background- 
foreground distinction.

CNN-based models like DeepLabV3+ handle background categories 
better by explicitly classifying background pixels. DeepLabV3+ is cho-
sen for its robust semantic segmentation and modular architecture, 
which adapts dynamically to road density and zoning regulations. Ex-
periments show it achieves 88 % cross-city deployment accuracy in 
complex urban settings, far superior to non-adaptive models at 51 % 
[41]. This makes DeepLabV3+ ideal for urban EV charging infrastruc-
ture planning, where accurate background segmentation is crucial. 
Choosing DeepLabV3+ emphasizes the importance of selecting models 
not just for overall performance but also for their ability to address 
specific task challenges, such as background management in semantic 
segmentation.

CamVid, offering continuous video frames, is ideal for dynamic scene 
analysis but lacks scene diversity [42]. Instead, Mapillary Vistas, 
covering diverse street scenes globally, tests the robustness of models 

like Panoptic-DeepLabV3+ but lacks pixel analysis [43]. Additionally, 
the BDD100K dataset, with rich metadata, supports multi-task learning 
[44]. Since the datasets introduced above demonstrated their effec-
tiveness in urban planning, we will also utilize the publicly available 
datasets to facilitate the development of semantic segmentation models 
in transfer learning [45,46]. Meanwhile, this study aims to develop a 
study-area-specific dataset by comparing general SVI datasets to create a 
model that accurately segments and identifies parking area within the 
SVI.

1.6. Contributions

This study presents three key innovations. First, the combination of 
DL and SVIs enables a comprehensive estimation of roadside parking 
and charging capacity compared to site selection based solely on 
fundamental geospatial dataset construction for parking locations. Sec-
ond, UFZs are identified by analyzing geo-objects from segmented SVIs, 
providing recommendations for suitable roadside parking. Thirdly, 
segmentation accuracy is improved by applying transfer learning on pre- 
trained models using datasets from the study area, enabling a more 
precise quantification of geo-objects in the segmentation results. Addi-
tionally, this study integrates government APZs data with road networks 
and validates the intersections of APZs with land use and road networks, 
respectively, to enhance the accuracy of EV charging station selection. It 
customizes a semantic segmentation model for urban settings and 
combines potential EVCS data with existing EVCS data to improve de-
mand forecasting and enable the efficient deployment of EVCS infra-
structure. Current EV parking and charging estimation methods have 
significant flaws. GIS-based models lack detailed real-world insights 
from dynamic urban settings, resulting in overgeneralized capacity as-
sessments. Heuristic planning methods oversimplify spatial complex-
ities, and existing segmentation approaches are inaccurate in 
quantifying geo-objects due to poor adaptation to local contexts, which 
limit precision in site selection and infrastructure planning.

2. Estimation of city-scale roadside parking capacity

This study proposed a research framework to suggest appropriate 
locations for EV roadside parking and charging at the city scale, con-
sisting of three interconnected modules (Fig. 1). The first module de-
velops geospatial analysis and identifies locations that can theoretically 
be used for roadside parking in the government APZs. The second 
module (i) performs effective transfer learning that pre-trains several DL 
models using a selected SVI dataset, which well-defines classes of 
interested street-view geo-objects, (ii) selects the optimal DL model by 
comparing segmentation performance of our custom SVIs with dedi-
catedly prepared labels, and (iii) conducts robust SVI segmentation in 
the whole study area. The third module (i) categories SVIs into different 
UFZs based on geo-objects to recommend different principles for 
calculating roadside parking areas, (ii) estimates roadside parking areas 
and the number of parking stalls by developing a 3D space geometric 
projection model, and (iii) quantifies roadside EV charging capacity 
through geospatial statistics of real EV charging records in each district 
of the city. Fig. 2 illustrates the overall research diagram.

2.1. Study area and datasets

Singapore is in southeast Asia, close to the equator. Recently, the 
Singapore government has initiated a plan to gradually phase out petrol 
and diesel vehicles, ceasing new diesel vehicles registrations by 2025 
and permitting only EV registrations by 2030, with a target for full 
adoption of cleaner energy vehicles by 2040 [3]. In this context, the 
Singapore EV market was valued at 63.03 million USD in 2022 and is 
projected to reach 650.92 million USD by 2030, reflecting a compound 
annual growth rate of 34.4 % [4]. To meet the continuously rising EV 
charging demand, the government plans to install 60,000 EV charging 
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stations by 2030, an increase from the current 3600 in 2022 [5]. As a 
high-density city-state with heavy traffic and limited land, Singapore 
presents a unique case for exploring roadside EV parking capacity [6], 
which makes Singapore is an ideal study area for this research, offering 
valuable insights for other cities.

We collected the latest road network data (polylines) and land use 
data (polygons) in Singapore from OpenStreetMap [9]. The government 
APZs (polygons) were obtained from the Urban Redevelopment Au-
thority (URA) of Singapore [47]. We purchased Google Cloud API [48] 
and downloaded Google SVIs on both sides of the road at 90 degrees to 
the road directions. The dimensions were set to 400 pixels by 400 pixels, 
with a 90-degree field of view (FOV) [49]. The pitch angle was 0 de-
grees, and the camera was shot in a horizontal position without tilting 
up or down. This wide angle allowed the image to capture a large area 
and gather a broad range of environmental information across the 
horizontal plane. To evaluate the roadside EV charging capacity, we also 
collected existing EV charging records from the government data portal 
to explore the roadside EV charging capacity. The dataset comprised 193 

charging stations, with records updated every 30 min from November 7, 
2023, to April 17, 2024. Each record included information on the 
charging location, time, and power of electricity charged (Fig. 3).

2.2. Identification of suitable locations allowing roadside parking

We consider that roadside parking is only allowed in the government 
APZs. Thus, road networks (polylines) within the APZs (polygons) are 
maintained. Then, we extract all points along the maintained road net-
works at every 50 m interval to balance between details and redundancy 
[50,51]. Since some points are duplicated at the same location or too 
close to each other, we refine the set of points by removing these du-
plications. One this basis, SVIs centralized at the refined set of locations 
are collected to investigate suitable roadside for EV parking and 
charging. All the generated points that are along the road networks and 
fall within the government APZs represent the preliminary locations for 
further investigation. When points have the same coordinates, only one 
is retained, and when two points on the adjacent polylines of road 

Fig. 1. Research framework for estimating roadside parking potential.

Fig. 2. Workflow for estimating roadside parking potential.
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networks are shorter than 50 m, one of the two is kept. Fig. 4 illustrates 
that locations (green dots) along road networks and in the APZs will be 
investigated to identify the parking suitability, while those (red dots) 
outside the APZs will not be filtered out for further consideration. As a 
result, we collected 55,724 SVIs in Singapore, which consists of 13,522 
SVIs in the APZs and 42,202 SVIs out of the APZs.

2.3. Transfer learning

Transfer learning is an effective approach to facilitate an accurate 
segmentation of geo-objects from SVIs. To obtain a pre-trained DL model 
that is suitable for segmenting a variety of geo-objects particularly 
related to roads (e.g., pedestrians, motorways, and footpaths), four major 
steps were processed. First, 100 SVIs with a high presence of specific 
geo-objects were selected from those located within APZs. These SVIs 
were meticulously annotated at the pixel level using the VGG Image 
Annotator tool, labeling 19 types of SVI geo-objects in each image, such 
as avenues, buildings, pedestrians, vehicles, and trees. Second, rigorous 
quality checks were conducted to ensure annotation consistency. Third, 
to enhance dataset diversity and prevent model overfitting, data 

augmentation techniques were applied to the SVIs, including adjust-
ments to brightness and contrast. The images were then standardized 
and resized to 400 × 400 to ensure uniform input. Fourth, DeepLabV3+
was retained as the DL model, with pre-trained models from ADE20K 
[52] and Cityscapes [53] applied to segment the 100 SVIs (90 % for 
training and 10 % for validation). This approach allowed us to identify 
the optimal SVI dataset for transfer learning.

It is also imperative to select a suitable DL model for transfer learning 
and accurate segmentation of all collected SVIs in the study area. Here, 
we utilize three well-known DL models (i.e., DeepLabV3+ [25], PSPNet 
[26], and FCN [27]), which have been pre-trained on the optimal SVI 
dataset, to perform semantic segmentation of the 100 well-labeled SVIs 
in Singapore (90 % for training and 10 % for validation). When the 
optimal DL model is selected, all SVIs in the APZs are segmented.

Regarding model configurations, the Adam optimizer is used along 
with a learning rate scheduler to progressively reduce the learning rate 
and improve model stability [54], and Dropout is applied to reduce the 
risk of overfitting during training [55]. The Cross-Entropy Loss function, 
suitable for addressing class imbalance in semantic segmentation tasks, 
is used to measure the performance of the model, and the output was a 

Fig. 3. Locations of existing EV charging stations.

Fig. 4. Selection of locations on road networks in the APZs.
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probability value between 0 and 1. The function is defined in Eq. (1), 
where N is the number of samples, C is the number of classes, yi,c is the 
ground truth label, and ŷi,c is the predicted probability for class c for 
sample i. 

Loss = −
∑N

i=1

∑C

c=1
yi,clog

(
ŷi,c

)
(1) 

2.4. Accuracy assessment indicators

The metrics of IoU, Precision, Recall, Accuracy, and F1-score are 
used to systematically evaluate the segmentation accuracy. Specifically, 
the IoU is calculated in Eq. (2), where TP is the number of true positives, 
FP is the number of false positives, and FN is the number of false neg-
atives, TN is the number of true negatives. Precision is defined in Eq. (3), 
Recall is defined in Eq. (4), and Accuracy is calculated in Eq. (5). The F1- 
score is defined in Eq. (6), combining Precision and Recall into a single 
metric that balances the trade-off between them. 

IoU =
TP

TP + FP + FN
(2) 

Precision =
TP

TP + FP
(3) 

Recall =
TP

TP + FN
(4) 

Accuracy =
TP + TN

TP + TN + FP + FN
(5) 

F1 − score = 2×
Precision × Recall
Precision + Recall

(6) 

2.5. Identification of UFZs

Based on the semantic segmentation results of SVIs which have been 
identified allowing roadside parking, we estimated roadside parking 
capacity in all UFZs. To start with, we defined shared geo-objects which 
are commonly seen in different UFZs, including buildings, avenues, ve-
hicles, and trees. Meanwhile, we defined unique geo-objects, which only 
appear in a specific UFZ, such as residential mailboxes which can only 
appear in the residential zone and signboards which are most probably 
built in the commercial zone. If an SVI contains all shared geo-objects, 
then it can be classified based on the unique geo-objects contained. 
Notably, if an SVI lacks any of these shared geo-objects, the corre-
sponding urban areas are categorized as Unidentified Zones and 
excluded from further classification. This approach ensured that only 
SVIs containing all shared geo-objects were used to identify UFZs, 
thereby minimizing the risk of misclassification due to incomplete 
shared characteristics. Table 1 illustrates the information above.

In a study area characterized by dense and diverse urban functions, 
the same geo-objects across different UFZs may serve different purposes. 
For example, a sidewalk should not be used for parking in the commer-
cial zones having heavy traffic flows, while it can be used for parking in 
the residential zones in certain periods. Therefore, the more diverse the 
dataset classification, the less likely the model was to overlook the 

functional diversity of the same geo-object. We first calculated the 
shared road-related geo-objects for each UFZ. It was important to note 
that, regardless of whether the geo-objects are shared or unique, we 
must determine their parking availability within a specific UFZ before 
calculating the area.

2.6. Estimation of roadside parking areas

2.6.1. Regression of distance scales in a 3D space
A geometric measurement method is developed to estimate the 

available roadside parking areas from segmented SVIs. This is achieved 
by projecting 2D images into a 3D space, and using standardized geo- 
objects, such as avenues, pedestrians, zebra crossing, and camera dis-
tance to estimate the varying scales of investigated geo-objects. Specif-
ically, a 3D space consists of three axes: x, y, and z. As shown in Fig. 5, it 
illustrates the parameters represented by x and z in reality and in the 
SVI, respectively. (The y-direction will be discussed separately after x 
and z due to its different computational principles.) If a geo-object 
touches the ground at the d pixel from the bottom of the SVI, its hori-
zontal size in the x direction and vertical size in the z direction can be 
calculated using its real-world dimensions based on Eqs. (7) and (8): 

xwidth =
xreal

xpixel
(7) 

zheight =
zreal

zpixel
(8) 

where xwidth is the width of one pixel, xreal represents the real width of 
the geo-object, and xpixel represents the number of pixels that the geo- 
object occupies in the horizontal direction of the image. Similarly, 
zheight is the height of one pixel, zreal is the real height of the geo-object, 
and zpixel calculation method is similar to xwidth, we could fit them and 
derive Eqs. (9) and (10), where xd and zd represent xwidth and zheight at the 
pixel position d respectively. Due to x increases with the increase of d, 
when d = 0, x > 0, the fitted equations require ax > 0, bx > 0, cx> 0 and 
az > 0, bz > 0, cz > 0. 

xd = ax × dbx + cx (9) 

zd = az × dbz + cz (10) 

In addition to the calculation based on the above method, the real 
distance Y from a known building to the camera (the sampling point) can 
be measured directly. Based on the given the pixel position d, Y and 
d then be fitted in Eq. (11), where Yd represents the real distance from 
the camera to the geo-object when it is at d. Note that the increasing rate 
of Yd is getting faster nonlinearly with the increase of d. 

Yd = ay × dby + cy (11) 

Therefore, the fitting parameter here needs ay > 0, by > 1, cy > 0. To 
get the varying distance of a single pixel on the y, further calculation was 
required based on Eqs. (12) and (13): 

Yd+1 = ay ×(d + 1)by + cy (12) 

yd = Yd+1 − Yd (13) 

During the formula fitting process, 80 % of the collected data are 
used to fit exponential regression and the remaining 20 % data are 
tested. After applying the fitting method described above, calculations 
in Eqs. (14), (15) and (16) get the real distance in the real world. 

xd = 7.6400×10− 11 × d5.2955 +14.95 (14) 

zd = 2.4754×10− 11 × d5.5840 +13.07 (15) 

Yd = 1.6199× 10− 12 × d7.1093 +3096.67 (16) 

Table 1 
Definition of UFZs.

Type of zones Shared geo-objects Unique geo-objects

Commercial 
zone

building, house, vehicle, avenue, sidewalk, 
path, tree, streetlight, person, bin, grass

trade, signboard

Clearway zone
traffic lights, 
skyscraper, bus

Residential 
zone

path, fence, 
mailbox
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For the area calculation of Geo-objects in 3D space, we considered 
errors in the X, Z, and Y directions (Table 2). In the X direction, data 
filtering via residual screening and a standard train-test split (80 % 
training, random seed 42) ensured high model stability. The power 
function model achieved an MAE of 3.85 mm, MAPE of 6.47 %, and R2 of 
0.9886, with a confidence interval width of ±2.5 mm (68 % confidence 
level). In the Z direction, using the complete dataset with an 80 %–20 % 
split (seed 80) resulted in an R2 of 0.9409 and MAE of 8.17 mm, with a 
confidence interval width of ±5.8 mm. In the Y direction, model pa-
rameters were preset based on theoretical assumptions, and two test 
datasets showed alignment with fitted curve trends. Future work in-
cludes exploring data screening strategies for the X direction, intro-
ducing stratified sampling or weighted fitting for the Z direction, and 
combining actual data with covariance analysis for the Y direction to 
enhance model adaptability and performance.

Overall, the X direction demonstrated efficient data screening and 
modeling capabilities, the Z direction showed tolerance for complex 
data, and the Y direction provided an initial validation basis for the 
theoretical framework. Targeted optimizations, such as adjusting sam-
ple selection thresholds for the X direction, enhancing noise robustness 
for the Z direction, and supplementing actual data fitting for the Y di-
rection, could lead to higher precision in each direction.

2.6.2. Area calculation of geo-objects with polygonal coordinates
Since the segmented areas of avenues in the SVIs are confined to the 

ground plane with minimal vertical variation, indicating insignificant 
extension in the direction of z axis of 3D space, we define the height of 
the avenues as z = 0. As shown in the SVI segmentation example (Fig. 6), 
the left side represents a comparison between the original SVI and the 
segmentation result, while the right side illustrates the breakdown of the 
SVI into pixels. The yellow section represents the semantic segmentation 
result for the geo-object labeled avenues and every SVI used in the 
calculation is captured with the avenues as the starting point.

The area is calculated using an accumulation method. First, we take a 

row, d, within the segmentation result of geo-object labeled avenue as an 
example. The distance from the camera to the geo-object represented at 
that point is the real-world distance Yd, and yd is the difference between 
Yd+1 and Yd, which represents the length of the one pixel at d [42–45]. 
Combined with the horizontal length of the one pixel xd, we calculate 
the real area of one pixel for row d. xd is unaffected by depth as it is not 
along the photographing direction of SVIs, while yd is affected by depth. 
Next, if the row d contains md pixels, the area represented by that row is 
the sum of the areas of the md pixels. The total area of the avenue in the 
SVI, Atotal, is the cumulative sum of the areas for each row. The calcu-
lation is presented in Eqs. (17), (18) and (19): 

Sd = xd × yd (17) 

Ad = Sd ×md (18) 

Atotal =
∑i

n=0
An (19) 

3. Results

3.1. Statistics of potential roadside parking locations

Using overlapping analysis between land use types and road net-
works in the APZs, it is found that 39 types of land uses (Table 3) and 33 
types of road networks (Table 4) may exhibit roadside parking. Among 
these, 36 land use types and 31 road network types can support roadside 
parking. Specifically, 99.56 % of residential land use and 85.36 % of 
commercial land use can be utilized, indicating its high capability in 
supporting roadside parking. By contrast, the value is much lower for 
industrial, at only 34.87 %, and land use such as playground, proposed and 
utility exhibit no parking capacity, suggesting significant constraints in 
roadside parking. In the other perspective, 98.87 % of service road net-
works can be used for roadside parking, and road networks such as 

Fig. 5. The principle of calculating the area of geo-objects based on pixel count. (a) Original SVI. (b) Calculation principle.

Table 2 
Comparison of the 3D-axis.

3D- 
Axis

Data Strategy Source of Model 
Parameters

MAE (mm) MAPE (%) Confidence Interval 
Width

Optimization Direction

X
Low residual screening +
random split Fitted from training set 3.85 6.47 ±2.5 mm

Balance screening strategy with 
generalization

Z
Full data retention +
random split Fitted from training set 8.17 12.11 ±5.8 mm

Explore noise suppression and stratified 
modeling

Y
Theoretical assumption 
guidance

Preset parameters + to 
be verified

To be 
supplemented

To be 
supplemented

Theoretical 
reference value

Combine measured data to refine parameters 
and covariance analysis
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primary demonstrate a modest parking potential of 61.36 %, suggesting 
a need for improved design to enhance usability. In contrast, types of 
road networks such as crossing and no stopping exhibit no parking ca-
pacity. As a result, we generated 27,862 locations along the entire road 
networks, then we obtained 7431 locations inside the APZs that can be 
theoretically used for roadside parking. After denoising (i.e., removing 
duplicate coordinates which are within 50 m), 6761 locations were 
retained as potential parking options for further investigation. It was 
found that a large number of these locations are concentrated in densely 
populated districts in the northern (Fig. 7(a)) and southern (Fig. 7(b)) 
parts of Singapore.

3.2. Comparison of transfer learning results

We successfully segmented sidewalk, using DeepLabV3+ pre-trained 
on ADE20K (Fig. 8a), which, however, was not achieved when it was 
pre-trained on Cityscapes (Fig. 8b). Thus, ADE20K was ultimately 
selected for training and evaluation. On this basis, the segmentation 
results demonstrate that DeepLabV3+ achieved the highest accuracy 
(Table 5), outperforming PSPNet and FCN regarding all accuracy in-
dicators. Particularly, DeepLabV3+ outperforms PSPNet and FCN in 19 
segmented geo-objects in terms of mIoU, Precision, Recall, Accuracy and 
F1-Score (Table 6). Although PSPNet performs better than FCN in mIoU 
and Precision, it only surpasses FCN by approximately 1 % in Recall.

We suggest that three geo-objects (avenue, path, and sidewalk) are 
important fundamentals to estimate roadside parking. Table 5 also 
represents satisfactory results for the three geo-objects, with Deep-
LabV3+ getting the largest IoU as high as 98.16 %, 97.84 %, and 97.75 
% (The bolded parts in the table). respectively. DeepLabV3+ has a 
Recall 7.7 % higher than PSPNet and 8.6 % higher than FCN. It also has 
an Accuracy 6.76 % higher than PSPNet and 10.41 % higher than FCN. 
The F1-Score of DeepLabV3+ is 7.65 % higher than PSPNet and 10.28 % 
higher than FCN. This means that, after manually annotating these geo- 
objects in SVIs, the model can adapt to specific street-view environments 
in Singapore, highlighting the effectiveness of the proposed transfer 
learning. Furthermore, as shown in Fig. 9, the segmentation results of 
the DeepLabV3+ (Fig. 9 (b)) model for path closely aligned with the SVIs 
(Fig. 9 (a)), whereas PSPNet (Fig. 9 (c)) and FCN (Fig. 8 (d)) produce 
fragmented segmentation for path, exhibiting significant errors.

3.3. Segmentation and classification of SVIs in Singapore

The above results confirm that DeepLabV3+ pre-trained on the 
ADE20K is the optimal DL model for our SVI segmentation task, which is 
thus used for segmenting SVIs of the locations in APZs. The performance 
of the well-trained model on the test set is presented in Table 7. Based on 
the segmentation results and the 19 types of shared and unique geo- 
objects, geo-objects presented in SVIs are classified into different UFZs 
(Table 8). We also recorded the proportions of the SVIs in different UFZs 
(Table 8), which is approximately 72.1 % in the residential zone, 15.8 % 
in the commercial zone, 6.1 % in the clearway zone, 6.0 % in the 

Fig. 6. Area calculation of geo-objects based on SVI.

Table 3 
Statistics of land use areas in the APZs per km2.

Type of land 
use

Area in 
APZs (m2)

Share in 
all study 
areas (%)

Type of land 
use

Area in 
APZs 
(m2)

Share in 
all study 
areas (%)

residential 86,135.00 99.56 cemetery 882.85 92.25
grass 56,357.00 75.52 basin 771.14 8.75
construction 32,076.00 98.36 village 675.56 90.00
industrial 12,996.00 34.87 brownfield 518.70 75.00
commercial 9070.00 85.36 railway 458.72 97.25
meadow 8797.00 90.05 healthcare 107.04 95.88
religious 6715.00 2.36 greenhouse 66.08 82.50
retail 5639.00 15.75 reservoir 35.27 0.70
recreation 2541.00 9.94 government 14.92 5.00
military 2257.00 2.20 institutional 8.27 98.00
garages 2093.00 94.52 mixed 5.29 1.25
plant 2049.00 2.25 public 5.24 67.50
allotments 1678.00 4.45 quarry 2.85 100
farmyard 1597.00 84.25 station 1.27 100
greenfield 1554.00 95.55 churchyard 1.20 100
farmland 1072.00 10.00 depot 1.12 100
flowerbed 921.50 10.23 garage 1.00 100
aquaculture 920.27 10.00 playground 0 0
education 920.28 79.69 proposed 0 0

utility 0 0

Table 4 
Statistics of road distance in the APZs per km.

Type of road 
network

Length 
in 
APZs 
(m)

Share in 
all study 
areas (%)

Type of road 
network

Length 
in 
APZs 
(m)

Share in 
all study 
areas (%)

service 3269.16 98.87 trunk 19.25 16.67
footway 1571.00 12.56 pedestrian 15.21 83.33

residential 596.27 8.13
secondary 
with link 15.89 12.75

primary 501.72 61.36 corridor 10.07 92.26

secondary 434.74 95.82
tertiary with 
link 7.04 90.15

tertiary 337.78 3.38 proposed 6.08 85.73
steps 192.75 7.75 living street 4.27 97.50
unclassified 130.13 88.76 elevator 4.28 75.00
construction 81.87 96.43 raceway 2.94 50.00
motorway 

with link 68.47 95.75 busway 2.72 75.00

restway 52.24 90.85 bridleway 2.68 50.00
cycleway 51.86 16.37 bus stop 2.52 97.50
motorway 46.57 84.78 rest area 2.46 90.15
primarily 

with link
45.75 3.38 lane 2.21 100

path 28.87 25.76 channel 1.97 8.25
track 23.42 10.15 crossing 0 0

no stopping 0 0
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Fig. 7. Potential roadside parking locations. (a) Northern part of Singapore. (b) the Southern part of Singapore.

Fig. 8. Semantic segmentation using DeepLabV3+. (a) ADE20K. (b) Cityscapes.
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unidentified zone that cannot be used for analyzing roadside parking 
such as mosaic and nighttime SVIs.

It is found that geo-objects in the commercial zone have a high 
concentration of trade-related elements, such as signboards, indicating 
active commerce (Fig. 10(a)). The clearway zone includes urban geo- 
objects like streetlights, bus, highlighting its role as a major trans-
portation thoroughfare (Fig. 10(b)), whereas the residential zone com-
prises fences, representing primarily housing areas (Fig. 10(c)). The 
unidentified zone, due to poor visibility of nighttime and mosaic SVIs, 
means that it does not have any valid geo-objects. According to the 
district-based statistics, we found that the distribution of appropriate 
roadside parking locations exhibits different distribution characteristics 
across various UFZs. In the commercial zones (Fig. 11(a)), they are 
primarily distributed in the southern and eastern districts; in clearway 
zones (Fig. 11(b)), those roadside parking locations primarily distribute 
in the southwestern and southeastern districts; in residential zones 
(Fig. 11(c)), they are predominantly distributed in the eastern and 
western districts, with the eastern districts having significantly more 
than the western ones, and with a noticeably larger quantity compared 
to the other three UFZs. By contrast, unidentified zones (Fig. 11(d)) are 
primarily distributed in the middle eastern and middle western districts.

3.4. Estimation of the number of roadside parking stalls

According to the regulation issued by URA [44], any temporary or 
long-term parking on all types of roads is prohibited in the clearway 
zone, which is thus excluded from further estimation. In the commercial 
zone, parking on the sidewalk is also illegal; therefore, only the area of 
avenue and path is considered. Since the residential zone does not have 
any explicit constraints, sidewalk and avenue, and path areas are usable 
for roadside parking. Next, for each SVI, the total usable parking areas 
are summarized. According to the URA standard [45], a parking stall is 
2.4 m by 4.8 m, occupying an area of 11.52 m2. As a result, Fig. 12

presents the estimated number of roadside parking stalls in each district 
in Singapore from two types of UFZs: commercial zones (Fig. 12(a)) and 
residential zones (Fig. 12(b)), resulting in a total of 54,812 parking stalls 
across the entire study area. Overall, the estimated roadside parking 
stalls for both residential zones and commercial zones are mainly 
concentrated in the southern and eastern districts. However, the parking 
stalls in residential zones are significantly more than those in commer-
cial zones.

3.5. Roadside EV charging capacity

To estimate the EV charging demand (kWh/day) across Singapore, 
we first assume that the number of roadside parking stalls in each dis-
trict equals the number of EV charging piles in that district [56,57]. 
Using existing charging records, we calculate the EV charging demand 
per district. Subsequently, we divide the EV charging demand per dis-
trict by the number of EV charging piles in each district to obtain the 
average EV charging demand per pile for each district. While calculating 
the existing charging records (kWh/day) for Singapore’s total of 55 
districts, 9 districts were excluded due to no roadside parking stalls, 
resulting in no charging demand for those areas.

As shown in Fig. 13, our results suggest that Singapore’s charging 
demand primarily avoids two major reservoirs and several industrial 
islands (indicated by the white areas in Fig. 13). The estimated charging 
demand in commercial zones is mainly concentrated along the southern 
and southeastern coast, while avoiding areas near the Changi airport 
and offshore islands, while the residential charging demand extends 
from west to east. Both coastal residential zones and commercial zones 
exhibit high demand for EV charging. In comparison, the EV charging 
demand in commercial zones aligns with the distribution characteristics 
of the estimated number of EV charging piles (Fig. 13(a)), whereas the 
estimated roadside charging demand in residential zones shows an 
additional high demand in the northern districts (Fig. 13(b)). The total 
electricity demand in the commercial zone is 590,315 kWh/day, while 
the total electricity demand in the residential zone is 5,685,923 kWh/ 
day.

Several additional constraints should be considered for practical 
implementation. Firstly, roadside EV parking and charging in high- 
density urban areas during peak hours may cause congestion [58]. 
Three strategies can be proposed to mitigate the potential adverse ef-
fects: (i) implement spatiotemporal pricing incentives based on real- 
time traffic data to discourage peak-hour charging, as validated in Sin-
gapore’s ERP system [59]; (ii) integrate EV charging schedules with grid 

Table 5 
The overall segmentation accuracy of the 100 SVIs in Singapore, using DL 
models pre-trained on ADE20K.

DL models IoU 
(%)

Precision (%) Recall 
(%)

Accuracy (%) F1-Score (%)

DeepLabV3+ 62.80 82.10 86.20 73.07 84.10
PSPNet 48.10 74.50 78.50 66.31 76.45
FCN 39.60 70.40 77.60 62.66 73.82

Table 6 
Accuracy of segmented geo-objects of the 100 SVIs in Singapore#.

IoU (%) Precision (%) Recall (%) Accuracy (%) F1-Score (%)

Geo-object DL-1 DL-2 DL-3 DL-1 DL-2 DL-3 DL-1 DL-2 DL-3 DL-1 DL-2 DL-3 DL-1 DL-2 DL-3

avenue 98.16 97.46 97.04 97.71 96.53 95.36 91.51 88.52 81.53 86.96 85.91 84.87 94.51 92.35 87.9
path 97.84 96.96 96.46 94.1 95.96 93.82 89.89 87.04 80.2 83.75 85.4 83.5 91.95 91.28 86.48
sidewalk 97.75 96.88 96.21 92.26 92.13 92.11 88.71 85.99 80.08 82.11 82 81.98 90.45 88.95 85.67
building 96.46 95.8 95.11 92.89 93.82 90.75 87.86 85.02 78.54 82.67 83.5 80.77 90.31 89.2 84.2
house 95.41 93.18 93.06 91.35 92.1 90.1 87.25 85.12 76.25 81.3 81.97 80.19 89.25 88.47 82.6
vehicle 93.43 92.76 91.76 88.94 91.37 89.96 85.32 84.89 74.81 79.16 81.32 80.06 87.09 88.01 81.69
stoplight 93.1 91.8 90.46 91.41 90.38 89.34 81.39 80.29 72.5 81.35 80.44 79.51 86.11 85.04 80.04
skyscraper 91.59 90.22 88.38 86.23 90.01 88.21 78.88 75.12 70.36 76.74 80.11 78.51 82.39 81.89 78.28
tree 91.24 88.36 87.89 85.33 86.19 86.39 76.29 75.76 68.24 75.94 76.71 76.89 80.56 80.64 76.25
streetlight 84.55 79.08 78.64 80.84 81.64 77.32 73.03 72.8 65.57 71.95 72.66 68.81 76.74 76.97 70.96
person 79.79 78.05 76.31 78.36 74.29 70.09 70.46 71.65 61.83 69.74 66.12 62.38 74.2 72.95 65.7
bus 76.73 75.06 73.39 73.05 67.97 62.74 68.77 69.11 62.25 65.01 60.49 55.84 70.85 68.54 62.49
bin 76.85 75.17 73.5 72.33 67.12 61.75 68.23 68.06 65.9 64.37 59.74 54.96 70.22 67.59 63.76
grass 75.25 73.61 71.97 72.05 66.79 61.36 67.36 65.63 62.9 64.12 59.44 54.61 69.63 66.2 62.12
trade 71.35 70.9 69.32 71.2 62.16 55.98 65.86 64.04 62.26 63.37 55.32 49.82 68.43 63.09 58.95
signboard 72.48 70.28 68.71 68.16 58.79 52.06 64.81 63.81 58.76 60.66 52.32 46.33 66.44 61.2 55.21
wall 71.84 70.05 68.45 65.32 56.6 51.74 62.36 58.29 52.08 58.13 50.37 46.05 63.81 57.43 51.91
fence 71.5 69.04 68.38 62.5 55.44 48.16 61.45 55.97 51.5 55.63 49.34 42.86 61.97 55.7 49.77
mailbox 64.74 63.33 61.92 59.61 52.00 44.16 57.88 54.73 50.58 53.05 46.28 39.3 58.73 53.33 47.15

# DL-1, DL-2, and DL-3 refer to DeepLabV3+, PSPNet, and FCN, respectively pre-trained on ADE20K.
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load forecasts through time of use charging coordination to shift peak 
demand to off-peak periods, as shown in California’s SGIP program [60]; 
(iii) co-locate fast-charging stations with public transport nodes to 
reduce intra-urban charging trips, following the Berlin S-Bahn model 
[61]. Additionally, reinforcement learning-based dynamic load 

balancing algorithms can be developed to optimize energy usage and 
reduce grid stress, as demonstrated in Tokyo [62].

Secondly, to refine planning locations, we need to address safety, 
accessibility, and regulatory requirements, such as adequate space, 
compliance with safety standards, and proximity to urban infrastruc-
ture. These factors require detailed studies beyond initial estimations, 
and our results aim to guide urban planning with interval-based rec-
ommendations. Thirdly, balancing fast and slow chargers is crucial for 
different urban needs. Future work will collect data on charger power 
and usage patterns to develop more reliable allocation strategies and 
conduct cost-benefit analyses to optimize deployment. Additionally, 
applying the framework to other cities may face challenges from 
incomplete GIS datasets. We suggest using crowd-sourced data from 
platforms like Mapillary (https://www.mapillary.com/) or integrating 
real-time traffic data with GIS to identify high-demand areas. Machine 
learning algorithms can forecast demand for dynamic adjustments, and 
continuous monitoring will improve model accuracy and planning 
efficiency.

Fig. 9. Semantic segmentation using the pre-trained ADE20K dataset. (a) Custom SVIs in Singapore. (b) DeepLabV3+. (c) PSPNet. (d) FCN.

Table 7 
Segmentation accuracy of SVIs in Singapore using the pre-trained DeepLabV3 +
.

Geo-object IoU 
(%)

Precision (%) Recall 
(%)

Accuracy (%) F1-Score (%)

avenue 92.51 98.71 99.16 87.85 98.93
path 90.89 95.10 98.84 84.64 96.93
sidewalk 89.71 93.26 98.75 83.00 95.93
building 88.86 93.89 97.46 83.56 95.64
house 88.25 90.35 96.41 80.41 93.28
vehicle 86.32 89.94 94.43 80.05 92.13
stoplight 82.39 90.41 94.10 80.46 92.22
skyscraper 79.88 87.23 92.59 77.63 89.83
tree 77.29 86.33 92.24 76.83 89.19
streetlight 72.03 81.84 85.55 72.84 83.65
person 69.46 79.36 80.79 70.63 80.07
bus 67.77 74.05 77.73 65.90 75.85
bin 66.23 73.33 77.85 65.26 75.52
grass 66.36 73.05 76.25 65.01 74.62
trade 64.86 72.20 72.35 64.26 72.27
signboard 63.81 69.16 73.48 61.55 71.25
wall 61.36 66.32 72.84 59.02 69.43
fence 60.45 63.50 72.50 56.52 67.70
mailbox 56.88 60.61 63.74 53.94 62.14

Table 8 
Results of UFZ identification.

Type of zones Number of SVIs Proportion (%)

Residential zone 4876 72.10
Commercial zone 1067 15.80
Clearway zone 415 6.10
Unidentified zone 403 6.00
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4. Discussion

The developed framework consists of three interconnected modules, 
integrating GIS data, DL-enhanced SVI data, and 3D geometry projec-
tion. The framework provides a robust approach for identifying optimal 
EV charging locations. Our findings suggest that Singapore has a total of 

54,812 suitable roadside parking stalls, which aligns closely with the 
government’s goal of installing 60,000 EV charging piles by 2030, 
indicating great potential to plan city-scale EV roadside parking and 
charging infrastructures.

This study presents several key impacts. First, it introduces an 
innovative study framework that combines policy regulations (APZs) 

Fig. 10. Segmentation results of UFZs. (a) Commercial zones. (b) Clearway zones. (c) Residential zones.

Fig. 11. The number of locations to be used for investigating roadside parking in four different UFZs. (a) Commercial zones. (b) Clearway zones. (c) Residential 
zones. (d) Unidentified zones.
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with geospatial analysis to construct fundamental geospatial datasets. 
This approach not only aids in understanding socioeconomic phenom-
ena on urban streets but also enhances data availability for various 
urban applications, such as traffic management, land use planning, and 
optimizing urban infrastructure layout. Moreover, the SVI-based 
method outperforms traditional resource-intensive surveys, signifi-
cantly reducing costs and time, offering a practical, data-driven solution 
for resource-limited cities. Our approach can support flexible and 
convenient roadside parking, promote city-scale vehicle electrification, 
and provide urban planning insights for governments and policymakers. 
This enables policymakers to precisely identify high-demand EV 
charging areas, which is crucial for addressing urban challenges such as 
the mismatch between the number of parking stalls and the EV charging 
demand in a district, whether it is undersupply or oversupply, ensuring a 
smoother transition to an electrified transportation system.

Second, for compact study areas like Singapore, characterized by a 
complex combination of different UFZs, we achieved more accurate 
recognition of various geo-objects in SVIs compared to using general DL 
datasets by leveraging effective transfer learning and selecting the 
optimal semantic segmentation model. Additionally, by integrating 
existing charging records, we provided accurate estimations of roadside 
parking areas to ensure that our urban EV charging capacity estimations 
reflect real-world conditions. This directly contributes to creating 
actionable insights for cities with high EV density and complex urban 
layouts, ensuring that EV infrastructure deployment aligns with actual 
demand and operational feasibility.

Third, the framework presented in this study is scalable and can be 
applied to other cities. Since the tools used in this study, such as 
OpenStreetMap and Google Cloud API, have global coverage, and 
MXNET is open source, the framework can be extended to any city that 
can access GIS data and SVI images through these sources. By applying 
the 3D geometry projection method introduced in this study and 
adapting MXNET for DL as needed, it is also possible to determine EV 

charging demand for other cities. Considering the generalization capa-
bility of the developed framework, the major concern is the availability 
of geospatial data and SVIs. Given the flexible nature of the methodol-
ogy, the framework can be easily applied to other cities by using similar 
data infrastructure, making it a practical solution for promoting global 
vehicle electrification.

Nevertheless, our study contains three limitations. First, due to the 
manpower limitation, we carefully selected and manually labeled a 
small number of 100 representative SVIs in Singapore to train a custom 
DL model. The segmentation accuracy and UFZ identification can be 
further improved if more labeled SVIs are available. Second, considering 
Singapore has tiny terrain variation, we assume that all types of roads 
like avenue and sidewalk are flat. Yet, a more accurate parking area 
estimation through 3D geometry projection needs to model the defor-
mation along the z-axis in SVIs. This is especially unignorable when 
applying the model to other cities presenting considerable terrain vari-
ation (e.g., Hong Kong and Bergen). Third, we do not consider dynamic 
roadside parking allocation (i.e., allowing parking during certain dates 
and periods), which has been implemented in many cities including 
Singapore. Future study can address this issue to meet the increasing 
parking and charging demand by incorporating detailed policy analysis.

To improve prediction reliability across diverse regions, we will 
develop localized models by fine-tuning pre-trained models with 
location-specific data, including traffic dynamics, seasonal demand 
shifts, and urban infrastructure traits. This approach enhances adapt-
ability while maintaining computational efficiency. For rural or data- 
scarce areas, we will leverage alternative data streams such as satellite 
imagery, aggregated mobile data, and publicly contributed inputs to 
compensate for limited infrastructure records. We will redesign models 
to accommodate rural features like decentralized transportation net-
works and sparse energy grids. Additionally, we will develop light-
weight pre-processing pipelines and transfer learning strategies for low- 
resource region settings. We will also explore synergies with emerging 

Fig. 12. The number of estimated roadside parking stalls in Singapore. (a) Commercial zones. (b) Residential zones.

Fig. 13. The estimated roadside daily mean EV charging demand per district. (a) Commercial zones. (b) Residential zones.
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technologies, including vehicle-to-grid (V2G) integration for smarter 
station placement, LiDAR-SVI fusion for geometric precision, and reg-
ulatory constraint modeling to enhance real-world feasibility.

5. Conclusion

To conclude, this study develops a scalable research framework that 
couples DL and GIS technologies to estimate city-scale roadside EV 
parking stalls and charging capacity. The results demonstrate that DL- 
based segmentation and 3D geometry projection can effectively simu-
late real-world measurements, significantly improving the efficiency of 
geospatial data construction. Our study highlights a promising oppor-
tunity, particularly in densely populated areas such as Singapore, for 
deploying roadside EV parking and charging infrastructures. The pre- 
trained model not only evaluates a city’s overall energy efficiency 
based on EV charging demand but also provides valuable guidance for 
other cities in formulating sustainable strategies for EV charging station 
deployment. Future work could (i) apply the framework to rural or less- 
developed areas to address sparse infrastructure, (ii) collaborate with 
policymakers and government agencies to refine deployment strategies 
and enhance the framework’s capability for sustainable mobility, and 
(iii) integrate dynamic data (e.g., near real-time traffic flows, charging 
demand, and PV generation) to provide adaptive charging scheduling 
services.
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