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A B S T R A C T

City-scale three-dimensional (3D) building models associated with heterogeneous façade materials and albedos 
are crucial for investigating light pollution, analyzing urban heat island effects, and estimating solar potential 
distribution. Segmenting façade materials from street view images (SVIs) and identifying albedos is an effective 
approach to collect such thematic information in large urban areas, which, however, is challenged by complex 
street landscapes filled with confusable and small textures. Here, we propose a scalable framework, which de-
velops a deep learning model, called AdvUNet3+, to accurately segment building façade materials from SVIs, and 
perform spatial analysis to project the identified façade material information onto 3D building models. We 
innovatively (i) incorporate multi-scale SVIs into the encoder backbone that balances the trade-off between high- 
detail and broader contextual awareness, and (ii) integrate the Dual Attention Module and Atrous Spatial Pyr-
amid Pooling at the bottleneck that enhances spatial and channel relationships in feature maps and capture 
multi-scale contexts consistently. After transfer learning, we strategically integrated the multi-class and binary 
segmentations to facilitate façade identification, using our customized 800 SVIs with refined façade labels (i.e., 
paint, metal, brick, glass, clay, and rare material) in central Singapore. Although challenged by small, difficult, 
and non-mixed façade samples in the 360-degree panoramic SVIs, the mIoU remains at 52.9 %, with Precision, 
Recall, F1-Score, and Accuracy equaling 62.8 %, 77.2 %, 60.4 %, and 87.6 %, respectively. The successful 
segmentation of >24,000 SVIs in a small urban area greatly enriched 3D building information, indicating a 
generalizable framework that can be applied to any other city.

1. Background

Three-dimensional (3D) building models are one of the most 
important geospatial datasets that have been widely used in city science 
(Ying et al., 2019, 2020; Yan et al., 2023). Particularly, building surface 
information (e.g., materials, textures, colors, and albedos) is crucial for a 
variety of studies. For example, Cao et al. (2021) evaluated 33 studies 
that investigated different planning strategies to reduce the urban heat 
island (UHI) effect using 3D models, and it was found that buildings, 
green areas, and pavements contributed the most to the UHI effect. Al-
bedo information on city-scale building façades is also an important 
attribute for 3D building models (Calcabrini et al., 2019; Jakubiec & 
Reinhart, 2013; Li et al., 2016). Due to high albedos of large-area glass 
equipped on building façades, daytime light pollution is increasingly 

getting severe in high-density urban areas, which negatively affects 
human health, the ecological environment, and energy use among an 
array of problems (Zhang et al., 2024). Zhu et al. (2019, 2020) estimated 
solar irradiation distribution on 3D urban surfaces, incorporating direct, 
diffuse, and reflective irradiation into a 3D building model that has been 
used for estimating solar photovoltaic potential in cities. However, these 
studies lacked spatially heterogeneous albedo information on façades 
that can generate multiple reflections on 3D urban surfaces. To address 
this problem, they either ignored reflective irradiation (Walch et al., 
2020; Park et al., 2021; Assouline et al., 2017) or assumed that building 
surface materials and albedos were homogenous, which can cause large 
uncertainty in the estimated results. Therefore, 3D city models associ-
ated with accurate and heterogeneous material and albedo information 
are urgently needed.
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A variety of methods have been developed to collect material and 
albedo data of façades to advance 3D models, which, however, face 
considerable drawbacks. For instance, using traditional land surveying 
to measure building façades and identify various materials is extraor-
dinarily accurate, but is costly and time-consuming (Mishra et al., 2024). 
Large-scale semantic segmentation of rooftop areas and materials from 
high-resolution satellite imagery is another effective way to obtain 
building surface information. However, it cannot obtain scenic infor-
mation about the rest partitions of building surfaces from a 3D stand-
point, which is necessary when accounting for studies closely related to 
façades, such as modelling the distribution of multi-surface solar radi-
ation on façades (Sánchez & Izard, 2015; Boccalatte et al., 2020).

Street View Images (SVIs), with the obvious advantages of wide 
coverage in entire cities, easy accessibility, and abundant building in-
formation, have been used to address the challenges (Xing et al., 2023; 
Fan & Biljecki, 2024). There are two key groups of studies related to the 
use of SVIs. The first are those that develop deep learning (DL) models, 
such as GLNet (Lin et al., 2020) and adaptive multi-scale dual attention 
network (Wang et al., 2021), to segment objects in SVIs. The second is 
studies that compare the performance of various state-of-the-art (SOTA) 
models at segmenting objects in SVIs (Minaee et al., 2022). These DL 
models can effectively distinguish façade materials even though (i) they 
are of similar spectral characteristics, which is more challenging than 
identifying façade components with distinct shapes, and (ii) they have 
visual impediments like blurring varied distances from the viewpoint 
and unwanted obstacles.

However, these studies did not use multi-scale inputs to enhance 
feature representation in existing SOTA models, which neglected the 
possible benefits multi-scale inputs could introduce, including improved 
generalization to object sizes and preservation of global and local in-
formation. Alternatively, some studies impose assumptions to decrease 
the details of façade material representation, such as assuming each 
façade has two types of materials at most (Xu et al., 2023). We observe 
that the challenge of accurately detecting and segmenting a variety of 
building façade materials remains. Therefore, the major objective of this 
study is to efficiently obtain city-scale heterogeneous façade albedos, by 
developing a research framework that can comprise data collection, data 
preparation, DL-based building façade segmentation from SVIs, and 
projection of façade albedos onto 3D building models.

Subsequent sections of the paper are organized as follows. Section 2
reviews related work, enlightening us to propose an ensemble strategy 
using a modified UNet3+ network architecture to achieve accurate 
segmentation of building façade materials in SVIs. Section 3 introduces 
the methodology and assumptions of the experiment. Section 4 assesses 
the performance of the model across datasets and in comparison, with 
the bench line UNet variants whilst conclusions and discussions are in 
Section 5.

2. Literature review

For complex tasks such as façade material identification, the above 
challenges become important considerations for the creation of an 
advanced façade segmentation model. It has been emphasized that the 
varying distances between the buildings and the camera, necessitate an 
ideal composition of image dimensions, i.e., width, depth, and resolu-
tion. For example, Xu et al. (2023) have proposed an effective method of 
combining multi-scale inference with object contextual representation 
to balance the trade-offs between the demand for details and contextual 
comprehension capability on large objects like buildings, achieving 
novel results. Meanwhile, several methods have excelled in different 
fields but have not been introduced to building façade segmentation. A 
notable example is the MDAN-UNet proposed by Liu et al. (2020), which 
has combined both multi-scale inference, multi-scale feature aggrega-
tion, and dual attention on Optical Coherence Tomography images to 
achieve noteworthy segmentation performance.

The quintessential factor, however, is the need to balance 

segmentation performance amongst the façades themselves while 
ensuring the remaining classes (non-façades) do not get compromised. 
Training a model on only relevant classes may not guarantee an accurate 
representation of the background, which is still necessary when pro-
jecting predictions onto a 3D model. Conversely, training the model in 
all classes introduces the possibility of the model placing too much focus 
on the learning of non-façade classes. Hence, this “compensates” for a 
dip in performance for façade material classes.

This study will test the feasibility and performance of a multi-scale 
variant of the proposed model against other variants of UNet on the 
Cityscapes dataset (Cordts et al., 2016), which contains a variety of 
street-view instances and classes. Following this, we will implement 
transfer learning using the best model to carry its prerequisite knowl-
edge of street view classes in Cityscapes over to the new task, whilst 
multiplicatively combining the outputs of the model trained on binary 
segmentation of buildings and multi-class segmentation of façades. 
Lastly, we will use 5-fold cross-validation to obtain the best model.

2.1. Street view and material recognition datasets

Street view datasets like WHU-Urban3D (Han et al., 2024) are pop-
ular for the semantic segmentation of urban scenes. Another example is 
Cityscapes, a large-scale dataset that is often used to benchmark models, 
containing 3475 annotated images of urban SVIs from 50 cities and 19 
different classes of dynamic objects (Cordts et al., 2016). However, their 
labels comprise an array of street-view objects and do not have specific 
façade material information associated with buildings. Conversely, 
popular material recognition datasets, like CUReT (Dana et al. 1999) 
and OpenSurfaces (Bell et al., 2013), lack very important characteristics 
unique to a street-view scene like varying distances from the viewpoints 
and blurring. This makes them ineffective at representing façades in 
SVIs. Therefore, this study will create a new SVI dataset containing 
detailed labels for façade materials to suit the task of segmenting façade 
materials in SVIs.

To achieve that, we plan to use a dataset containing 24,219 pano-
rama images in two central regions in Singapore (i.e., Bishan and Toa 
Payoh districts) and a subsample of 400 images in each district con-
sisting of six refined façade classes to train our proposed model, after 
transfer learning from Cityscapes. The chosen areas have a diversity of 
building structures and thus an equally diverse range of façade mate-
rials, comprising Housing Development Board (HDB) flats, high-rise 
condominiums, complexes, landed properties (e.g., terrace houses), etc.

2.2. Applications of deep learning models in segmenting building 
façades in SVIs

Recently, Xu et al. (2023) proposed a novel architecture that uses 
attention modules and multi-scale object contextual representation to 
weight contextual information to produce noteworthy segmentation 
results and performance metrics. The key addition of multi-scale inputs 
allowed us to handle the trade-off between larger receptive fields and 
complex details at higher resolutions, which was the specific cause 
behind the model’s success. Conjunctively, SOTA models constantly 
have their effectiveness at segmenting urban street view scenes evalu-
ated via surveys (Minaee et al., 2022). One example of a renowned SOTA 
model is the UNet model, which has inspired various UNet-based ar-
chitectures that have demonstrated promising performance when eval-
uated on the Cityscapes dataset (Kazerouni et al., 2021; Liu et al., 2024). 
This is because UNet uses plain skip connections that integrate feature 
maps of stark differences from the encoder and decoder layer 
(Ronneberger et al., 2015). UNet++ further improves on the base UNet 
by including nested dense skip connections to facilitate smoother 
gradient flow during the backpropagation of the loss (Zhou et al., 2018). 
Moreover, a recent variant of UNet called UNet3+ replaces the dense 
skip connections with full-scale skip connections, which concatenate 
smaller and identical size feature maps from encoders and larger feature 
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maps from decoders, proving far more effective at capturing both fine 
detail and coarse semantics than both UNet and UNet++ (Huang et al., 
2020).

2.3. Limitations of existing deep learning models

However, existing models face limitations in segmenting heteroge-
neous building façade materials. Traditional models such as UNet and 
UNet++ struggle due to their reliance on plain skip connections and 
local receptive fields, which limit their ability to distinguish materials 
with subtle texture variations. The absence of attention mechanisms 
prevents them from effectively emphasizing critical regions, leading to 
errors in differentiating materials with similar spectral properties, such 
as glass reflections and transparent surfaces. Transformer-based models 
capture long-range dependencies but introduce challenges such as high 
computational costs and scale inconsistency, often resulting in over- 
segmentation of repetitive patterns or under-segmentation of fine 
façade details. Lastly, SOTA approaches, such as the multi-scale atten-
tion-based model by Xu et al. (2023) and MDAN-UNet by Liu et al. 
(2020), improve contextual understanding. Still, they face trade-offs in 
feature refinement and struggle with materials exhibiting high 
intra-class variance. Additionally, their reliance on computationally 
expensive attention mechanisms limits their scalability for large-scale 
urban applications.

2.4. Potential enhancements in existing deep learning models

To improve façade material segmentation, we propose AdvUNet3+, 
an enhanced variant of UNet3+ that integrates multi-scale inputs, 
attention mechanisms, and optimized feature fusion to balance fine- 
detail preservation with broader contextual awareness. Unlike MDAN- 
UNet (Liu et al., 2020), which applies multi-scale aggregation within 
UNet++ but lacks a fully integrated multi-scale encoder, AdvUNet3+
ensures seamless multi-scale feature fusion throughout the network. It 
also addresses the limitations of the model proposed by Xu et al. (2023), 
which prioritizes contextual weighting but lacks direct spatial-channel 
optimization, by incorporating the Dual Attention Module (DAM) (Fu 
et al., 2019; Ji et al., 2023) to enhance spatial and channel relationships 
and Atrous Spatial Pyramid Pooling (ASPP) (Chen et al., 2018, 2022, 
Sun et al., 2023) to extract multi-scale contextual features. Additionally, 
full-scale skip connections help retain high-resolution details while 
lightweight attention mechanisms maintain computational efficiency. 
By combining these elements, AdvUNet3+ improves segmentation ac-
curacy for complex façade compositions while remaining suitable for 
large-scale urban analysis and 3D modelling applications.

2.5. Contributions

This study is innovative in three aspects. First, the proposed frame-
work can accurately segment city-scale building façade materials from 
panoramic SVIs, and efficiently project the façade material information 
onto the 3D building model. Second, we proposed a DL model that le-
verages the combinatory effect of multi-scale inputs and abstract 
bottleneck operations to segment small and confusable textures in SVIs. 
Third, this study creates a new SVI dataset that contains (i) accurate 
labels of building façade materials across various types of buildings (i.e., 
flats, complexes, historical sites) and (ii) panoramic metadata including 
geographical coordinates, azimuth, and angle of elevation that can be 
used together with 3D building models.

3. Methodology

3.1. Research framework and workflow

Our study proposed a cohesive research framework with three core 
components, including the collection of data, cleaning and labeling of 

data, and a three-phased training procedure. The entire workflow is 
presented in Fig. 1. Module 1 represents data collection, where pano-
ramic images within our study area and their corresponding metadata 
are downloaded using the app “Street View Download 360″. Module 2 
represents data cleaning and preparation, where only panoramic images 
with façades are kept making our dataset, and a small sub-sample is 
reserved and labeled for training and validation. Module 3 depicts the 
training process, consisting of three interconnected steps. Firstly, 
transfer learning trains the model on Cityscapes with many classes, and 
then uses the learned weights on our constructed dataset to accurately 
predict façade materials in urban SVIs. Secondly, inspired by Huang 
et al. (2020), two separate models for binary and multiclass segmenta-
tion are trained. The binary output is multiplied with the multiclass 
output, zeroing out incorrect building labels meant to be background, 
thereby improving segmentation accuracy. Thirdly the framework 
effectively combines information from the panoramic metadata with the 
model predictions to locate the exact geographical positioning of pan-
oramas, identify matching buildings in the vicinity, and project façade 
material and albedo information onto 3D building models.

Particularly, Fig. 2 illustrates the full process of how the models are 
trained and their outputs are combined. In contemporary segmentation 
models, the choice between the inclusion of the background class has 
been highly debated. Conceptually, the inclusion of the background 
class entails that the model deliberately learns the background class 
during training and possibly neglects the performance of other classes of 
higher importance. Conversely, doing the opposite by predicting the 
remaining classes and specifying an ignored index in the loss function, 
can cause the model to mistakenly predict the background class as 
something else given the lack of a penalty.

3.2. Development of AdvUNet3+

3.2.1. Model structure
In this paper, we propose a multi-scale input encoder-decoder 

structure called AdvUNet3+ that is augmented by ASPP and DAM to 
enhance the focus on fine yet important spatial details from high-level 
feature maps (Fig. 3). Specifically, the model will be trained and 
assessed together with other UNet variants to determine the validity of 
this approach. First, the model integrates multi-scale inputs into the 
encoder layers of UNet3+ to mitigate the loss of spatial information via 
constant down-sampling operations. Next, the feature map produced 
from the deepest encoder layer is entered into both the DAM and ASPP 
to capture spatial relationships and multi-scale contextual information 
simultaneously. The outputs from each module are then concatenated, 
and the concatenated feature map then passes through a 1 × 1 convo-
lution layer and weighted summation with the original input to preserve 
spatial information. Lastly, the summed output ascends a decoder 
structure that uses full-scale skip connections to learn precise details and 
coarse contexts from both same to higher-level encoders and lower-level 
decoders respectively. Consequently, the model can better capture 
nuanced visual patterns in façades and street view classes together with 
coarser details common in backgrounds or classes that span large areas 
of the input image. The benefits of each addition will be further elabo-
rated on in their subsections.

The primary innovation of AdvUNet3+ lies in its ability to integrate 
multi-scale inputs into the encoder layers, which is responsible for 
extracting hierarchical features from the input image by progressively 
reducing spatial resolution while capturing increasingly abstract and 
high-level representations. These multi-scale inputs reduce the loss of 
spatial information that typically occurs due to repeated sampling op-
erations. Down-sampling refers to a process in convolutional neural 
networks that reduces the resolution of feature maps to extract higher- 
level information. At the bottleneck layer, which represents the deep-
est part of the network where feature representations are highly ab-
stract, the output feature map is processed by both DAM and ASPP. DAM 
applies spatial and channel-wise attention, helping the model focus on 
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the most relevant regions within the feature map. At the same time, 
ASPP captures multi-scale contextual information by applying convo-
lutions with different dilation rates to account for varying object sizes. 
The outputs from these modules are concatenated, passed through a 1 ×
1 convolution layer that refines features while maintaining spatial 
integrity, and combined with the original bottleneck input via weighted 
summation. This ensures that the model balances newly extracted high- 
level features and the original deep encoder output, preserving impor-
tant spatial details. The final processed feature map then moves through 
the decoder structure, which employs full-scale skip connections—a 
mechanism in which features from deep and shallow layers are aggre-
gated across multiple spatial resolutions to maintain fine details and 

broader scene structures. This allows the model to refine its segmenta-
tion outputs by leveraging both high-level contextual cues and low-level 
image details, improving its ability to distinguish façade materials from 
the surrounding urban environment.

For our backbone, we utilize EfficientNet-B0 as the encoder for its 
balance between accuracy and training time because it performs better 
than ResNet50 for medical segmentation tasks (Kansal et al., 2024). The 
image input first undergoes an initial convolution block (EC) that con-
sists of a 3 × 3 convolution, batch normalization, and a down-sampling 
layer. The resulting output from EC then incurs a weighted sum with a ×
0.5 scaled version of the image, where the result is passed onto the 
encoder layers (EX0–3). At each encoder layer, the original image is 
scaled and convoluted (C) to match the spatial and channel dimensions 
of the encoder output, where both undergo weighted summation to 
produce an input for the next encoder layer. Following the encoder, the 
ASPP and DAM receive the most abstract feature map at the Bottleneck 
Layer (BL), where their outputs are concatenated and subsequently, 
undergo weighted summation with their original input. This approach 
can enhance the model’s ability to balance local detail awareness with 
global context understanding while sensibly weighting their contribu-
tions against the original input. Refined encoder and bottleneck outputs 
are then passed onto a decoder structure identical to that of UNet3+, 
which uses full-scale skip connections in each decoder layer (DX0–3) to 
combine information across scales and generate a more accurate feature 
map. The final output from the segmentation head (SH) is a tensor 
representing the raw logits of different classes which will be sent to the 
loss function (L(0)).

3.2.2. Multi-scale facilitated encoders
One predominant issue faced by variants of UNet models is the 

gradual loss of spatial information as the feature map descends the 

Fig. 1. Proposed components of methodology.

Fig. 2. The process of training models and combining their outputs.
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encoder layers and experiences more pooling operations. Incorporating 
multi-scale inputs by summing them with encoder outputs thus allows us 
to preserve such information, thereby improving the model’s segmen-
tation result overall (Liu et al., 2020). To achieve downscaled versions of 
the image, previous works have constructed multi-scale inputs via 
average pooling layers (Fu et al., 2018). Another study using a similar 
network architecture takes the first value found in the upper left corner 
for every 2 × 2, 4 × 4, 8 × 8, and 16 × 16 non-overlapping area 
respectively, which is distinctly unique from max-pooling operations 
with a stride equal to 2 (Liu et al., 2020). Fig. 4 illustrates the difference 
between all three of these methods.

We use max pooling as the method of obtaining different scaled 
versions of the original image because of its ability to capture the most 
prominent features that better represent the input image overall. Spe-
cifically, following our defined scales, we take the maximum values 
within every 2 × 2, 4 × 4, 8 × 8, 16 × 16, and 32 × 32 windows that do 
not overlap with each other. Each of the scaled inputs is then passed 
through a 1 × 1 convolution to enforce identical channel dimensions, 
before being weighted and summed with the outputs of its corre-
sponding encoder layer outputs. In the case of EfficientNet-B0, its 
encoder comprises an initial convolution block and several encoder 
layers. The processes of the initial convolution block and the encoder 
layers are highlighted in Fig. 5.

Fig. 5(a) illustrates the logic behind the addition of scaled inputs 
with EfficientNet-B0 encoder layer outputs. Additionally, Fig. 5(b) 

further elaborates on the operations within a single EfficientNet-B0 
encoder layer. Our encoder section utilizes learnable weights defined 
using W1 and W2 (Fig. 5(c)), which are associated with the convolution 
output tensor and encoder output tensor, respectively. Each weight has a 
pre-defined value and is stored in an array, before passed through a 
softmax activation function and subsequently multiplied to their cor-
responding output tensor. Across Sum 1–5, W1 always equals 1 to ensure 
the encoder output is given more priority. For W2, they are defined in Eq. 
(1): 

W 2(x)
= 2− (6− x) (1) 

Where x represents the sum number from 1–5. This equation makes W2, 
be 0.03125, 0.0625, 0.125, 0.25, and 0.5, which is the inverse of our 
defined scale sizes 0.5 ×, 0.25 × 0.125 ×, 0.0625 ×, 0.03125 × . Hence, 
the weighted contribution from the multi-scale input feature map in-
creases as the encoder output tensor’s spatial dimensions and its 
decrease, thereby allowing the multi-scale inputs to gradually enforce 
spatial information deeper in the network.

Integrating multi-scale inputs into the encoder improves material 
differentiation by preserving fine details while maintaining broader 
contextual awareness, reducing misclassification in complex urban en-
vironments. This approach helps distinguish materials with similar 
textures and spectral properties, particularly in diverse façades 

Fig. 3. AdvUNet3+ integrates multi-scale inputs, ASPP, and DAM.

Fig. 4. Illustrations of each pooling operation were discussed.
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containing brick, glass, and painted concrete. By dynamically weighting 
scaled feature maps, spatial information is progressively reinforced, 
leading to more accurate segmentation, better boundary delineation, 
and improved generalization across different building typologies, 
regardless of their size within an SVI.

3.2.3. Abstract bottleneck operations
Typically, the output of the encoder at the bottleneck layer is directly 

passed onto the decoder structure, save for a few convolution opera-
tions. This paper introduces a DAM, which performs spatial and channel 
attention functions concurrently in conjunction with an ASPP module 
that gathers contexts across scales. The full operations of the DAM are 

depicted in Fig. 6. The original bottleneck’s encoder output gets passed 
to the channel and spatial attention module, where their original outputs 
go through a 3 × 3 convolution layer, batch normalization layer, and 
ReLU activation function that halves their channel size. These trans-
formed outputs are now summed to produce a unique tensor before they 
undergo the same operations as before to halve their channel size once 
again. Finally, the operations of the DAM conclude by concatenating all 
output tensors together.

At the same time, as presented in Fig. 7, the bottleneck’s encoder 
output is fed into the ASPP, where multiple atrous convolutions of 
different dilation rates (1, 6, 12, 18) are applied to it in parallel to 
produce different variations of the feature map. In addition, a global 

Fig. 5. The encoder processes and the weighted summation process. (a) Encoder Section with multi-scale inputs incorporated. (b) Processes within EfficientNet-B0 
Encoder Layer. (c) Summation Process between encoder output and multi-scale inputs.

Fig. 6. Design of the Dual Attention Module (DAM).
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average pooling operation is applied to derive a global context vector 
that summarizes the entire feature map. Finally, all feature maps are 
concatenated along the channel dimension and undergo a 1 × 1 
convolution layer, ensuring the final output is compact but rich.

Once both modules have produced their respective output tensors, 
their outputs will be concatenated along the channel dimension to 
combine the information learned. Afterwards, the concatenated feature 
map will enter through a 1 × 1 convolution layer which halves its 

channel dimensions, producing an abstracted feature map with the same 
number of channels. The original input and the abstracted feature map 
will then be weighted and summed together to achieve an enhanced 
representation of the original input. In Fig. 8, the learnable weights are 
defined as 1 for both the original input (Woriginal) and the abstracted 
feature map (Wabstract).

The integration of DAM and ASPP enhances segmentation by 
capturing both fine-grained local features and broader contextual 

Fig. 7. Design of the Atrous Spatial Pyramid Pooling (ASPP).

Fig. 8. ASPP and DAM Fusion with Weighted Summation. (a) ASPP and DAM concatenation and convolution. (b) Weighted summation of abstract and orig-
inal features.
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relationships, providing a more comprehensive representation of diverse 
façade materials. Unlike traditional methods that rely on basic convo-
lutions at the bottleneck, this approach refines features before decoding, 
leading to more accurate segmentation, especially for complex textures. 
The use of weighted summation helps balance original and abstracted 
features, reducing information loss and improving material differentia-
tion. These enhancements address key limitations in existing segmen-
tation models, resulting in fewer misclassifications, stronger 
generalization across urban environments, and improved suitability for 
large-scale urban analysis and 3D façade reconstruction.

3.2.4. Loss functions
For our experiment, we used a combination of cross-entropy loss and 

dice loss with defined weights as the primary loss function. Dice loss can 
enforce shape and regional accuracy by maximizing the overlap between 
the predictions and the ground truth whereas cross-entropy loss ensures 
the correct classification of each pixel by measuring the difference be-
tween the predicted probabilities and actual labels. For the training in 
Cityscapes, only cross entropy and dice loss are used while for training 
on our constructed dataset, we use cross entropy loss and dice loss as the 
primary loss for multiclass outputs, and binary cross entropy loss with 
dice loss as the main loss of our binary output. The reason is that for our 
dataset, two distinct models are being trained separately from each 
other, meaning that each model requires its loss function designed to fit 
its specific task. The individual loss functions are presented in Eqs. (2)
and (3). 

loss(BCE or CE) = −
∑N

i=1
yilog(pi) (2) 

loss(DE) = 1 − 2
∑2

l=1wl
∑

nrlnpln
∑2

l=1wl
∑

nrln + pln
(3) 

In this context, N denotes the total number of classes, yi serves as the 
binary indicator for class i, and pi indicates the predicted outcome for 
class i. For our model, we opt for binary cross-entropy loss as the variant 
used during backpropagation of the binary segmentation model and 
cross-entropy loss for multi-class segmentation. For dice loss, Wl is 

employed to ensure invariance to various properties of label sets. The 
primary loss functions for Cityscapes and our constructed dataset can 
thus be expressed using Eqs. (4)-(6), respectively. 

losstotal = α • loss(CE) + β • loss(DE)                                              (4)

lossb = α • lossb(BCE) + β • lossb(DE)                                             (5)

lossmc = α • lossmc(CE) + β • lossmc(DE)                                         (6)

Where α and β represent the weights of each loss and are both defined 
with a value of 1. lossb and lossmc are calculated using the binary pre-
dictions and multiclass predictions Sb and Smc respectively. The loss 
losstotal is used during backpropagation of the network when trained on 
Cityscapes while lossb and lossmc are used during backpropagation of the 
binary and multiclass versions of the network when trained on our 
dataset.

3.3. Study area

The study area comprises two districts named Bishan and Toa Payoh, 
which are in the northernmost part of the central region of Singapore 
(Fig. 9(a)). Both districts fall within the Bishan-Toa Payoh Town Council 
and Bishan-Toa Payoh Group Representation Constituency. As of 2024, 
both districts span a combined area of 15.79 km2 with an approximated 
total population of 209,000 and are matured residential towns. A mature 
residential town is defined as any residential town older than 20 years. 
The collated SVIs (Fig. 9(b)-9 (c)) reveal that Bishan and Toa Payoh are 
ideal districts for obtaining information on various building architec-
tures for two reasons. The first reason is that these districts have the 
standard architectural designs that can be found in other residential 
districts in Singapore. A large majority of buildings in any district can be 
categorized into either a residential estate or multi-purpose building, the 
latter being more commonly associated with amenities or office build-
ings with unique designs. The second reason is that these districts also 
have a rare group of buildings which add to the robustness of the 
dataset.

Fig. 9. Location of the study area. (a) Locations of districts Bishan and Toa Payoh. (b) Satellite view of Bishan and Toa Payoh. (c) Panoramic SVIs within Bishan and 
Toa Payoh.
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3.4. Façade segmentation and 3D projection using SVIs and building 
model dataset

We pre-train the proposed model on Cityscapes (Cordts et al., 2016) 
then fine-tune our proposed dataset with similar network configurations 
to transition into a street view façade identification task. Meanwhile, we 
construct a dataset comprising SVIs in central regions of Singapore with 
a diversity of façade materials and architectural structures. We pur-
chased Google SVI API and downloaded 32,549 panoramic images in the 
districts of Bishan and Toa Payoh, located in the central area of 
Singapore. The geographical boundaries were defined using precise 
coordinates, and images were captured at intervals of 50 m along the 
roads. After a thorough visual inspection, 24,219 images were retained. 
Labelling was conducted using an online platform called LabelBox with a 
customized ontology for façades and non-façades, and the SVIs were 
used to verify the accuracy of labels. Additionally, we obtained the 
building dataset from Singapore Buildings (https://data.humdata.org 
/dataset/hotosm_sgp_buildings) to project our segmentation outputs. 
This dataset includes metadata features like building level, which are 
essential for calculating the assumed height of the building, thus 
allowing the conversion into a 3D building model.

3.4.1. Assumptions
In this study, we propose three crucial hypotheses to address the 

challenges in labelling a variety of geo-object classes appearing in SVIs 
in Singapore, as well as promoting effective and precise segmentation. 
The first assumption is that each building has at most three materials per 
visible façade. This is based on the classification of Singapore’s archi-
tecture into three main categories, standalone structures, mixed-use 
complexes, and unique structures as seen in Fig. 10. Compared to one 
novel study that only associates a maximum of two materials per building 
(Xu et al., 2023), our labelling procedure entails the inspection and 
differentiation of materials per visible façade. This assumption makes the 
segmented material closer to reality while making the whole process 

more complicated and challenging. The second assumption is that each 
façade consists of only one primary material, as most façades are con-
structed using multiple materials. To address this issue, the study dis-
regards less prominent materials and posits that each component is 
made up of a single primary material. Therefore, the façade of any 
building compromises no more than three materials, including one 
primary material and possibly two other subsidiary materials. Lastly, we 
estimate residential building heights in our 3D building model by 
multiplying the number of levels by 3 meters (m), a standard approxi-
mation for typical floor-to-ceiling height in urban planning. Buildings 
with missing level data are assumed to be landed properties with a 
height of 9 m.

3.4.2. Labelling methodology
The labelling process follows an iterative approach to ensure accu-

rate material classification in LabelBox. Firstly, AI-assisted labelling 
tools were used to generate bounding boxes over façade materials, 
streamlining the segmentation process by providing an initial structured 
representation of object locations. Secondly, manual refinement was 
applied to correct these inaccuracies, particularly for thin elements like 
metal beams and window dividers. A structured preprocessing pipeline 
was then used to refine and organize the annotations efficiently. Once 
finalized, annotation metadata, including class labels, bounding box 
coordinates, and segmentation masks, were extracted from LabelBox in 
JSON format. A custom script parsed this metadata, retrieved annotated 
images, and converted bounding boxes into pixel-wise segmentation 
masks. This post-processing step merged multiple annotations into a 
single mask per image, ensuring consistency across the dataset. Any 
remaining inconsistencies were addressed through additional verifica-
tion, resulting in high-quality ground truth data for segmentation tasks.

3.4.3. Façade classification and labeling criteria
Our study area comprises three main types of architecture as shown 

in Fig. 10(a)-10 (c), including stand-alone flats, multi-purpose buildings, 

Fig. 10. Images of common building architectures and façade materials. (a-c) Most common categories of building structures. (d-i) Façade materials in our con-
structed dataset.
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and complexes, as well as six different façade materials shown in Fig. 10
(d)-10 (i). Based on the pixel counts within labeled ground truth masks, 
we confirmed that paint in Fig. 10(d) is the most common façade ma-
terial across Singapore. They are commonly used to heighten the 
aesthetic appeal of domestic buildings, especially those falling under the 
residential and industrial categories. Furthermore, they serve as an extra 
façade layer on top of the exposed brick of cement, thereby making it 
resistant to environmental wear and tear. A contemporary façade that is 
largely used in the same category of buildings is the brick (Fig. 10(g)), 
which are common façades for some of the older buildings. Contrast-
ingly, buildings of a commercial nature, often taking the form of malls or 
offices, are typically made of glass, metal, or a combination of either, 
given their sleek appearance.

Each material class was defined based on its visual distinguishability 
and spectral characteristics. Additionally, a key consideration is whether 
these materials are also commonly used in other countries, thereby 
justifying their relevance. For the remaining façades that have not been 
elaborated in greater detail, clay primarily consists of terracotta roofs 
which exist in low-rise landed properties and high-rise HDB flats (Fig. 10
(i)). Their ample appearance within the dataset which extends into the 
appearance of some façades coupled with their discernible appearance 
made them a justifiable addition to the dataset and albedo calculation 
process. Metal comprises metallic materials like aluminum, iron, or alloy 
façades found in commercial buildings (Fig. 10(e)), while glass refers to 
most office buildings or commercial structures in general (Fig. 10(f)). 
Here we omit the usage of background during evaluation. Rare materials 
are a unique minority class that comprises uncommon façade materials 
that, if labeled as their own class, would make an even smaller minority 
that could affect the model’s performance (Fig. 10(h)). They include 
materials like ceramic and mosaic, which are rare in Singapore’s 
architectural landscape. As a result, the Central-Singapore dataset con-
sists of seven annotations including background, paint, metal, glass, 
brick, rare material, and clay, as summarized in Fig. 10.

3.4.4. Inter-annotator agreements
Inter-annotator agreements were established through collaborative 

visual inspections, predefined classification criteria, and structured 
quality control measures to ensure consistent labeling standards. Ma-
terial classes were defined based on their visual characteristics, spectral 
properties, and relevance to urban environments. Visual inspection 
served as the primary classification method, with Google Street View 
used for verification in cases where reflections, shadows, or occlusions 
made identification difficult. A hierarchical classification strategy 
prioritized the dominant material on a façade, while secondary mate-
rials were annotated only if they occupied a significant portion of the 
surface. Decorative elements such as signage, murals, or trims were 
generally excluded unless they were integral to the structure. Classifi-
cation rules ensured consistency across different architectural styles, 
such as labeling glass façades with metal frames as glass if they covered 
over 70 percent of the surface.

Reflective surfaces were classified based on their structural material 
rather than their appearance under changing lighting conditions. 
Additional agreements were introduced to address complex cases, 
including material transitions, overlapping features, and structural 
variations that could lead to misclassification. Special attention was 
given to distinguishing thin metal overlays on glass and ensuring 
weathered surfaces were labeled based on their original construction 
rather than temporary wear. To maintain uniformity, multiple rounds of 
visual analysis were conducted, comparing buildings with similar 
compositions and resolving discrepancies through structured review 
sessions. These quality control measures reinforced dataset reliability, 
ensuring a consistent and accurate representation of urban façades for 
high-quality segmentation models.

3.4.5. Characteristics of the customized SVI dataset
In comparison to other datasets (Teboul et al., 2011; Riemenscheider 

et al., 2012; Kong & Fan, 2021; Wang et al., 2024), ours present three 
distinctive advantages. First, our dataset is considerably larger 
compared to other datasets depicted in Table 1 apart from the Hong 
Kong Street View dataset, containing 800 carefully selected and anno-
tated images with over 5 thousand buildings. The resolution of our 
images is 512 × 1024 which is standard when compared to other street 
view datasets like Cityscapes with images containing matching resolu-
tions. Second, our dataset captures the appearance of façades from 
multiple different angles and distances, which is far superior to those 
that contain images taken from a single angle of regular façade shapes 
up close. Additionally, our dataset contains nuanced foreground occlu-
sions including vegetation, trees, signage, and traffic under various 
lighting conditions. We believe that the diverse quality of images would 
enhance the model’s ability to generalize. Third, our method also col-
lates supplementary metadata, primarily due to the choice of our soft-
ware for data collection. Our metadata is specific to each picture taken. 
These metadata include things like geographical coordinates, angle of 
elevation, angle of rotation from the north bearing, and so on. Intui-
tively, the use of this information is extremely beneficial within the 
context of replicating the segmentation results on a 3D model. Given 
these attributes, our dataset provides a well-rounded representation of 
real-world street-view façades, making it suitable for training segmen-
tation models that must handle diverse urban conditions.

4. Empirical experiments

4.1. Training details

We used Pytorch (Paszke et al., 2019) to construct and evaluate the 
proposed network architecture. All experiments are conducted using a 
NVIDIA GeForce MX450 GPU. In the network, input images are defined 
in scales 1.0 ×, 0.5 ×, 0.25 × 0.125 ×, 0.0625 × and 0.03125 × to 
produce feature inputs of identical spatial dimensions to the corre-
sponding feature maps in their designated encoder layer. As the scale 
progressively gets smaller, fine details get traded for larger receptive 
fields and vice versa. Furthermore, images are cropped to 256 × 512 and 
batch size set to 2 per GPU to reduce computational costs, particularly to 
fit within the memory constraints of the apparatus. The rest of the 
configurations are listed in Table 2.

To validate the effectiveness of the developed model, we compared 
segmentation results produced by UNet, UNet++, and UNet3+, using 
the Cityscapes dataset. For all the models, their encoder structures 
follow the EfficientNet-B0 architecture and have weights that have been 
pre-trained on the “Imagenet” dataset (Deng et al., 2009). The proposed 
model then applies transfer learning by selecting building and vegeta-
tion weights from the segmentation head and fitting them into a rede-
fined version of the model with identical configurations. This allows for 
the model to leverage information gained previously from Cityscapes 
while allowing untouched weights in the model to assimilate to the new 
task.

Table 1 
Comparison of existing façade related datasets.

Dataset 
Name

Size Occlusion Single 
View

Diversity Citation

ECP2010 104 ✕ ✓ Low Teboul et al., 2011
Graz2012 50 ✕ ✓ Low Riemenschneider 

et al., 2012
MCUbes 500 ✓ ✕ High Liang et al., 2022
Hong Kong 

SVIs
2003 ✓ ✕ High Xu et al. 2023

Our Central- 
Singapore 
Dataset

800 ✓ ✕ High N.A.
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4.2. Metrics

To quantitatively assess performance, our selection of metrics in-
cludes the mIoU, IoU, Precision, Recall, F1-Score, and accuracy for the 
analysis of experimental outcomes. We also employed macro-averaging 
(Sokolova & Lapalme., 2009) to calculate the average values of these 
metrics. In this study, we have excluded background classes during the 
calculation and assessment of these metrics. Equations (7) – (12) are 
used to represent the metrics stated: 

IoU =
TPi

FP + FN + TP
(7) 

IoU =
1

Nclass

∑Nclass

i=1

TP(i)
TP(i) + FP(i) + FN(i)

(8) 

Precision =
TP

TP + FP
(9) 

Recall =
TP

TP + FN
(10) 

F1 − Score =
TP

TP + 1
2 (FP + FN)

(11) 

Accuracy =
TP + TN

TP + TN + FP + FN
(12) 

where TP represents the true positives or number of samples predicted as 
positive which were correct, FP represents the false positives or number 
of samples predicted as positive which were incorrect, TN represents the 

true negatives or number of samples predicted as negative which were 
correct, FP represents the false negatives or number of samples predicted 
as negative which were incorrect and N representing the number of 
classes.

4.3. Results

This study trains and evaluates the segmentation performance of 
UNet variants, transformer-based models, and hybrid architectures on 
the Cityscapes dataset. According to Table 3, AdvUNet3+ outperforms 
all UNet-based encoder models (UNet, UNet++, and UNet3+), 
transformer-based models (SwinUNet, and SegFormer), and the hybrid 
MDAN-UNet, achieving the highest mIoU of 61.4 %. Notably, 
AdvUNet3+ demonstrates superior segmentation in complex and low- 
proportion classes, particularly for train (43.8 %), motorcycle (34.5 
%), truck (49.4 %), and bus (58.7 %), highlighting its ability to handle 
rare yet structurally distinct objects. Compared to encoder-based UNet 
variants, which tend to over-smooth small objects, AdvUNet3+ retains 
fine-scale details and better preserves object boundaries. Unlike Swi-
nUNet and SegFormer, which struggle with object separability in 
crowded urban environments, AdvUNet3+ provides more precise 
delineation of façade materials and traffic elements. Additionally, while 
MDAN-UNet improves over standard UNet architectures through 
attention-based mechanisms, its performance on rare classes is incon-
sistent, whereas AdvUNet3+ maintains strong segmentation across both 
high- and low-frequency categories.

Despite these strengths, AdvUNet3+ faces challenges in segmenting 
thin objects or elements that would typically be grouped into large ex-
panses of non-façades in street view images, such as sidewalk and road 
(74.3 % and 96.6 %) or sky and terrain (92.6 % and 55.6 %). However, 
given that these classes already occupy large portions of the dataset and 
do not require high segmentation precision, this trade-off does not 
significantly impact the model’s practical utility. Therefore, it demon-
strates that adding multi-scale inputs and abstract bottleneck operations 
could improve the understanding of highly specific details, and possibly 
segment rarer classes in the proposed dataset with higher accuracy.

The visual comparison of segmentation results highlights the 
strengths of AdvUNet3+ in delineating objects more clearly and 
reducing segmentation noise, particularly in complex urban environ-
ments (Fig. 11). Specifically, Fig. 11(a), Fig. 11(c), and Fig. 11(e) 
illustrate how AdvUNet3+ excels in preserving fine-grained details and 
improving class distinction. In Fig. 11(a), the red-circled area demon-
strates the model’s ability to maintain sharp façade boundaries, 

Table 2 
Specific experiment configurations.

Item Configuration

Image Scales {1.0 ×, 0.5 ×, 0.25 × 0.125 ×, 0.0625 ×, 0.03125 ×}
Crop Size 256 × 512
Batch Size 2 per GPU
Learning Rate 0.001 - 0.00001
Optimizer Adam
Learning Rate 

Scheduler
Cosine Annealing with Warm Restarts

Loss Function Cityscapes - Cross Entropy Loss, Dice Loss 
Constructed Dataset - Cross Entropy Loss, Binary Cross 
Entropy Loss, Dice Loss

Table 3 
The IoU of segmented classes, using UNet architecture and Cityscapes.

Classes UNet (%) UNet þþ (%) UNet3þ (%) Seg former (%) SwinUNet (%) MDAN-UNet (%) Adv UNet3þ
(%)

Portion 
(%)

Road 96.7 96.9 96.5 96.2 96.0 96.8 96.6 37.6
Sidewalk 74.8 75.9 74.7 72.0 70.9 75.2 74.3 5.4
Building 87.4 87.4 87.5 85.4 85.4 87.4 87.3 21.9
Wall 36.6 31.8 36.5 31.7 33.3 33.5 38.3 0.7
Fence 38.9 35.2 37.2 32.3 30.5 36.6 38.1 0.8
Pole 48.1 49.7 49.4 35.9 41.5 48.5 47.2 1.5
Traffic Light 50.3 51.2 48.9 40.9 40.2 50.3 47.6 0.2
Traffic Sign 57.9 62.3 58.5 51.4 51.3 59.8 58.9 0.7
Vegetation 89.1 89.2 89.0 87.1 87.7 88.9 88.8 17.3
Terrain 55.8 52.3 56.5 54.0 52.4 55.3 55.6 0.8
Sky 92.1 93.0 92.7 89.9 91.4 92.7 92.6 3.4
Person 66.5 68.2 66.6 61.6 57.9 66.2 65.3 1.3
Rider 43.3 44.4 41.9 34.9 31.9 39.8 38.9 0.2
Car 89.6 89.6 89.5 87.0 85.4 89.6 89.7 6.5
Truck 41.6 45.8 48.4 42.8 34.9 47.7 49.4 0.3
Bus 57.6 54.5 56.0 55.2 46.8 55.9 58.7 0.4
Train 32.6 24.8 37.0 24.9 22.8 31.2 43.8 0.1
Motorcycle 25.1 31.9 32.6 23.8 14.4 35.3 34.5 0.1
Bicycle 62.4 63.2 63.0 56.6 54.0 61.8 61.6 0.7
mIoU 60.3 60.4 61.2 56.0 54.5 60.6 61.4 ​
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correctly separating road, sidewalk, and building surfaces with minimal 
blending. Similarly, Fig. 11(c) showcases how AdvUNet3+ distinguishes 
traffic signs and poles from adjacent building structures, which UNet 
and UNet++ often fail to differentiate, leading to class merging. In 
Fig. 11(e), despite a more challenging scene, the model provides clearer 
segmentation of road edges and vehicles, reducing noisy artifacts 
frequently appearing in UNet3+ and UNet++. Unlike these models, 
which over-smooth and blend multiple façade materials into a single 
class, AdvUNet3+ ensures sharper transitions between materials, 
providing a more accurate and visually coherent segmentation. Addi-
tionally, the model preserves structural integrity, ensuring that large 
objects like roads and buildings remain distinct while minimizing un-
necessary noise.

However, Fig. 11(b) and Fig. 11(d) highlight some of AdvUNet3+’s 
limitations, particularly when segmenting thin objects and closely 
positioned structures. In Fig. 11(b), the red-circled areas indicate in-
stances where poles and thin traffic signs are merged with the back-
ground or nearby objects, leading to occasional misclassification. 
Similarly, Fig. 11d illustrates the model’s difficulty in distinguishing 
thin architectural elements, where narrow structures are sometimes 
absorbed into broader categories such as vegetation or road surfaces. 
Additionally, Fig. 11(e) reveals that while the model’s segmentations are 
more defined and less noisy, they can occasionally lead to incorrect 
classifications. The red-circled area highlights instances where mis-
classifications occur despite the clear object delineation, suggesting that 
while AdvUNet3+ enhances boundary sharpness, its class predictions 
may still require refinement. This indicates that the model may priori-
tize structural clarity over classification accuracy in certain cases, 
necessitating further adjustments to balance both aspects effectively. 
Nonetheless, AdvUNet3+ remains the most consistent and structurally 
aware segmentation model, outperforming its predecessors by reducing 
noise, improving object boundaries, and maintaining visual coherence 
while preserving the integrity of large-scale urban structures.

Furthermore, we train and evaluate AdvUNet3+ on the created 
dataset using 5-fold training and validation (80 % and 20 % of the 800 
labeled SVIs, respectively). Overall, the model performed the best on 

fold 3 with a mIoU of 52.9 % across all classes, demonstrating acceptable 
performance on common and confusable, rare textures. Across all vali-
dation splits, the model was able to distinguish the most common façade 
materials based on pixel count percentages, paint, and brick, with the 
highest degree of accuracy, netting an average IoU of approximately 84 
% and 80 % respectively. It is also found that the best performance of the 
model obtained a mIoU of 52.9 % in split 3, while others got a mIoU 
lower than 50 % (Table 4). This is mainly achieved by the precise seg-
mentation of metal, with an IoU equaling 50 % in split 3 compared to 
other splits with an IoU below 30 %. Additionally, the model also ex-
hibits satisfactory potential for segmenting glass, and clay façades, 
obtaining maximum IoUs of 53.5 % for glass and 54.9 % for clay across 
splits.

To supplement the investigation of accuracy metrics, this study also 
compares the Precision, Recall, F1-Score, and Accuracy of each façade 
material class. Table 5 denotes that for fold 3, the model produces 
acceptable results for precision and recall in all classes, except for rare 
materials and paint respectively. Additionally, the F1-Score effectively 
harmonizes the calculations of Precision and Recall, affirming the 
model’s adequacy at segmenting all façade materials as it obtained an 
average score of 60.4 %. Close inspection of the F1-Score also reveals 
that the model achieves a respectable balance between precision and 
recall for metal, glass, brick, and clay façades based on their 

Fig. 11. Visual comparison of AdvUNet3+ model and bench line outputs.

Table 4 
The IoU of segmented classes, using 800 labeled SVIs in central Singapore.

Classes Fold 1 
(%)

Fold 2 
(%)

Fold 3 
(%)

Fold4 
(%)

Fold 5 
(%)

Paint 83.9 82.2 87.4 83.0 81.4
Metal 20.9 17.9 50.0 18.7 17.0
Glass 42.9 47.9 45.9 53.5 49.3
Brick 88.5 72.0 85.6 79.2 81.9
Rare 

Materials
12.7 2.0 3.2 10.1 9.4

Clay 40.8 54.9 45.1 48.3 42.1
mIoU 48.3 46.2 52.9 48.8 46.9
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corresponding F1-Score of 68.8 %, 69.3 %, 94.2 %, and 73.0 %. More-
over, the overall accuracy of classes is demonstrably high, with an 
average of 87.6 % and a maximum of 98.0 % from brick, which is close 
to perfection.

Table 6 shows that rare materials make up the smallest proportions 
in the training and validation datasets, accounting for just 0.7 % and 0.9 
% of pixels, respectively. As a result, 96.7 % of rare material pixels are 
misclassified, with 70.6 % incorrectly labeled as paint and 21.6 % as 
metal (Fig. 11). The scarcity of rare materials and their frequent 
misclassification into other categories largely explains their low IoU, 
Precision, and F1-Score. In contrast, paint dominates the dataset in 
terms of pixel count (Table 6) and is the material most predicted in place 
of others (Fig. 11). The frequent occurrence of paint and its tendency to 
be overpredicted helps explain its higher recall, F1-Score, and Accuracy. 
The model’s inability to distinguish rare materials as a unique category 
is likely due to their low dataset representation and varied visual 
characteristics, making them difficult to classify reliably. Similarly, glass 
presents challenges, with 38.48 % of its pixels mislabelled as paint. 
Despite achieving a high recall of 83.7 %, glass segmentation remains 
inconsistent, especially when it appears alongside metal overlays or 
reflective surfaces, leading to frequent misclassification.

Misclassification patterns are also observed in metal and clay sur-
faces, though their performance is slightly better. Fig. 12 shows that 
metal is correctly identified 66.33 % of the time but is misclassified as 
paint in 24.56 % of cases, suggesting that metallic elements often blend 
into painted structures, particularly in cladding or roofing applications. 
Similarly, clay roofs are frequently misclassified as paint (39.83 %), 
reinforcing the model’s tendency to absorb smaller façade components 
into the dominant building material. In contrast, brick and paint achieve 
the highest segmentation accuracy, with 94.87 % of brick correctly 
classified, likely due to its textured pattern and strong association with 
older HDB flats. Paint benefits from its overrepresentation in the dataset 
(73.6 %), leading to higher recall and frequent overprediction in 
ambiguous cases. While these trends highlight areas for improvement, 
the model remains effective in identifying large-scale façade structures, 
with errors primarily affecting minority and composite material classes 
rather than the overall segmentation framework.

Figs. 13(a)–13(b) demonstrate that the model successfully captures 
dominant painted surfaces but struggles with clay roofs, often merging 
them into the main building structure and labelling them as paint. While 
this results in a loss of fine-grained detail, the overall segmentation 

remains largely accurate and visually coherent, as paint is the most 
prevalent material in the dataset. Similarly, Figs. 13(f)–13(g) show that 
painted surfaces in high-rise buildings are consistently identified, but 
the model occasionally blends glass and metal elements into painted 
regions, likely due to reflectance similarities in panoramic imagery. 
Despite this, the segmentation of large-scale façades remains structur-
ally sound, with most building components correctly identified. How-
ever, the model continues to struggle with metal roofs, as seen in several 
examples where they are frequently mislabelled as either painted sur-
faces or other building materials. This suggests that the model has dif-
ficulty distinguishing between metal used in structural overlays and 
metal used as a core façade material.

For rare materials, Figs. 13(c)–13 (e) highlight their frequent 
misclassification as paint or metal, underscoring the model’s difficulty 
in recognizing materials that lack distinctive visual patterns or archi-
tectural placement. Unlike brick, which is often tied to older HDB flats, 
or clay, which typically appears on roofs, rare materials lack clear spatial 
context, making them difficult to distinguish. Fig. 13(h) further illus-
trates this issue in construction-heavy environments, where the presence 
of scaffolding and partially completed structures introduces additional 
segmentation ambiguity. In such cases, the model struggles to define 
material boundaries, often absorbing rare materials into larger, more 
dominant classes. Another persistent challenge is seen in glass façades 
with metal overlays or components, where the model inconsistently 
assigns portions of the façade to metal rather than recognizing the full 
surface as glass. Overall, this suggests that while the model captures 
transparent surfaces effectively, it struggles with composite façades that 
integrate multiple materials within the same structure. However, these 
errors have a limited impact on overall segmentation accuracy, as rare 
materials constitute a small proportion of the dataset and do not 
significantly alter the identification of major façade materials or their 
corresponding albedos.

Conclusively, the evaluation of AdvUNet3+ on our central Singapore 
dataset reveals that the accuracy metrics on average and per class are 
acceptable based on the following reasons. The first is that the proposed 
model has shown from individual class F1-Score and IoU to be able to 
accurately segment façade materials like paint, metal, glass, clay, and 
brick. Secondly, the infrequency of rare materials in the set of pano-
ramas used for training is resemblant to that of our entire central 

Table 5 
The indicators of segmented classes in fold 3, using 800 labeled SVIs in central 
Singapore.

Classes IoU 
(%)

Precision 
(%)

Recall 
(%)

F1-Score 
(%)

Accuracy 
(%)

Paint 87.4 94.5 34.9 51.0 69.7
Metal 50.0 66.3 71.6 68.8 90.0
Glass 45.9 59.2 83.7 69.3 91.3
Brick 85.6 94.9 93.5 94.2 98.0
Rare 

Materials
3.2 3.3 82.5 6.3 83.8

Clay 45.1 58.5 97.0 73.0 92.8
Mean 52.9 62.8 77.2 60.4 87.6

Table 6 
Proportions of the pixels in training and validation, using 800 labeled SVIs in 
central Singapore.

Classes Train (%) Validation (%) Total (%)

Paint 73.6 73.7 73.6
Metal 8.4 5.3 7.8
Brick 8.4 10.8 8.9
Glass 7.3 7.7 7.4
Clay 1.6 0.9 1.5
Rare Materials 0.7 1.7 0.9

Fig. 12. Confusion matrix of the percentages of pixels in six classes. The rows 
represent the ground truth, and the columns represent predicted labels.
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Singapore dataset that comprises 24,219 images. This means that the 
segmentation results for rare materials can be overlooked since inac-
curate predictions of such a rare class are unlikely to detriment the 
overall accuracy of predictions across the entire dataset. Thirdly, the 
difference in segmentation results between our study and others such as 
from Xu et al. (2023) can be attributed to highly specific labeling 
principles. For example, our labels do not merge instances of non--
façades with building materials no matter how small the area they 

obscure is. Additionally, we make sure to only distinguish amongst 
building façades in our labels to provide an accurate and fair repre-
sentation of segmentation results for purely façade materials. Therefore, 
our model is deemed to have demonstrated proficiency in segmenting 
building façade materials in general with acceptable accuracy metrics, 
especially accounting for this enhanced difficulty introduced by our 
labeling strategy.

Fig. 13. Comparison between ground truths and predictions derived from AdvUNet3+.

J.K.D. Tan et al.                                                                                                                                                                                                                                Sustainable Cities and Society 126 (2025) 106414 

14 



4.4. Projecting façade material information onto 3D building models

We follow a coordinated 3-step process to incorporate the pre-
dictions into a 3D model (Fig. 14). Firstly, we identify the panorama 
location by matching the prediction name with the filename of the 
original image found in our collated meta-data file. Then, we obtain the 
geographical coordinates of that panorama like latitude and longitude to 
locate it on the 3D model and use the variable rotation or azimuth to 
simulate the direction the camera was facing at the point the panorama 
was taken. Next, we vertically split the predictions into 4 equal parts. To 
do this, we first assume a line down the center of the prediction indi-
cating 0 from the panorama’s point of view. Subsequently, we form two 
new lines adjacent to the left and right of the first, indicating the angular 
point of view of the panorama at 270 and 90, respectively. As a result, 
we can identify the direction of a building from the panorama con-
cerning the range of angles it falls in, then specifically locate the exact 
building in the 3D model.

In step 3, we developed a Python script that performs two key tasks 
to enhance the integration of façade material predictions with our 3D 
model. First, the script determines the dominant material for each 
building by analyzing the segmentation results of nearby façades within 
a specified proximity. It counts the frequency of each material class in 
the pixels corresponding to a building’s footprint, and the most frequent 
material is assigned as the dominant material. The resulting pool of 
dominant materials thus consists of paint, metal, glass, brick, and rare 
materials. Clay is never considered the dominant material since it 

usually consists of a small minority of a building’s façade, typically its 
roof. This dominant material is then integrated into the metadata of the 
2D building model in tabular form, allowing for easy reference. Second, 
the Python code projects the segmentation outputs onto the 2D building 
model, ensuring the façade materials are accurately aligned with the 
building’s footprint. These results are then converted into a 3D polyg-
onal representation using QGIS and the QGIS2threejs tool, effectively 
mapping the façade materials onto a 3D model, where the dominant 
façade materials, except for clay, color of each building. In addition, the 
heights of each building are represented by multiplying their building 
levels by 3 meters (m) or assuming a constant height of 9 m for typical 
landed property type buildings without building level values.

Figs. 15(a)–(e) show close-up views of 3D buildings from selected 
sections of the Bishan and Toa Payoh areas, with each building color- 
coded based on its dominant façade material. Fig. 15(a) represents 
painted façades, while Fig. 15(b) highlights buildings primarily 
composed of metal. Fig. 15(c) illustrates structures with glass façades, 
whereas Fig. 15(d) showcases buildings with brick materials. Lastly, 
Fig. 15(e) focuses on structures classified under rare materials. This 
approach ensures that the segmented façade materials are accurately 
mapped onto the corresponding buildings in the 3D model using avail-
able spatial metadata, providing a structured method that enables (i) 
further analysis of urban façades in a geospatial context, (ii) support of 
applications in urban planning, (iii) energy modelling, and (iv) archi-
tectural studies.

Fig. 14. Projection of segmented building façade material onto the 3D building models.
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5. Discussion

The proposed research framework effectively combines an advanced 
multi-scale model that proficiently handles the tradeoff between high 
detail and large receptive fields, together with a cohesive and inter-
connected training procedure that harnesses good strategies like transfer 
learning and cross-validation. As a result, the research framework can 
precisely segment façade materials from SVIs of varying and compli-
cated environments and identify spatially heterogeneous albedos that 
can be projected into 3D building models. Additionally, the framework 
can either be used directly to produce predictions of façade materials in 
other cities or adapted to identify façade materials specific to a city by 
changing the labeling principles, making it extremely robust.

The implication of our research stretches far beyond the realms of 
just street view image analysis or deep learning. Compared to other 
studies, our framework harmonizes all aspects of the data lifecycle 
including data collection, data preparation, analysis, modelling, and 
publication to form a uniquely adaptable solution that can generate 
albedo information on a city-wide scale. Furthermore, the comprehen-
sive design of our framework places greater emphasis on the aftermath 
of training than other studies by (i) adapting the data collection and 
preparation sections to produce metadata that can be used with pre-
dictions and (ii) discussing how the predictions and metadata can be 
used in correspondence with a 3D model. Summarily, the conception of 
our framework facilitates the advancement of 3D models via the pro-
vision of albedo information through a well-defined and efficient pipe-
line. Most importantly, more studies can utilize such advanced 3D 
models to develop more well-informed solutions for urban planning and 
energy efficiency analysis.

Our framework is significant in three aspects. The first is that the 
segmentation framework can contribute to urban sustainability initia-
tives, particularly in estimating solar photovoltaic potential, assessing 
light pollution, and analyzing the urban heat island effect. By accurately 
identifying façade materials, the model enables more precise solar 
reflectance and absorption calculations, which are critical for opti-
mizing photovoltaic panel placement and predicting energy yields in 
dense urban environments. Secondly, the classification of glass and 
reflective surfaces can support studies on artificial light dispersion, 
helping to assess the impact of illuminated buildings on night-time 

brightness and ecological disruption. Thirdly, the differentiation of 
materials such as concrete, metal, and brick allows for better thermal 
property estimation and provides insights into heat retention and 
dissipation patterns across cityscapes in the context of urban heat 
islands. These applications demonstrate the broader significance of 
façade segmentation beyond visual classification, reinforcing its value 
for environmental assessment and sustainable urban planning.

Our study has three uncertainties: limitations in dataset diversity and 
labelling assumptions, segmentation accuracy, and evaluation robust-
ness. First, the dataset primarily consists of a specific geographic region, 
limiting the model’s adaptability to different architectural styles. In 
addition, labelling assumptions, such as restricting buildings to three 
façades, may reduce annotation accuracy in complex urban settings. 
Secondly, the model’s accuracy can be improved since current pano-
ramic images introduce distortions that affect segmentation perfor-
mance, while class imbalances hinder the model’s ability to identify rare 
façade materials. Thirdly, the evaluation process lacks multiple training 
runs and statistical significance testing, making assessing the model’s 
true generalizability difficult. Future work will address these un-
certainties by expanding the dataset to incorporate diverse architectural 
styles, refining labelling practices to improve annotation quality, and 
mitigating distortions by splitting panoramic images into smaller sec-
tions based on calculated 90◦ segments. Class imbalances will be tackled 
using augmentation techniques like CutMix and balanced dataset stra-
tegies while the robustness of the experiment can be improved through 
multiple training runs, statistical significance testing, and cross-dataset 
evaluations. Lastly, the 3D building model will be extended to include 
environmental factors like building temperatures and solar irradiation 
to enhance its relevance for urban planning. Nonetheless, the study 
demonstrates its effectiveness in façade material segmentation, even 
managing to project the segmentation outputs into a 3D building model, 
thus laying the groundwork for future advancements in large-scale 
urban analysis.

6. Conclusion

This study developed a novel framework that achieved high accuracy 
in the semantic segmentation of urban façades and their materials. The 
DL-based network presents encouraging and inspiring results, 

Fig. 15. Geo-visualization of the 3D building model in Bishan and Toa Payoh area.
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demonstrating the effectiveness of combining multi-scale inputs with an 
encoder-decoder structure for urban scene analysis. The created SVIs 
and façade labels in central Singapore also provide an authentic repre-
sentation of common materials in an urban landscape, which can be 
used in transfer learning to apply the model to other cities. The suc-
cessful projection of façade material predictions onto 3D building 
models resolves the lack of spatially heterogeneous albedo information 
and presents more opportunities to obtain valuable insights for urban 
planning and energy efficiency evaluation. Our model has a satisfactory 
generalization capability, and our study is significant in 3D solar po-
tential modelling, urban energy assessment, and smart city applications. 
Future work could (i) refine context transfer, (ii) expand datasets and 
review labelling ontologies for robustness, and (iii) improve rare ma-
terial segmentation through appropriate evaluation tests and complex 
augmentation techniques.
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