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Abstract 

Solar photovoltaic (PV) farming is increasingly being used to power electric vehicles (EVs). Although many stud-
ies have developed dynamic EV charging prediction and scheduling models, few of them have coupled rooftop PV 
electricity generation with the spatiotemporal EV charging demands at an urban scale. Thus, this study develops 
a research framework containing three interconnected modules to investigate the feasibility of EV charging powered 
by rooftop PVs. The framework is constructed by the statistics of time serial EV charging demands at each station, 
the planning of rooftop PV installations associated with all charging stations, and the development of a dynamic dis-
patching algorithm to transmit surplus electricity from one station to another. The algorithm can maximize the overall 
balance between supply and demand, maximize the total PV electricity generation while minimising the total PV 
area, minimize the number of PV charging stations used as the suppliers for dynamic dispatch, and minimize the total 
electricity transmission distance between stations given the same power supply. The experiment utilizes a complete 
EV charging dataset containing 5574 charging piles with more than 9.7 million records in June and July in Guangzhou, 
China. The results show that rooftop PVs can supply more than 90% of the charging demand. The results encour-
age and inspire us to generalize and promote such a solution in other cities. Future work can refine the algorithm 
by adapting different PV sizes into various charging stations to further improve the electricity generation capability 
and the dynamic dispatching efficiency.

Keywords GIScience, Solar energy, Photovoltaic potential estimation, Electric vehicles, Multi-objective optimization, 
Dynamic dispatching

1 Introduction
1.1  Background
Excessive carbon emissions can cause global climate 
change, such as natural disasters and global warming (Shi 
& Yin, 2021). To reduce the total emission of greenhouse 
gases and alleviate global warming, many countries have 
successively committed to carbon neutrality (Liu et  al., 
2022). For instance, China contributed the largest  CO2 
emission (31%) in 2021, exceeding the total value of  CO2 
emissions of the US and the EU27, and the annual car-
bon emissions exceed 1 billion tons in China by 2022 
(Friedlingstein et  al., 2022). Meanwhile, the Chinese 
government strives to achieve carbon neutrality by 2060 
(Wang et  al., 2023). In this context, it is imperative to 
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shift energy supply from traditional fossil fuels to sustain-
able energy to address the issues caused by greenhouse 
gas emissions, such as global warming (McCarthy et al., 
2010), air pollution (Zhang et  al., 2023), and the heat 
island effect (Masson et al., 2014).

Solar photovoltaic (PV) systems with decreasing man-
ufacturing costs have been recognized as a promising 
technology to decarbonize the power sector and are esti-
mated to meet 25%–49% of global electricity demand by 
2050 (He et  al., 2020; Huang et  al., 2019). Many PV sys-
tems have been deployed in grid-connected and off-grid 
systems in recent years (Das et al., 2018), which takes an 
advantage of easier operation in terms of power genera-
tion and can be used in both stand-alone systems and grid-
connected applications (Charfi et  al., 2018). Meanwhile, 
electric vehicles (EVs) with a growing global share allevi-
ate the urgent energy crisis and environmental degrada-
tion (Papoutsoglou et al., 2022; Schmeck et al., 2022). The 
utilization of EVs as an attractive alternative to traditional 
internal combustion engine-based cars takes advantage of 
less greenhouse gas emissions (Khwaja et  al., 2021). For 
instance, China currently has about 496,000 public EV 
charging stations and about 678,000 private EV charging 
stations (Alphonse et al., 2022). However, the advantages 
of EVs would be greatly diminished if the EV charging sta-
tion uses traditional fossil fuels as the electricity supply. In 
addition, proliferating EV charging demand will increase 
the grid’s load, especially during peak hours of electricity 
consumption. Some studies investigated the prediction of 
real-time EV charging demand by utilizing machine learn-
ing methods to intergrate massive and heterogeneous spa-
tio-temporal data (You et al., 2019; Chen et al., 2022).

Distributed PV systems with a synergistic advantage can 
tackle the above problems (Denholm et  al., 2013; Nunes 
et al., 2015). For example, rooftop PVs (RPVs) can be used to 
power EV charging stations, which can reduce long-distance 
transmission losses of electricity and can therefore improve 
economic efficiency (Zhu et al., 2023). However, the electric-
ity generation of RPVs fluctuates and has obvious heteroge-
neity over time and space due to the comprehensive effects 
of cloud cover (Wong et al., 2016), urban morphology (Zhu 
et al., 2020), and solar irradiation (Catita et al., 2014), which 
causes uncertainty in the power supply of EV charging sta-
tions. Therefore, it is imperative to accurately estimate RPV 
potential and develop a dynamic electricity dispatching 
method between nearby charging stations to improve the 
EV charging efficiency and try to meet the total EV charging 
demand, with an optimization of PV area planning.

1.2  Solar irradiation estimation
Accurate estimation of solar PV potential near charging 
stations is crucial for integrating efficient solar charg-
ing potential into dynamic EV charging networks. The 

distribution of solar energy is influenced by urban mor-
phology (Charfi et  al., 2018) and meteorological condi-
tions (Wong et  al., 2016). Solar irradiation estimation 
considering three-dimensional (3D) urban surfaces can 
improve accuracy by considering the shading effects of 
buildings, trees, and other obstacles in the surrounding 
environment, or estimating the solar irradiation on the 
façade of buildings (Cheng et  al., 2018; Gooding et  al., 
2015). In this regard, a 3D solar city model  is built to 
observe solar accessibility in developing cities (Zhu et al., 
2019). This model assists architects in urban planning 
by allowing solar radiation to illuminate the surface of 
the 3D city model to obtain a 3D building shadow sur-
face and then evaluate the effects of new buildings on 
the PV potential of the surrounding buildings. Further 
study developed a spatio-temporal analysis model and a 
techno-economic evaluation model to optimize the PV 
supply (Zhu et  al., 2022a). The study plans PV installa-
tion locations based on the solar irradiation estimation 
on 3D urban surfaces, which also indicates that the above 
two models are highly influenced by the quality of the 3D 
building model. This suggests that an integration of solar 
estimation model and high quality of 3D building model 
can result in a reliable solar distribution estimation. 
Therefore, it is appropriate to utilize the aforementioned 
models to estimate solar irradiation distribution for ana-
lysing the feasibility of EV charging powered by RPVs, 
since they can quantify the effects of the transmissivity, 
diffuse proportion, and the urban morphology.

1.3  Spatiotemporal dispatching of the generated 
electricity

Here, the dispatching refers to the transmission of elec-
tricity generated by RPVs to nearby charging stations to 
enhance the capacity of EV charging in a dynamic sce-
nario. To solve the challenges of EV charging/discharg-
ing, one study proposed a management strategy based 
on the grid and a large charging station equipped with 
an energy storage system and PV modules that operated 
the power assignment  (Li et  al., 2020). Another study 
developed a methodology based on the micro-grid and 
electric vehicles cooperate optimization to solve for 
the desired system reliability given uncertainties in the 
power load and solar power supply (Ersal et  al., 2013). 
The energy system of EV charging based on PV for 
the micro-grid in the industrial park mainly solves the 
problem of charging optimization scheduling of electric 
vehicles participating in the micro-grid. In comparison, 
some scholars  focused on the low-carbon optimization 
strategy of power systems based on large-scale Vehicle-
to-Grid (V2G) approach (Yao et  al., 2022). The study 
constructed a “source-grid-vehicle” planning model 
based on traditional power generation, which optimized 
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the combination of different energy resources at a large 
scale. However, these studies did not develop a share-
able network to dispatch the power between charging 
stations based on real-time power demand.

Further study developed a V2G network to bal-
ance power demand by using all parked EVs as a bat-
tery pool. The study assumed that all parked EVs are 
connected to the local V2G system in every district 
to aggregate as a large energy storage (Yu et al., 2016). 
However, it is impractical and cost consuming to apply 
to real charging stations due to uncontrollable uncer-
tainty. Furthermore, Alqahtani & Hu  (2020) proposed 
a mobile prosumer network based on vehicle routes 
and energy dispatching to address the spatial and tem-
poral energy demand challenge. The vehicle is a mobile 
prosumer with distribute energy customer, while each 
building or infrastructure serves as a consumer. From 
this study, it can be observed that EVs can supply energy 
to each consumer according to their energy loads and 
solar irradiation, and request charging from the elec-
tric grid. However, the study assumed that each region 
operates independently, meaning that solar irradiation 
from one region cannot influence another one. Alter-
natively, Boström et al.  (2021) promoted a pure PV-EV 
system, a nationwide energy system to provide energy, 
and used EVs as storage to balance the intermittency 
of PV (Wouters et  al., 2015). However, the PV power 
supply can be a drastic difference throughout the year 
if the PVs are deployed in high-latitude locations. The 
study indicates a significant decline of PV power supply 
in winter due to relatively lower solar irradiation, which 
requires increasing PV area to meet the total charging 
demand and then results in overcapacity of electricity 
generation in the remaining seasons.

Other studies also used the charging and discharging 
of electric vehicles to solve the power fluctuation prob-
lem on the load side of the micro-grid (Gooding et  al., 
2015), established scheduling around the charging and 
discharging costs between electric vehicles and the grid 
(Yu et  al., 2016), or matched energy sources in inde-
pendent areas having smart grid (Alqahtani & Hu, 2020; 
Wouters et  al., 2015). However, these studies mainly 
focused on large-scale research, having a limitation in 
considering spatiotemporal heterogeneity of electric-
ity supply and demand (Yu et al., 2016; Alqahtani & Hu, 
2020). Additionally, when grid connection is not utilized 
while energy storage is involved through the integration 
of V2G and PV systems, few of them addressed how to 
resolve the issue of overcapacity caused by an excessively 
large PV panel area within a given region (Boström et al., 
2021). As a result, these system optimizations are appli-
cable to urban-scale PV deployment planning in different 
cities based on their varying specific characteristics.

Overall, previous studies mainly investigated power 
matching between independent spaces based on mutual 
exclusion, or an entire region as a demand responsive sys-
tem for overall power matching. Few studied the impact 
of spatiotemporally varying PV potential on the uncer-
tainty and flexibility of EV charging demands, which is 
an unsolved challenge for penetrating solar energy into 
mobility with EVs. Therefore, this study aims to develop a 
framework to maximize the EV charging capability using 
RPVs, achieved by the development of a dynamic dis-
patching algorithm over time and space.

1.4  Contribution
This study has three major contributions. First, this study 
develops a parallel computing strategy for efficiently esti-
mating fine-scale solar potential over a large geographical 
area. The strategy is splitting the entire area into several 
subareas with a predefined overlapping region to get 
rid of the marginal effects of shadow from surrounding 
buildings. This means that multiple cores of CPUs can 
be utilized, avoiding full usage of RAM and comput-
ing resources at a time. Second, this study assumes the 
RPVs in circular areas centred at the EV charging stations 
to generate electricity and considers power distribution 
of overlapping circular areas under the condition of high 
charging station density. The circular area can be deter-
mined by the power demand of the corresponding charg-
ing stations. Third, we develop a dynamic dispatching 
algorithm that can maximize the EV charging capability 
by balancing the charging demand of charging stations 
and the PV electricity generation at the urban scale. The 
algorithm addresses the gap in effectively powering EVs 
with a well planning of RPVs. The three innovations are 
integrated into a comprehensive framework that can be 
generalized and applied to other cities.

The following sections are organized as follows. Sec-
tion  2 introduces some methodology utilized in this 
study. Section  3 describes the experimental materials, 
including the study area and dataset pre-processing. Sec-
tion  4 contains experimental results and accompanying 
analyses. Section 5 presents discussion and conclusion.

2  Methodology
2.1  Research framework
This study proposes a research framework containing 
three interconnected modules for dispatching PV elec-
tricity to EV charging stations (Fig. 1). First, EV charging 
records in all piles of all charging stations are used to cre-
ate spatio-temporal statistics of EV charging demands. 
Specifically, the daily EV charging demands of each 
charging station are aggregated by time-series. Second, 
RPV potential is estimated by using a well-established 
3D solar estimation model, and circular areas centred at 
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the EV charging stations are generated so that rooftops 
within the circular areas are assumed to be equipped 
with the PVs. After that, RPVs are matched to the cor-
responding charging stations, with the consideration of a 
complex scenario that two or more circular areas over-
lap with each other. Third, an optimization algorithm 
is developed to dynamically dispatch surplus electric-
ity from one station to nearby ones having insufficient 
PV electricity generation. The performance of with- and 
without dynamic dispatching are compared to evaluate 
the effectiveness of the proposed algorithm, and geo-
visualization enhances insights into solar PV distribution 
and dispatching performance.

2.2  Land surface solar irradiation estimation
The Area Solar Radiation toolset in ArcGIS Pro is used 
to estimate rooftop direct and diffuse solar irradiation, 
which can quantify the effects of geographic location (i.e., 
latitude and longitude), cloud cover determined by dif-
fuse proportion and transmissivity, and shading effects 
from the surrounding 3D buildings (Zhu et  al., 2022b). 
To reduce the solar potential uncertainty caused by 
unstable weather conditions, historical weather on the 
same day from 2009 to 2022 has been considered, which 
can be calculated by the proportion of clear days, partly 
cloudy days, and cloudy days to confidentially determine 
transmissivity ( δt ) and diffuse proportion ( δd ), as shown 
in Eqs.  (1) and (2), respectively (Huang et  al., 2008). 
Specifically, clear days are defined as having an average 
cloud cover of 0 to 30%, while partly cloudy days and 
cloudy days have an average cloud cover of 30% to 70% 

and of 70% to 100%, respectively (Wong et al., 2016). The 
proportion of cloud cover will influence the final solar 
potential estimation. This study assumes that the PV 
conversion efficiency is 22% and the performance ratio 
is 80% (Polman et al., 2016), which are typical values in 
practice. As a result, 17.6% of the received solar irradia-
tion will convert to electricity.

where Pclear , Ppartly , and Pcloudy are the proportions 
of sunny days, partly cloudy days, and cloudy days in a 
month, respectively.

2.3  Solar potential distribution estimation
Since it is time and cost intensive to utilize a single CPU 
process to estimate solar distribution for the entire city at a 
fine spatial resolution (e.g., 1 m), an alternative is separating 
the entire study area into a set of rectangular subareas (e.g., 
homogenous fishnets as shown in Fig. 2) and compute the 
solar irradiation in each subarea individually. To mitigate 
the marginal effect, it is important to extend the side length 
of each subarea with an x-meter external buffer to ensure 
that the shadowing effect made by 3D buildings along the 
marginal area can be considered for the solar distribution 
estimation. After completing the solar irradiation esti-
mations for all subareas, each external buffer area will be 
clipped, and each grid cell will be maintained and unified to 
demonstrate the solar irradiation for the whole city.

(1)δt = 0.70Pclear + 0.50Ppartly + 0.30Pcloudy

(2)δd = 0.20Pclear + 0.45Ppartly + 0.70Pcloudy

Fig. 1 Research framework



Page 5 of 18Ji et al. Urban Informatics             (2024) 3:4  

2.4  Spatio‑temporal dynamic balancing between supply 
and demand

2.4.1  Static matching PV area to all charging stations
This study assumes that a circular area with an x-meter 
radius centralized at the location of the charging station 
will be used to plan RPVs to power this station and offset 
the electricity demand from the grid. PV modules will be 
deployed on the rooftops of the buildings in the circular 
area for PV electricity generation. Thus, the radius is a 
variable affecting the total installed capacity of the RPVs. 
When two or more charging stations are close enough, 
their circular areas are possible to overlap. In this case, 
the generated electricity in the overlapping area will be 
evenly distributed to the respective charging stations.

Figure 3 demonstrates the example of static matching PV 
areas to all charging stations, which has overlapped por-
tions. Three charging stations are shown in blue, green, and 
yellow dots, respectively. Their external circular areas have 
overlapped areas as shown in orange  and purple blocks, 
where the electricity generation of RPVs is evenly separated 
to the associated two charging stations. The RPVs covered 
in the remaining areas of the circles are the power supply 
to the corresponding charging station as shown in the blue, 
yellow, and green blocks, respectively. For economic consid-
erations, areas with a PV potential less than 3 kWh/m2/day 
will not be used to install PV modules (Cardoso et al., 2014).

2.4.2  Dynamic dispatching for charging stations
It is noticeable that the spatiotemporal charging demand 
and electricity supply are heterogeneous over time and 
space (Afridi, 2022). This means that the PV electricity 
generation to a single station may be insufficient or sur-
plus, and dynamic dispatching of electricity between sta-
tions can effectively improve the PV charging efficiency 
of the entire electrical system, which is essentially a 
multi-objective optimization problem (Elma, 2020). The 
multi-objective optimization in this study has two tasks: 
the first one is the overall electricity balance, while the 
second one is the optimization of the total PV area. From 
a system-operation perspective, daily based dispatching 
is a practical solution.

In previous studies, the algorithms have employed 
various criteria such as maximizing economic benefits 
of solar PV energy (Cardoso et al., 2014), achieving peak 
load balancing after PV grid integration (Alqahtani & 
Hu, 2020; Yang et al., 2015), and rewarding different user 
charging behaviours under PV electricity self-consump-
tion (Li et  al., 2021). In comparison, our study focuses 
on spatial and dynamic optimization of EV charging 
based on solar PV potential. Therefore, the objectives of 
dynamic dispatching are to: (i) maximize the overall bal-
ance between supply and demand, which can be evalu-
ated by the ratio of overall electricity supply to demand 

Fig. 2 Fishnet processing and extraction of solar irradiation
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aiming to reach 100%; (ii) minimize the total PV area 
but maximize the total PV electricity generation, which 
seeks for as small areas as possible to meet EV charging 
demand and avoid additional PV capacity at an urban 
scale; (iii) minimize the number of PV charging sta-
tions used as the suppliers for dynamic dispatch; and 
(iv) minimize the total electricity transmission distance 
of the PV power station under the condition of the same 
power supply. These four objectives comprehensively 
consider the facts that RPVs have significant spatial and 
temporal heterogeneity, and that electricity generation is 
influenced by different locations and time periods. Spe-
cifically, objective (i) aims to maintain the overall balance 
of RPV in time and space, while objective (ii) attempts to 
minimize the RPV electricity to reduce the production 
cost. Objectives (iii) and (iv) seek for complexity reduc-
tion of the entire dispatch system.

In this study, R represents the ratio of power supply 
to power demand of each charging station to differ-
entiate the electricity provider (ep) and the electricity 
receiver (er). Thus, if R is less than one, the generated 
electricity associated with the charging station cannot 
meet its power demand. As the result, this charging 
station is defined as er. While R is greater than one, the 
corresponding charging station is defined as ep. Let 
MD be a dataset to record the successful dispatching. 
For ∀ er ∈ MD , er = {rid, rx, ry, pid, px, py}. It demon-
strates that an electricity receiver is identified by the 
ID rid and its longitude and latitude (rx, ry). Similarly, 
an electricity provider is identified by the ID pid and 

its longitude and latitude (px, py). On this basis, three 
reasonable constraints set for dynamic dispatching as 
follows:

1. The power of the target ep participating in power 
dispatch should be greater than its demand power to 
contribute electricity to er, quantified by Eqs. (3) and 
(4) as follows:

where esply(ep) represents the total electricity generated 
by ep, while edmd(er) is the required additional power of 
er in the power dispatch. After dispatching, f (ep) is the 
remaining electricity of ep. Equation (4) limits ep to sat-
isfy its own demand first.

2. When there are several electricity providers that can 
supply the same amount of electricity, the dispatch-
ing will choose the one with the shortest electricity 
transmission distance between charging stations. 
The distance between charging stations is calculated 
according to their locations, using the Haversine for-
mula (Andreou et al., 2023) as shown in Eqs. (5), (6), 
and (7) as follows:

(3)
f (ep) = esply(ep)− edmd(er) ∀ er ∈ ER, ep ∈ EP

(4)
f (ep)

edmd(ep)
≥ 1

Fig. 3 The example of static matching PV area to all charging stations
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where ϕ1, ϕ2  represent the latitude of point 1 and point 
2, and �1, �2  correspond to the longitude of point 1 and 
point 2, while r refers to the radius of the sphere.

3. If the electricity from electricity providers is the 
same, then the transmission distance should be mini-
mized, as presented in Eq. (8).

where Mindis(er, ep) means that the minimized trans-
mission distance between er and ep.

Based on the above constraints, the algorithm is pre-
sented in a flow chart (Fig. 4) with the following steps.

1. The first step is to find out all the charging stations 
with R < 1 and identify them as electricity receivers 

(5)dis(1, 2) = 2arcsin sin
2
a

2
+ cos(ϕ1)× cos(ϕ2)× sin

2
b

2
× r

(6)a = ϕ2 − ϕ1

(7)b = �2 − �1

(8)Mindis(er, ep) ∀ er ∈ ER, ep ∈ EP

so that a dataset named ER is created. For ∀ er ∈ ER

, ER = {id, lat, lon, ed, ms}, an electricity receiver er is 
recorded by ID (id), latitude (lat), longitude (lon), the 
insufficient amount of electricity (ed), and the binary 
matching status (ms).

2. The second step is to find out all charging sta-
tions that can meet the condition for every er. For 
∀ er ∈ ER, all the charging stations with R ≥ 1, as 
demonstrated in Eq.  (4), that located within 3  km 
to other electricity receivers will be defined as elec-
tricity providers. Meanwhile, a dataset named EP is 
created including the elements sorted in ascending 
order according to their surplus amount of electric-
ity and sorted in descending order according to the 
distance between ep and er. The number of ep in the 
EP are marked as N. For ∀ ep ∈ EP, EP = {id, lat, lon, 
es}, an electricity provider ep is recorded by ID (id), 
latitude (lat), longitude (lon), and the surplus amount 
of electricity (es).

3. The third step is to determine the conditional state-
ment of ep.

1) If there is no record in EP, which means no ep 
located within 3 km to other electricity receivers, 

Fig. 4 Flow chart for dynamic dispatching algorithm
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then the dispatch fails, and the ms will be marked 
as 0.

2) Otherwise, if there are records in EP, and 
because the reverse sorting is completed, the first 
record of EP which is the maximum ep must be 
the one with the highest power that can supply 
power to er. In this case, the dynamic dispatch 
of er and ep is one-to-one state. Consequently, 
the surplus amount of electricity of ep (es) will be 
compared with the insufficient amount of elec-
tricity of er (ed):

a) If es > ed, which means the power supply of ep 
can satisfy the demand of er, then will update 
the remaining electricity of EP and mark the 
ms as 1.

b) If es < ed, which means that the power sup-
ply of ep cannot meet the demand of er, then 
multiple electricity providers will be used to 
dynamically dispatch a single er. It will select 
n electricity providers from the set EP sorted 
by row number at the beginning, marked as 
EPn, and mark all the IDs of charging sta-
tions, updating the remaining electricity that 
n charging stations can provide, which is rep-
resents by EPn.es; n is the number of charging 
stations which is less than or equal to N, the 
number of EP located within 3  km to other 
electricity receivers.

c) If EPn.es > ed, then repeat step a). It should be 
noted that the update of the order of remain-
ing electricity is the same as that of EP.

d) If EPn.es < ed, then repeat step b) and step c) 
until n equals N.

e) It is noted that if n = N but the surplus 
amount of electricity EPn.es is still unsatisfied 
the insufficient amount of electricity ed, then 
it will cancel the dispatch and mark ms as 0.

The pseudo code is presented to make a rigorous pres-
entation (Table  1). In Lines 11–14, for each er, we cal-
culate the distance (d) between ep and er, and select ep 
located within 3  km. If no station meets this condition, 
the status ms will be marked as 0. In Lines 15–19, we pro-
cess one-to-one site dispatching if the surplus amount of 
electricity of ep (ep.es) satisfies the insufficient amount of 
electricity of er (er.ed), and mark the status ms as 1 after 
successful dispatching. In Lines 20–30, if one-to-one site 
dispatching fails, we select a set of n selected electric-
ity providers (EPn) to execute multiple-to-one site dis-
patching and mark the status ms as 0 first. This step will 
be iterated until successful dispatching, and then mark 
status ms as 1. Lastly, in Lines 32–33, if dispatching still 

fails after finishing the iteration in step 3 or there is no ep 
located within 3 km to er, the status ms will be marked 
as 0.

As a local dispatching optimization algorithm, there 
are three obvious advantages: (i) in order to mitigate 
the issue of additional power loss brought on by the far-
flung charging stations involved in the dispatch, dynamic 
power dispatch can be carried out through nearby charg-
ing stations; (ii) the ideal PV installation area size can be 
flexibly assessed based on the adjacent building density 
and the area’s PV potential size; and (iii) residential units 
have autonomous energy systems. Therefore, even in 
places with unstable grids, nearby building units can be 
used to swiftly refuel charging stations with energy.

3  Empirical evaluation
3.1  Study area
Figure  5 demonstrates the study area, Guangzhou, 
China. It is reasonable to infer that charging demand will 
increase with the proliferation of EVs, either exponen-
tially or linearly. To accelerate the EV charging station 
deployment, the Guangzhou Municipal Government has 
planned to build about 1000 super-fast charging stations 
and reach a total charging capacity of 4 million kilo-
watts by 2024. Meanwhile, the city has a variety of land 
use and land cover with complex urban morphology, 
which can create spatio-temporally heterogeneous RPV 
distribution. For instance, there are three typical indus-
trial, commercial, and residential zones in the Huadu 
district, Tianhe district, and Liwan district, respectively. 
These three typical areas can help to easily understand 
the distribution of RPV at different times of the day. The 
selecting criteria refer to the density of the areas and the 
functional zoning of different areas. At the same time, 3D 
buildings are represented by raster data with a constant 
spatial resolution of 1 m. Therefore, the solar radiation of 
every single grid cell is finally determined to be 1 × 1  m2.

3.2  Data pre‑processing
The EV charging records were updated every five min-
utes for all the 476 charging stations in Guangzhou that 
corresponds to 5574 charging piles with a total number 
of more than 9.7 million records between 21 June and 20 
July in 2022. Each record contains the attributes of sta-
tion ID, latitude, longitude, power, charging status (no 
charging versus charging), charging mode (fast or slow 
charging), price, discounts, and charging duration. To 
quantify PV charging capability, the dataset is recon-
structed to daily-based charging information through: 
(i) feature extraction: the charging rate and latitude–
longitude features were extracted from each charging 
record, multiplied by the corresponding charging time 
to obtain the charging demand per minute; and (ii) data 
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aggregation: each charging station was aggregated by ID, 
and the total daily charging demand and duration for 
each station were calculated.

The 3D building dataset was collected from the Insti-
tute of Geographic Sciences and Natural Resources 
Research, CAS, China. There are insignificant changes in 
solar irradiation in Guangzhou from June to July because 
the latitude of Guangzhou is 22°26’ and the direct sun-
light passes through Guangzhou twice by moving north-
ward and turning southward at about 23°26’ north 
latitude at the summer solstice around 22 June. Thus, 
this study performs bi-weekly estimations instead of cal-
culating weekly or monthly average solar irradiation, as 

a trade-off between the accuracy and computation load. 
Meanwhile, it is important to incorporate the effects of 
unstable weather on RPV electricity generation. To esti-
mate statistically significant RPV potential over the years, 
hourly cloud cover data in Guangzhou are collected for 
the past 14 years from 2009 to 2022 from World Weather 
Online (2023) and computed the average transmissivity 
and diffuse proportion for the two periods from 21 June 
to 5 July and from 6 to 20 July.

4  Results
4.1  Solar irradiation output
For administrative districts situated in the urban core, 
accounting for the impact of urban building patterns, par-
ticularly building height and density, as well as the urban 
RPV potential, an external buffer range x is established at 
200 m to mitigate the above influences. Since the excessively 
low solar radiation is caused by the shadow effect from 
obstacles in the surrounding high-rise building, the areas 
with a PV potential less than 3 kWh/m2/day are excluded 
to improve the efficiency and shorten the investment pay-
back period (Luo et al., 2022; Wong et al., 2016). Although 
we only investigate solar potential on 28 June and 13 July, 
weather information is collected for the day before and the 
day after, for a total of three days, to minimize the influence 
of unstable weather. Table 2 lists the numbers and the aver-
age proportions of clear days, partly cloudy days, and cloudy 
days in the two short periods between 2009 and 2022. As 
a result, the transmissivity values on 28 June and 13 July in 
Guangzhou are 0.53 and 0.56, respectively, while the diffuse 
proportions are 0.41 and 0.37, respectively.

Table  3 shows the minimum and maximum values 
of solar irradiation in Guangzhou on 28 June and 13 
July, respectively. It reveals that the highest values of 
solar irradiation occurred between 11:00 and 13:00 on 
both days, while the peak on July  13th is slightly higher 
than that on 28 June. Furthermore, the maximum 
value of solar irradiation gradually increased from 6:00 
to 13:00, after that it slowly decreased. There is a rea-
sonably sharp decline in maximum solar irradiation 
during the intervals from 16:00 to 18:00 with values 
of 314 Wh/m2 on 28 June and 326 Wh/m2 on 13 July, 
respectively.

Figure  6 visualizes the solar irradiation distribution 
from 6:00 to 18:00 in the industrial area in Huadu Dis-
trict, the commercial area in Tianhe District, and the res-
idential area in Liwan District, which are the three typical 
areas corresponding to Fig. 5, respectively. It reveals that 
the commercial area had relatively low solar potential, 
especially from 7:00 to 8:00, which was mainly caused by 
the shadow effects from the high density of tall buildings. 
The visualization provides an explicit understanding of 
spatio-temporal changes in solar irradiation distribution 

Table 1 The pseudo codes of dispatching algorithm

Initialization
1 er: electricity receiver; ep: electricity provider

2 ER: {er}; EP: {ep}

3 N: the number of EP located within 3 km to other electricity receivers

4 n: the number of selected EP, n  [1, N]

5 d: the distance between ep and er

6 e: the amount of electricity at a station

7 es: the surplus amount of electricity

8 ed: the insufficient amount of electricity

9 ms: matching status

10 EPn: a set of n selected EP, EPn  EP

Algorithm
11 for each er in ER

12  for each ep in EP

13   calculate d;

14  if d ≤ 3 km

15    n = 1;

16   if ep.es > er.ed

17     ep.e = ep.e – er.ed;

18    er.e = er.e + er.ed;

19    ms = 1;

20   else
21    ms = 0;

22    n = 2;

23     while n ≤ N

24      while EPn.es > er.ed

25       EPn.e = EPn.e – er.ed;

26       er.e = er.e + er.ed;

27       ms = 1;

28       break;

29      if ms == 1

30       break;

31      n += 1;

32  else
33   ms = 0;
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during the daytime and assists in planning the deploy-
ment of RPV modules.

4.2  The supply–demand relationship without dispatching
Figure  7 demonstrates the proportion of three types of 
solar PV charging stations (in the y-axis) including com-
pletely satisfied (R ≥ 1), partly satisfied (R < 1), and com-
pletely unsatisfied (W) according to the real EV charging 
demand and supply in different radius of circular PV 
area in the x-axis. As discussed in Sect.  2.4.2, R repre-
sents the electricity supply and demand ratio. Overall, 
the results are almost the same when the statistics are 
made for the first- and the second 15  days. It is notice-
able that W equals 0.38 when the radius is 50 m, and with 
the increase of the radius to 500  m, W reduces to 0.09 
(Fig. 7(a)). In the same scenario, the values are 0.17 and 
0.02 for R < 1. In comparison, with the increase of the 

radius, the proportion of charging stations grow from 
0.45 to 0.88 for R ≥ 1, and the increasing trend turns to be 
rather slow since the radius reaches 250 m. This indicates 
that PV potential within a 250-m circular area might be 
a feasible choice since it has already been able to sup-
port more than 80% of the real charging demand with-
out any dynamic balancing. The existence of W usually 
represents no appropriate building rooftops in this area, 
suggesting that a larger circular buffer area is required to 
generate the PV electricity. Figure 7(b) presents the simi-
lar trend and implications.

Figure 8 shows the supply–demand relationships with-
out dispatching across the whole city for the first 15 days. 
Despite the high density of EV charging stations in 
Haizhu district and Tianhe district, the charging demand 
can be satisfied quickly with the increase in RPV areas 
compared with other administrative districts due to the 

Fig. 5 Study area in the city of Guangzhou, China
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high density of buildings in these two districts as shown 
in Fig. 5. This means that there is a greater potential for 
RPV deployments in these areas within the same radius.

4.3  The supply–demand relationship with dispatching
The above section also reveals that the ratio for R > 1 
cannot reach 90% although the radius of the circular PV 
area has already been 500  m. This suggests that spatio-
temporal dynamic dispatching may be an effective solu-
tion to further improve the PV charging capability at a 
given PV area. It is noticed that the dynamic dispatching 
is at the urban scale, which means that there are several 
different areas in the city, such as residential, industrial, 
and commercial areas, all utilized the dispatching system 
to address the imbalance between supply and demand 
of electricity. Thus, Fig. 6 shows the distribution of solar 
irradiation in different study areas, while the electricity 
dispatching system is used to balance the relationship 
between power supply and demand at the urban scale. 
Figure  9 depicts the proportion of  two types of solar 

PV charging stations with  dynamic dispatching. After 
dynamic dispatching, it is found that all charging stations 
can be powered by RPVs. For the two periods, the pro-
portions of charging stations for R ≥ 1 are around 10% to 
20% larger than that without dynamic dispatching, versus 
the proportions of charging stations for R < 1 are around 
10% to 20% smaller. It has also been noticed that more 
than 90% of the charging stations can be completely pow-
ered by PVs with R ≥ 1 when the PV planning area has a 
radius of 300 m. Since that, the improvement has become 
insignificant.

Figure  10 shows the supply–demand relationships 
with dispatching across the whole city. The electricity 
providers and receivers are represented by yellow and 
red dots in Fig.  10, respectively. It is found that the 
transmission of surplus electricity made by the pro-
posed dynamic dispatching algorithm can satisfy the 
demand of adjacent charging stations with insufficient 
supply. However, the local supply–demand relationship 
remains unclear to be observed in Fig.  10. To demon-
strate the effectiveness of the proposed framework, 
Fig.  11 demonstrates the local supply–demand rela-
tionship with dispatching in four specific areas includ-
ing industrial, commercial, residential, and suburban 
areas. The number of charging stations that satisfy 
the demand or have the capability to provide power 
increases with the radius of the RPV areas. Meanwhile, 
the charging-demand relationship between different 
charging stations changes dynamically with increasing 
RPV areas. Finally, the insufficient power supply cor-
responding to the four areas has been solved by local 
dispatching with a radius of 250 m, 150 m, 100 m, and 
400  m, respectively. It is uncompulsory to increase 
the radius to meet the charging demand of high-den-
sity charging stations as shown in the commercial 

Table 2 The number of days in different types of climate 
information

27–29 June 2009–2022 12–14 July 
2009–2022

Nclear 10 14

Npartly 28 27

Ncloudly 4 1

Pclear 0.24 0.33

Ppartly 0.67 0.64

Pcloudly 0.10 0.02

δt 0.53 0.56

δd 0.41 0.37

Table 3 Time series solar irradiation in Guangzhou on the two specific dates

Hour interval 28 June 13 July

Minimum ( Wh/m2) Maximum ( Wh/m2) Minimum ( Wh/m2) Maximum ( Wh/m2)

6:00 – 7:00 0.00 168.78 0.00 187.08

7:00 – 8:00 0.01 484.14 0.01 513.23

8:00 – 9:00 0.01 703.91 0.01 730.60

9:00 – 10:00 0.01 839.92 0.01 863.39

10:00 – 11:00 0.01 928.88 0.01 939.06

11:00 – 12:00 0.01 1006.32 0.01 1016.95

12:00 – 13:00 0.02 1006.32 0.01 1016.95

13:00 – 14:00 0.01 928.88 0.01 939.06

14:00 – 15:00 0.01 839.54 0.01 863.05

15:00 – 16:00 0.01 704.21 0.01 730.87

16:00 – 17:00 0.01 484.34 0.01 513.42

17:00 – 18:00 0.00 170.33 0.00 187.98
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zone (Fig. 11(b)). Specifically, the power supply highly 
depends on the building density and urban morphol-
ogy instead of the type of functional zones. Overall, the 
dynamic dispatching algorithm can improve the charg-
ing capacity and minimize electricity waste.

Figure  12 presents the proportion  of solar PV  charg-
ing stations that were successfully dispatched (in the 
y-axis) on 28 June and 13 July, for different circular areas 
with the radius ranging from 50 to 500 m (in the x-axis). 
Overall, as the size of the PV planning area increases, 
the success ratio of dispatching charging stations tends 
to decrease, especially at high-capacity levels. However, 
there is an exception to this trend that, when the PV 
planning area has a 100-m radius, it obtains the highest 

rate of successful dispatching on both dates. This is prob-
ably because that when the PV size is significantly small 
(e.g., the radius is 50 m), the generated PV electricity can 
only be used for powering its own charging station, and 
there is surplus electricity that can be used for powering 
other charging stations when the PV size is getting bigger 
(e.g., the radius is 100 m).

5  Discussion and conclusion
This study proposed three interconnected modules for 
dispatching surplus electricity between EV charging sta-
tions to maximize the EV charging capability powered by 
RPVs. The developed algorithm achieved local optimi-
zations that maximize the charging capacity, minimize 

Fig. 6 Hourly solar irradiation distribution from 6 am to 6 pm. a Industrial area. b Commercial area. c Residential area
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the number of charging stations to be powered by other 
stations, and minimize the total power-transmission dis-
tance. The charging capacity increased by 20%, which 
is inspiring and encouraging us to promote such an 
approach in other cities with similar latitudes, building 

density, and urban morphology (e.g., Shenzhen and other 
cities in the Greater Bay Area of China). After collect-
ing the data of diffuse proportion, transmissivity, and 
building attributes (i.e., locations and heights) for the 3D 
solar potential estimation model as well as the charging 

Fig. 7 The proportion of three types of solar PV charging stations without dispatching. a The statistics for the first 15 days. b The statistics 
for the second 15 days

Fig. 8 The supply–demand relationship without dispatching for the first 15 days
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demand and locations of EV charging stations, the appro-
priate radius of RPV areas can be obtained by utilizing 
this framework.

More types of functional areas might have little impact 
on the representative improvement of 3D solar potential 

estimation and dynamic dispatching optimization. This is 
because the estimation is determined by solar irradiation, 
building density, and urban morphology. Our study aims 
to find the appropriate radius of RPV areas to maintain 
the overall balance between supply and demand at the 

Fig. 9 The proportion of two types of solar PV charging stations with dispatching. a The statistics for the first 15 days. b The statistics for the second 
15 days

Fig. 10 The supply–demand relationship with dispatching for the first 15 days
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Fig. 11 The supply–demand relationship with dispatching in four specific areas for the first 15 days. a Industrial zone. b Commercial zone. c 
Residential zone. d Suburban area
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urban scale. Meanwhile, the functional area distributions 
are complex within the city, and our study takes 3 km as 
the maximum transmission radius, which is large enough 
to cross different functional areas. Therefore, our study 
excludes the classification of functional areas in the sec-
tion on estimating the 3D solar irradiation.

This study is vital in three aspects. First, we pro-
posed a parallel computing strategy for efficiently 
estimating fine-scale solar potential over a large geo-
graphical area, which successfully reduce the compu-
tation time and computer performance requirements. 
Second, the developed algorithm contributes to spa-
tiotemporal dispatching of RPV electricity for EV 
charging at an urban scale, which can dispense sur-
plus power to minimize electricity waste. According 
to the pseudocode, the time complexity of this algo-
rithm is O(n4), while the spatial complexity is O(n2). It 
is noticed that the time complexity is relatively large, 
which indicates that the execution time of a program 
increases exponentially with the amount of input data. 
Third, this study performed a series of experiments 
with varying sizes of PV planning areas, which was 
useful in suggesting the best one that can approach 
the balance between the power supply and demand 
between nearby charging stations. Notably, the RPV 
electricity generation between stations is also spati-
otemporally heterogeneous. This is because rooftop 
solar potential was conclusively affected by rooftop 
areas and shadows created by 3D buildings of the same 
size as the circular planning area. In this regard, a flex-
ible approach can integrate the optimization of varying 

radius of the PV planning area into the current model. 
Thus, our study is significant to accelerate the tran-
sition to sustainable power supply to reduce carbon 
emissions (long-term impact) and to reduce the grid 
load, especially in peak hours (short-term impact).

The solar estimation and PV planning made in this 
study were based on the horizontal rooftop surfaces 
that did not model rooftop structures and the affili-
ations. This can accurately quantify the theoretical 
solar PV potential but may cause certain uncertainty 
from reality. To solve this problem, building model 
reconstruction from 3D point clouds or rooftop 
semantic segmentation based on the high resolution 
of satellite imagery can be used for refined rooftop 
solar distribution estimation. Although the power 
loss due to electricity transmission was not counted, 
its impacts are insignificant and negligible since the 
transmission distance from providers and receivers is 
short enough.

To conclude, this study developed an urban-scale 
dynamic dispatching framework for powering EV 
charging stations with RPV electricity. The developed 
algorithm can be generalized and applied to other cit-
ies, demonstrating its practical significance in promot-
ing sustainable urban development. This study also 
makes contributions to geographic science in revealing 
spatiotemporal patterns of solar distributions in cities. 
Future work can refine the dynamic dispatching algo-
rithm by incorporating heterogeneous radius of the PV 
planning area, which can improve the PV electricity 
generation efficiency considerably.

Fig. 12 The proportion of solar PV charging stations with successful dispatching for different circular areas
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