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Unraveling adaptive changes in electric vehicle charging behavior
toward the postpandemic era by federated meta-learning
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Dear Editor,

Electric vehicle (EV) saleshave significantly grownover the years to fulfill growing
demands for economic travel and greenhouse gas mitigation.1 However, the
surge in the number of EVs has led to charging anxiety as users struggle to
find an available charging station before running out of electricity, resulting in
longer reserve and waiting times.2 Moreover, severe mobility restrictions caused
by infectious diseases, such as coronavirus disease 2019 (COVID-19), have
greatly affected people’s travel behavior3,4 and hindered their willingness to
use EVs, given that charging in public spaces consumes time and increases
the risk of contracting the virus.5 This implies that in the postpandemic era, in
which individuals coexist with the virus, the interplay between the two important
trends, namely vehicle electrification and mobility restrictions, can extensively
affect people’s daily commuting by using EVs.6,7 Hence, it is vital to investigate
the interaction between vehicle electrification and mobility restrictions, which is
unexplored in the current literature. Since official communications regarding
confirmed COVID-19 cases can influence people’s travel behavior8,9 and EV
charging can directly reflect users’ propensity to use EVs, quantifying vehicle
electrification through EV charging data is an appropriate approach to unravel
these interactions. In summary, this study aims to quantify and characterize
the interaction between the two trends mentioned above, seeking to understand
the diverse influencesof confirmedcases and associated factors on EV charging
behavior, especially when significant interactions are observed.

We collected all EV charging records, including count (xc), duration (xd) in mi-
nutes, and volume (xv) in kilowatt hours, from February to May 2022 across 292
Chinese cities. These data encompassed over 240,000 charging piles associated
with geo-located 28,000 charging stations. The daily confirmed COVID-19 cases
in the local city (i) and neighboring cities are represented as CL

i and CN
i , respec-

tively. The study identifies 116 cities for investigation, in which the local city
has a minimum of 5 confirmed cases, and the daily average charging count ex-
ceeds 200 (Figure 1A). Through three correlation analyses (Pearson, Spearman,
and Kendall) and three Granger causality analyses (likelihood-ratio test, the sum
of squares regression-based F test, and chi-square test) conducted on {CL

i , C
N
i }

and {xc , xd , xv}, it was determined that charging behavior in 74 of the 116 cities
was affected by CL

i and/orC
N
i (Figure 1B). This conclusion is derived from the ev-

idence that {CL
i } and {xc} in each of these cities exhibit the minimum correlation

coefficient, min(jRj), >0.1 (Figure 1C) and a maximum causative p value < 0.05
(Figure 1D). Furthermore, a similar pattern is also detected for {CN

i } and {xc}.
We hypothesized that the changes in charging behavior were influenced by

pandemic changes (IL and IN), geographical and social conditions (road density
er and population density eo), economic conditions (annual per capita disposable
income ei and gross domestic product (GDP) per capita eg), and charging capac-
ities (charging pile density ep and charging station density es). In addition, we
considered city-tiers, with 14, 17, 29, and 14 cities, respectively, belonging to tiers
1 (themost well-developed cities) to 4. Subsequently, we developed an advanced
federated meta-learning model (FMM) comprising long short-term memory and
multilayer perceptron to estimate the charging behavior on an hourly basis in
each city. The 6-fold time series cross-validation reveals that all of the mean ab-
solute errors (MAEs) are <10% of the largest observation value for the charging
ll
behavior (Figure 1E). In addition, the mean square error, root-mean-square error,
and median square error are remarkably small. These results together indicate
that the FMM has attained a highly satisfactory estimation accuracy.
To reveal data distribution patterns, we treated the changes in daily confirmed

cases as a positive impulse, equivalent to the SDs of {CL
i , C

N
i } over the studied

period, denoted by {ILi , I
N
i }. Using the impulse response function, we estimated

hourly changes in charging behavior fDyct , Dydt , Dyvt g over 24 h on the selected
day, when the values hover around the means throughout the entire period.
Then, we established a linear impact expression function, E = ½IL� , IL� , er� , eo� , ei� ,
eg� , e

p
� , e

s
��, to represent independent variables, and the dependent variable, Dy�,

is devoted to express the reaction to the positive impulse. Note that the subscript
“*” represents ln($) to better capture nonlinear relationships during the analysis. It
was found that data distributions between the eight elements of E and Dyc� can
vary when cities are categorized into different city tiers, levels of GDP per capita,
and regions. All of the elements in E and {Dyc� } approximately follow the Gaussian
distribution in each tier, demonstrating unclear linear relationships (Figure 1F).
The aforementioned results motivate us to quantify the importance of the

eight influential factors in contributing to the changes in charging counts. To
achieve this, we calculated the Shapley additive explanations (SHAP) values of
the eight factors in E. Specifically, the 50th percentile SHAP values of eight fac-
tors are presented in the bottom-right corner of Figures 1G–1R. They are orga-
nized into four groups for each category, with {Dyc� } plotted in ascending order
on the y axis. Note that the SHAP values are comparable within the same group
since they are obtained from the samemodel. The results indicate an extremely
strong and positive correlation between E and {Dyc� }, with the Pearson correlation
coefficient R ranging from 0.86 to 0.95 (p#10�6) for city tiers (Figures 1G–1J),
0.83 to 0.85 (p#10�5) for GDP per capita levels (Figures 1K–1N), and 0.88 to
0.91 (p#10�5) for regions (Figures 1O–1R). In addition, R2 falls within 0.75–
0.90, 0.69–0.73, and 0.70–0.83 for the corresponding three categories, indi-
cating a satisfactory regression for SHAP distribution statistics.
The results reveal that the 74 affected cities are predominantly situated in the 3

most dynamic economic zones: Beijing-Tianjin-Hebei, Yangtze River Delta, and
Pearl River Delta. This is likely due to the high population density, and it requires
relatively high travel demands in these cities to carry out socioeconomic activ-
ities, potentially resulting in an easier spread of the virus.With 74 of the 292 cities
being affected, this implies that only a few major cities were affected and expe-
rienced dynamic changes in charging behavior in response to varying pandemic
situations. In comparison to the benchmark without new cases reported in late
May 2022, the reduced charging count was <25% for 68% of the cities and
<10% for 79% of the first-tier cities. This suggests that the prevention measures
had some impact on EV travel, but the effect was, however, not dramatic. Despite
the threemegacities in China, Beijing, Guangzhou, and Shenzhen, experiencing a
slight decrease in the daily average charging count by 0.55%–5.11%, their
charging duration or volume increased by 0.04%–5.75%. Moreover, Yangzhou,
a second-tier city in Jiangsu province, had a 16.17% reduction in charging count
but obtained a significant increase in charging duration (8.28%) and volume
(15.23%). These findings reveal adaptive travel behavior with EVs and a prefer-
ence for switching to the fast-charging mode to maintain the travel capability
while reducing unnecessary exposure.
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Figure 1. Analysis of hourly EV charging behavior in 74 Chinese cities (A) The total confirmed cases of cities during the studied period are presented in the red color scheme, and
cities with an average daily confirmed cases of <5 are marked in gray. (B) The names and abbreviations of the cities meeting the investigation criteria are listed, corresponding to the
grid locations in (C) and (D). (C) The correlation coefficient of each city, where its absolute value is theminimum among the 3 correlation coefficients. (D) Themaximump value of each
city among the 3 types of Granger causality tests. (E) All of the MAEs of the estimated charging count, charging duration, and charging volume in the 74 cities are smaller than 0.01.
(F) The data distribution between E and {Dyc� } is categorized by the 4 city tiers. (G–J) The analysis is categorized into 4 city tiers. (K–N) The analysis is categorized by 4 levels of GDP
per capita. Three percentile shreds (50%, 75%, 90%) are used to separate the cities into 4 levels. (O–R) The analysis is categorized into 4 regions, defined as the northern, eastern,
southern, and midwestern regions.

LETTER

2 The Innovation 5(2): 100587, March 4, 2024 www.cell.com/the-innovation

w
w
w
.t
he

-in
no

va
tio

n.
or
g

http://www.thennovation.org
http://www.thennovation.org


LETTER
This study used the theory of “the universal visitation law of human mobility”9

to model the accumulated influence of influential cases from nearby cities. The
influence follows a Gaussian distribution, declining based on the traveling dis-
tance from nearby cities to the local city, with the maximum distance set at
500 km, encompassing most nearby cities on a large geographical scale in
China. Therefore, the model allows us, from a uniquely spatiotemporal perspec-
tive, to understand the affected charging behavior. Still taking Yangzhou as an
example, it reveals that the city was typically affected by the pandemic occurring
in its nearby cities, indicating that the changed charging behavior was to confront
the expected upcoming newwaves and implying that people’s prevention aware-
ness has increased.

Notably, 81%, 65%, and 70% of the cities respectively obtained a negative Dyc ,
Dyd , and Dyv response to the positive impulse of {IL, IN}. This indicates that
charging duration and volume exhibited a weaker decreasing trend compared
to charging count, suggesting that people, overall, adopted adaptive charging
behavior by reducing the charging frequency while attempting to maintain
charging capability to avoid unnecessary exposure risks when confronting new
cases in local and nearby cities. In detail, the shares of negative (Dyc , Dyd ,
Dyv) are (71%, 50%, 50%), (94%, 71%, 71%), (90%, 72%, 79%), and (57%, 57%,
71%) for cities in tiers 1–4, respectively. This reveals two important phenomena.
First, cities in tiers 1–3 followed the same overall trend, and tier 1 cities experi-
enced the smallest reduction in the three charging behaviors, indicating that peo-
ple in large cities were more likely to keep traveling to carry out socioeconomic
activities. Second, small cities were less influenced by new waves, given that
only 57% of the tier 4 cities got a decreased charging count, much smaller
than cities in tiers 2 and 3.

The 50th percentile of the SHAP values reveals that the impulse of confirmed
cases ({IL� , I

L
�}) significantly affected the changes in charging counts (Dy

c
� ) in tier 1

cities. However, {IL� , I
L
�} became less important for cities in tiers 2–4. Fromanother

perspective, {IL� , I
L
�} was unimportant for cities where people are generally

wealthier (corresponding to GDP per capita levels 1 and 2), whereas the trend
was opposite in levels 3 and 4. This demonstrates that cities with wealthier pop-
ulations had a better ability to resist the impulse of the epidemic, implying a
similar phenomenon that high-income individuals could prevent infection more
effectively during the massive lockdowns.10

For eastern and southern cities where people are generally well paid, we
observed a similar result that {IL� , I

N
� } was unimportant, whereas the charging ca-

pacity of ep� and es� conclusively affectedDyc� . In contrast, both (IL� , e
r
�) in northern

cities and (IL� , e
p
�) in midwestern cities made important contributions to Dyc� . This

allows us to draw several important suggestions. First, charging behavior in tier 1
cities, with a large economy size and requiring frequent socioeconomic activities,
could be easily affected by the pandemic. Second, cities with a higher GDP per
capita tended to enable citizens to resist the shock of the pandemic better
because IL� and IN� were basically unimportant. Third, less-developed cities,
ll
such as those in tier 4, GDP per capita level 4, and midwestern China, were
more sensitive to IL� than IN� , whereas well-developed cities showed an oppo-
site trend.
Our findings indicate that adaptive and instantaneous changes exist in

charging behavior, responding to pandemic changes and socioeconomic condi-
tions. To facilitate the vehicle electrification process, more charging piles or sta-
tions can be built at high-demand locations to relieve charging anxiety. In addi-
tion, scheduling service related to charging count, duration, volume, and
location can be provided to guide convenient travel and increase the usage ratio
of charging piles. This encourages professionals in geography, renewable energy,
transportation, public health, and policy research to devise new strategies for the
postpandemic era. Furthermore, the proposed analytical method, coupled with
the developedFMM, offers a newapproach to reveal socioeconomicphenomena
hidden in complex urban systems.
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