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H I G H L I G H T S  

• Developed life-cycle-assessment integrated multi-sourced geospatial data model. 
• Segmented rooftop PV areas using an advanced semantic segmentation model. 
• Estimated installed PV electricity output using 3D solar estimation model. 
• Suggested significant carbon mitigation potential from rooftop PVs in Singapore. 
• Contributes to renewable energy transition and Information Geography development.  
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A B S T R A C T   

Accurately quantifying carbon mitigation of operational photovoltaics (PVs) influenced by dynamic geo- 
environment is crucial for developing suitable initiatives on renewable energy transition. However, previous 
studies made strong assumptions to avoid modelling spatial heterogeneity of carbon footprints or ignore weather 
and shadowing effects on PV electricity generation, making the estimated results unreliable and even causing 
false policymaking. To tackle this challenge, we developed a novel model coupling multi-sourced data modelling 
and life-cycle assessment to estimate spatially heterogenous carbon mitigation of all the operational rooftop PVs 
in an entire city. It is built by three hierarchal modules: (i) segmenting PV areas from high-resolution satellite 
imagery, by using Deep Solar PV Refiner, an advanced semantic segmentation network; (ii) estimating electricity 
generation in the segmented PV areas, by using a well-developed 3D solar irradiation model that considers the 
effects of land surface solar irradiation influenced by weather and shadowing effects produced by 3D buildings; 
(iii) quantifying carbon mitigation potential of PVs, by developing a spatial-aware life-cycle model to track the 
life-cycle carbon footprints of PVs from production, transportation, operation, to decommission. Investigating 
Singapore by 2020, we reveal that industrial, airport, and residential areas have the largest rooftop PV instal-
lation. We also suggest a carbon emission rate of 13.20 g-CO2/kWh, a carbon payback time of 0.81 years, and an 
energy payback time of 0.94 years, showing an improved carbon mitigation capability compared to the past 
years. This study contributes to GIS data modelling and helps understand the geospatial characteristics of urban- 
scale PV carbon mitigation.   
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1. Introduction 

1.1. Background 

Many countries have adopted the Paris Agreement and the United 
Nations’ Sustainable Development Goals to address global warming, 
with the aim of restricting global temperature increase to below 2 ◦C 
above pre-industrial levels and limiting the increase to 1.5 ◦C [1]. To 
achieve that, the governments and organizations around the globe are 
striving to transit to renewable energy such as solar energy to reduce 
greenhouse gas (GHG) emissions and air pollutions, making a sustain-
able alternative compared to fossil fuels [2]. 

It is believed that photovoltaic (PV) farming is one of the most 
promising ways to collect solar energy, which emits nearly zero carbon 
during the operation [3,4]. With this motivation, PV farming has 
become increasingly popular even in densely populated areas [5]. 
However, despite their potential as a sustainable energy solution for a 
resilient and carbon-free future, some argue that PV modules consume 
energy during their upstream and downstream phases, particularly 
during the manufacturing stage, which may offset the environmental 
benefits at certain degrees [6]. To accurately assess the environmental 
impacts and effectively assist and adjust policies for sustainability tar-
gets, quantifying carbon mitigation capability of the installed PV mod-
ules adapt to dynamic geo-environment is crucial. 

Although statistics about PV area and installed capacity is available 
in some cities, it usually relies on manual data acquisition methods 
involving different public and private parties [7]. Although such 
methods are accurately, they are labour-intensive and time-consuming, 
making the collection unpractical when it comes to a large and fine 
scale. Additionally, these statistics usually lacks spatial information that 
makes it difficult to model spatiotemporal solar distribution affected by 
building shadow, consequently causing the estimated carbon reduction 
potential uncertain. To evaluate the environmental impacts of current 
PV systems to understand, refine, and improve a carbon neutral initia-
tive, rapidly and accurately identifying installed PV area and location is 
greatly needed. 

Meanwhile, carbon reduction potential was usually quantified by the 
difference of carbon emission factors between the current local grid and 
the alternative renewable energy [8,9]. This means that installed PV 
modules receiving different solar irradiation will have heterogenous 
electricity generation capability, resulting in various carbon reduction 
potential over time and space in cities. However, some studies estimated 
carbon reduction by disregarding the spatiotemporal heterogeneity with 
an assumption that all PV modules have the same power production 
[10,11]. Considering heterogenous distribution of PV potential affected 
by unstable weather, PV layouts, and building shadows, previous 
methods may cause large basis from the reality. Additionally, it is crucial 
to consider varying energy mix in different locations where PV systems 
are installed, which can result in significant differences in the mitigation 
of greenhouse gas emissions. Therefore, it is imperative to develop more 
sophisticated and location-specific approaches that account for these 
factors to obtain more accurate and reliable results. 

Based on annual electricity generation of installed PV modules, life 
cycle assessment (LCA) can assess the environmental impacts of a 
product or system during the whole life cycle from raw material 
acquisition to the final disposal [12]. Even though many studies have 
investigated the LCA of PV systems, they either focused on large but 
coarse geographical scales [10,13] or simplified scenarios by ignoring 
operation and end-of-life management [14], which could overestimate 
the carbon reduction capability. Few have examined the carbon miti-
gation potential of distributed PV systems at the building level covering 
an entire city. 

Regarding the three deficiencies as discussed above, this study aims 
to elaborately segment PV areas from high resolution satellite images, 
accurately estimate heterogeneously annual electricity generation of 
installed PV systems by considering the effects of unstable weather 
conditions and varying building shadows, and finally assess carbon 
reduction potential of existing PV modules by developing a low-cost, 
simple, and rapid LCA with geospatial modelling capability. 

1.2. PV area segmentation 

Conducting surveys on individual PV systems can be an arduous and 
time-consuming task, especially for PV systems on private properties 
that may not be easily accessible. To overcome this challenge, satellite 
imagery has been utilized to segment distributed PV areas in a large- 
scale, cost-effective, and efficient manner [15]. Since 2015, there has 
been significant interest in using satellite image-based approaches for 
PV area estimation. One study proposed a new detection approach that 
automatically identifies individual rooftop PV area from high-resolution 
satellite images to gather the system information such as installed ca-
pacity and energy generation, in a fast, reliable, and scalable way [16]. 
The results showed excellent locational detection performance; how-
ever, they did not provide pixel-level precision for PV area estimation. 
Subsequent study investigated two algorithms of Random Forest and 
Convolutional Neural Network (CNN), for PV array segmentation and 
found that CNN substantially outperformed Random Forest [17]. Simi-
larly, another study proposed a ConvNet method to accurately extract 
solar panel locations and determine their spatial extent using aerial 
images [18]. 

In later studies, study in [19] presented a deep learning segmentation 
architecture that combines features of the MobileNet classification ar-
chitecture and U-Net architecture, to optimize for efficient computation 
and achieved high recall (84.98%), precision (95.95%), and F1-score 
(90.13%). However, the segmented PV edges obtained from these al-
gorithms were unsatisfactory in some situations. To solve these prob-
lems, one recent study in [20] developed a new model called TransPV by 
coupling U-Net and Vision Transformer, which respectively enables the 
combination of multi-level features and enhance the modelling of global 
context, resulting in refined PV segmentation with enriched feature 
representation. 

Meanwhile, to evaluate the ability of various deep learning networks 
on PV area segmentation, study in [21] created a PV dataset using sat-
ellite images with spatial resolutions of 0.1, 0.3, and 0.8 m. The exper-
iment showed that DeepLabv3+ outperformed U-Net and RefineNet. 
Even for the dataset at 0.8 m resolution, DeepLabv3+ performed well 
with Recall, Precision, and F1-score above 85%. Although DeepLabv3+
has proved highly effective, the PV edge detection from satellite imagery 
is still challenging because the foreground PV areas are easily impeded 
by background contexts having indistinguishable textures and colours 
[22]. To address this, one study in [23] introduced an advanced Deep-
Labv3+ model that incorporates the Dual Attention Module (DAM) and 
PointRend Module (PRM), using a hybrid loss function (HLF) that 
combines cross-entropy loss, dice loss, and IoU loss functions to identify 
rooftop PV areas from satellite images. The model has been shown to 
improve the accuracy of PV area segmentation with a superior perfor-
mance of a recall of 91.01%, a precision of 91.51%, and a F1-score of 
91.26%, which provides a strong foundation for this study to accurately 
segment existing rooftop PV areas from satellite imagery and conduct an 
adaptive and reliable environmental assessment. 

The use of public mapping services to evaluate urban environments 
is becoming increasingly popular [24], with Google Earth Satellite (GES) 
images being a valuable source of open-access data due to their wide 
coverage, frequent updates, and low acquisition costs [25]. With the 
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deep learning-based image semantic segmentation model, the barrier of 
large-scale surveying of PV installations can be addressed. 

1.3. Solar irradiation and PV power estimation 

Solar radiation databases are commonly used to estimate PV power, 
as demonstrated by [26], who used solar radiation maps from the Joint 
Research Centre of the European Commission to examine rooftop solar 
potential. Another study in [27] has estimated PV electricity generation 
and solar PV potential, by using solar radiation data obtained from 
sources such as NASA and atmosphere monitoring databases. However, 
relying solely on national solar radiation databases provides only an 
overall average radiation of the entire study area, rather than the radi-
ation received by each PV module. As a result, the results obtained from 
such databases only give a rough estimation for the entire region. 

Recently, novel studies have accurately estimated solar PV potential 
by integrated GIS and Remote Sensing techniques [28,29] and reliably 
evaluate techno-economic feasibility through geospatial analysis and 
planning [30–32]. While there are several GIS-based tools available for 
solar radiation and potential estimation that capture the complexities of 
the urban environment, one study argued that these tools often overlook 
crucial atmospheric parameters that affect solar radiation estimation 
[33]. Therefore, they employed a solar radiation model that accounts for 
atmospheric parameters to estimate solar PV potential in Netherlands, 
with a focus on calibrating the values of diffusivity and transmissivity. 

Moreover, advancements in GIS technologies have led to studies on 
estimating rooftop PV capacity based on geospatial data. For example, 
study in [34] used LiDAR data to create a digital model of Auckland, 
which included terrain, building structures, and trees, as well as a solar 
radiation tool to compute the solar energy potential on each square 
meter of rooftop. Study in [29] used a GIS model to estimate solar ra-
diation, improve the outcome with LiDAR and remote sensing images, 
and use regression analysis afterward. However, while LiDAR data offers 
rich information on both 2D images and height attributes, its acquisition 
cost may be a significant barrier when estimating solar PV potential on a 
large scale [27]. 

1.4. Life cycle assessment of carbon emissions from PV modules 

Numerous studies have used the LCA methodology to investigate the 
environmental impacts of PV electricity generation [6,14,35], but few 
have focused on building-scale distributed PV systems adapting to the 
entire life cycle. Energy payback time (EPBT) and carbon payback time 
(CPBT) are two mostly used indicators. Although the production pro-
cesses for PV modules are similar across countries, variations in emission 
amounts may occur. This makes it difficult to determine the exact 
emissions associated with a specific PV module and installed location. As 
early as 2005, study in [36] conducted a LCA on a 2.7 kWp distributed 
mono-crystalline silicon (mono-Si) solar PV system in Singapore. 

Although PV systems provide significant benefits during their oper-
ational life, the production, transportation, and disposal of the compo-
nents can have negative environmental impacts [37]. Therefore, it is 
important to conduct LCA to estimate the environmental impact of PV 
systems accurately. Study in [38] assessed the environmental impact by 
calculating primary energy demand and EPBT on multi-crystalline sili-
con (multi-Si) PV systems in China, with capacity of 200 Wp, cell effi-
ciency of 16%, and lifespan of 25 years, considering only the production 
phase. The results range from 0.041 to 0.87 MJ/kWh and 2.2–6.1 years, 
respectively. Study in [14] conducted a LCA on a ground-mounted PV 
system, with 2017 kWh/m2/year solar radiation and a conversion 

efficiency of 17.5%, in China, ignoring the operational process and end- 
of-life management, with EPBT calculated as 2.3 years. Another study 
conducted LCA by comparing three different roof-integrated p-type 
multi-Si PV technologies with efficiency ranging from 15.9% to 16.7% in 
Singapore, evaluating the entire value chain but neglecting the opera-
tional stage, transportation, and end-of-life management [39]. The au-
thors used EPBT and GHG emissions as indicators of environmental 
impact, obtaining results ranging from 1.01 to 1.11 years and 20.9–30.2 
g CO2-eq/kWh, respectively. 

1.5. Contributions 

The major contribution of this study is developing a complete 
framework to evaluate the carbon mitigation potential of distributed PV 
systems at a city scale by integrating a semantic image segmentation 
model to segment installed PV areas from satellite imagery, adapting a 
rooftop solar irradiation estimation model to estimate annual PV elec-
tricity generation influenced by varying atmospheric conditions and 
building shadows, and developing a spatial-aware life-cycle model to 
accurately quantify PV carbon footprints. By comprehensively adapting 
GIS, remote sensing, deep learning, and LCA technologies, the frame-
work can be easily generalized for other cities and the study contributes 
to understand the geospatial characteristics of urban-scale PV carbon 
mitigation. 

The subsequent sections of the paper are organized as follows. Sec-
tion 2 outlines the methodology used in the study, including the study 
area and datasets. Section 3 presents the experimental results and 
analysis. Section 4 introduces the discussion and Section 5 draws the 
conclusion. 

2. Methodology 

We propose a research framework that includes three main modules: 
deep learning-based PV area segmentation from satellite imagery, esti-
mation of annual rooftop electricity generation from installed rooftop 
PVs, and LCA-based estimation of carbon mitigation potential (Fig. 1). 
The first module segments PV areas from high spatial resolution satellite 
images by using an advanced semantic segmentation network. The 
second module quantifies annual PV electricity, by coupling the 
segmented PV areas, historical weather that determines land-surface 
solar irradiation, and building rooftops with height attributes used to 
model shadowing effects. The third module evaluates PV impacts from 
the manufacturing stage to the end-of-life management of PV in terms of 
Cumulative Energy Demand, Carbon Emission Rate, EPBT, and CPBT. 

2.1. Study area 

The total electricity consumption in Singapore has increased from 
50.8 TWh in 2020 to 53.5 TWh in 2021, a rise of 5.3% [40]. Meanwhile, 
Singapore receives abundant sunshine with an average annual solar 
irradiance of 1580 kWh/m2/year [41], which indicates a significant PV 
potential to offset carbon emissions from traditional fuel-based elec-
tricity generation. Thus, the Government has demonstrated a commit-
ment to promote PV deployment through various policies and funding 
schemes. This study investigated the entire territory of Singapore. The 
west areas marked in Fig. 2 were used to train, validate, and test the 
segmentation model, and the well-trained model was used for PV area 
segmentation in the entire territory. 
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2.2. Estimation of installed PV capacity 

2.2.1. Semantic segmentation of PV areas 
Deep Solar PV Refiner [23], an advanced DeepLabv3+, was used in 

this study for rooftop PV area segmentation from satellite images. The 
model integrated several advanced deep learning techniques, including 
Parallel Connection of Separate ASPP and DAM, PointRend Module, and 
Hybrid Loss Function (combining cross-entropy loss, dice loss, and IoU 
loss) to improve the accuracy of segmentation results. In addition, the 
network employed ResNeSt as the backbone, which allows it to capture 
both local and global contextual information while reducing computa-
tional cost. After segmentation, regularization based on a polyline 
compression algorithm was performed to polygonise and refine the 
boundaries of PV areas, which also removes interior rings occurring in 
some of the PV polygons. 

2.2.2. Transfer learning 
The accuracy of a model can be improved with a larger dataset. 

However, collecting a large dataset is time-consuming and resource 
intensive. Transfer learning and fine-tuning with a limited dataset has 
been a common training technique to improve the performance of a 
semantic segmentation model [22]. The experience and knowledge 
gained from previously trained model (i.e., Deep Solar PV Refiner) was 
repurposed to assist with the execution of new tasks in this study. 

2.2.3. Installed PV capacity 
Since Singapore is located near the equator, a tilted angle of 10–15◦

for PV panels is recommended to prevent raindrops and dust from 
obstructing the panels and reducing their efficiency. Thus, an average 

angle of 10◦ was adopted for estimating PV areas segmented from the 
satellite imagery. On the other hand, all rooftops in this study were 
regarded as horizontal planes. The rooftop PV areas with a tilted angle 
were calculated in Eq. (1), where At is the area of solar PV with a tilted 
angle in m2, AS is the segmented PV area in m2, and α is the tilted angle 
of solar PV panels in degree. Installed capacity refers to the maximum 
power generation of the installed PV system under optimal conditions as 
calculated in Eq. (2). 

At =
AS

cosα (1)  

Installed capacity = Product power ×At (2)  

2.3. Annual rooftop solar PV potential 

2.3.1. Estimation of transmittivity and diffuse proportion 
Cloud significantly affects land-surface solar radiation because it can 

scatter or absorb solar radiation, reducing the amount of direct radiation 
that reaches PV modules and causing fluctuations in solar power output 
[27]. Therefore, transmittivity and diffuse proportion were calculated in 
Eqs. (3) and (4) to quantify land-surface solar irradiation based on the 
cloud cover data [42], where Mt is the year average atmospheric 
transmittance, Md is the year average diffuse proportion, Pclear, 
Ppartlycloudy, and Pcloudy is the percentage of clear days, partly cloudy days, 
and cloudy days in each year, respectively. 

Mt = 0.7×Pclear + 0.5×Ppartlycloudy + 0.3×Pcloudy (3)  

Md = 0.2×Pclear + 0.45×Ppartlycloudy + 0.7×Pcloudy (4) 

Fig. 1. Research framework for carbon reduction estimation.  
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2.3.2. Estimation of annual solar electricity output 
The Area Solar Radiation toolset in ArcGIS Pro was used to estimate 

annual solar potential on building rooftops, which is one of the most 
professional solar estimation models that has been widely used in the 
previous study [43]. The toolset is a physical model that mathematically 
quantifies the effects of both cloud cover described by transmittivity and 
diffuse proportion and spatiotemporal shadow created by nearby 
buildings enriched with the height attribute. Furthermore, the total 
amount of electricity that a PV system can generate is simultaneously 
influenced by the PV area, unstable weather, spatiotemporal shadow, PV 
conversion efficiency, and performance ratio [43]. The equation is 
expressed in Eq. (5): 

Epv = At × S× r×PR (5)  

where Epv (kWh) is the annual solar electricity output of PVs; At (m2) is 
the total area of the tilted PV modules in Eq. (1); S (kWh/m2/yr) is the 
annual solar radiation received by PV modules affected by unstable 
weather and spatiotemporally heterogeneous shadow; r (%) is the PV 
conversion efficiency, and PR (%) is the performance ratio. In this study, 
20% of PV conversion efficiency [44] and 75% of performance ratio was 
employed [43,45]. 

2.4. Life cycle assessment 

The entire life cycle of a PV system consists of several stages, 
including manufacturing and production, transportation, operation and 
maintenance, and end-of-life processing of deconstruction, waste 
disposal, and recycling [46,47]. We assume that the lifetime of a PV 
system is 25 years [48,49] and we adapt two major types of PV modules 
in the model, which take about 61% for mono-Si and 39% for multi-Si, 
according to the latest statistics in Singapore [49]. The estimation is 
based on a standard 60-cell module with the size of 1 m × 1.6 m, which 
have a product power of 330 Wp for mono-Si and 280 Wp for multi-Si 
[44]. Fundamental parameters used in the estimation are summarized 
in Table 1. 

For PV manufacturing and Balance-of-System (BOS) production, the 
energy input is almost the same while the corresponding carbon emis-
sion can be significantly different, mainly because of the varying energy 
structures in different countries. Thus, it is important to track the carbon 

footprints of PV modules to adapt to global PV trading. According to 
Climate Transparency (www.climate-transparency.org), we assume that 
the installed PV modules were produced in six countries of China, 
Canada, Germany, Japan, Singapore, and the USA, according to the 
latest market sharing of installed PV brands in Singapore. The corre-
sponding carbon emissions for PV manufacturing were also summarized 
in Table 2, based on studies in [50,54]. 

For PV transportation, although it was suggested that the energy 
input and carbon emission for were small when compared to the 
manufacturing stage, uncontrollable uncertainty may be produced if it is 
only approximated by using a static index [39]. To address this issue, it 
is appropriate to infer that PV models were imported through ocean 
transport between container shipping ports and road transport between 
ports and installation sites. 

The carbon emission from ocean transport by deep-sea containers is 
calculated in Eq. (6), where ET is the carbon emission, V (tonnes) refers 
to the total transport volume, D (km) is the transport distance, and EFT 
(kg-CO2/t-km) denotes the average carbon emission factor [55]. The 
total transport volume used in this study was calculated by multiplying 
the total area of segmented PV (m2) by the weight (kg/m2), and the 
emission factor of ships or trucks subject to the transport distance. Based 
on the Sea Distance ORG (https://sea-distances.org/), the average 
shipping distance from the main ports of one country to Singapore are 
calculated, and the longest road transport distance from east to west of 
Singapore is 64 km. As a result, the emission factor and energy input of 
unit PV transportation is obtained in Table 3. 

Table 1 
Parameters for unit conversions and calculations.  

Parameters Values Data source 

Weight PV module (w) 15 kg/m2 [51,52] 
1 module (60-cell silicon PV module) 1.0 m × 1.6 m 

[44] Product power of a mono-Si PV module 330 Wp 
Product power of a multi-Si PV module 280 Wp 

Emission factor for ocean transport (EFOT) 5.7 × 10− 3 kg-CO2/t- 
km 

[53] 
Emission factor for road transport (EFRT) 

8.1 × 10− 2 kg-CO2/t- 
km 

Energy input for ocean transport (EIOT) 5.29 × 10− 2 t-km/kWh 
[46] Energy input for road transport (EIRT) 6.24 × 10− 4 t-km/kWh 

Emission factor for decommission (EFD) 0.4057 kg-CO2/kWh [54]  

Fig. 2. Study area covering the entire territory of Singapore.  
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ET = V ×D×EFT (6) 

For PV maintenance, one replacement of inverter is assumed during 
the system life cycle, taking 0.1% of manufacturing input [56]. Because 
of the frequent rainfall in Singapore, cleaning of PV surfaces is not 
performed as often as necessary [39], and the cleaning process is 
neglected in this study. 

For PV decommission, indirect carbon emission, which are generated 
outside of the manufacturing process but are necessary to deconstruct 
the PV system, is not always available. It includes the energy required to 
extract and process raw materials, as well as emissions generated from 
the disposal of waste during production [57]. As an estimation, indirect 
carbon emission from electricity consumption can be calculated in Eq. 
(7) [49], where ED (kg-CO2/m2) is the indirect carbon emission, Ec 
(kWh/m2) is the consumed electricity energy during the process by 
multiplying the energy conversion factor equalling 0.2778 kWh/MJ and 
the energy input of EI (MJ/m2, Table 1), and EFD (kg-CO2/kWh, Table 1) 
is the emission factor from electricity generation. 

ED = Ec ×EFD (7) 

For PV recycling, the carbon emission is − 129 kg-CO2/kWp for 
mono-Si and − 135 kg-CO2/kWp for multi-Si [58]. By integrating the PV 
configurations summarized in Table 1, the carbon reduction potential 
can be easily obtained. 

2.5. Estimation of carbon mitigation potential 

2.5.1. Cumulative energy demand 
Cumulative energy demand (CED) is used to measure the total 

amount of primary energy required to produce a specific amount of a 
product (i.e., the electricity to produce a unit PV module), considering 
all energy inputs throughout its entire life cycle [59]. Eq. (8) is designed 
for the scenario when different types of PV modules are installed in a 
city, where EPi, ETi, EMi, and EDi represent the energy required for 
manufacturing, transporting, maintaining, and decommissioning a unit 
area of PV module, and Ri stands for the ratio of each PV type in the city. 

CED =
∑i

1
(EPi +ETi +EMi +EDi)×Ri (8)  

2.5.2. Carbon emission rate 
Carbon emission rate (CER) is a measure of the total carbon emission 

associate to a unit electricity generation from a PV during the entire life 
cycle [60]. According to the definition, the total carbon emission can be 

calculated in Eq. (9), where CPi, CTi, CMi, and CDi represent the carbon 
emission associated with the corresponding stages for a PV module, and 
Ri stands for the ratio of such PV module in the city. Then, CER can be 
calculated in Eq. (10) [6], where EA refers to the corresponding elec-
tricity output for a unit time, and t refers to the lifetime of PV system. 

Ctotal =
∑i

1
(CPi +CTi +CMi +CDi)×Ri (9)  

CER =
Ctotal

EA × t
(10)  

2.5.3. Carbon reduction benefit 
Life-cycle carbon reduction of a PV system is calculated in Eq. (11) 

[8] and the net carbon reduction benefit is defined in Eq. (12) [9]. Cr is 
the carbon reduction and Crnet (kg-CO2/m2) is the net carbon reduction 
benefit from per m2 of the PV system, EA is the annual electricity 
generated per m2 of the PV system, EFc (kg-CO2/kWh) is the carbon 
emission factor of the local grid, t denotes the lifespan of PV system, and 
Cpv (kg-CO2/m2) denotes the total carbon emissions per m2 of PV system 
over its lifetime. 

Cr = EA ×EFc × t (11)  

Crnet = Cr − Cpv (12)  

2.5.4. CPBT and EPBT 
Carbon Payback Time (CPBT) refers to the period required for the PV 

system to offset the carbon emissions generated during its life cycle [61] 
and Energy Payback Time (EPBT) refers to the duration it takes for the 
solar PV system to generate an equivalent amount of energy that was 
used in its life cycle [6], which are calculated in Eqs. (13) and (14), 
respectively, where τ represents the energy conversion factor of con-
verting primary energy into electrical energy in kWh/MJ as indicated in 
Table 1. 

CPBT =
Cpv

EA × EFc
(13)  

EPBT =
CED
EA

× τ (14)  

2.6. Datasets 

In this study, the GES images covering the entire territory of 
Singapore with spatial resolution of 0.8-m were retrieved in the end of 
2020. The downloaded images were organized as 512 × 512 patches in 8 
bits, consisting of 3 bands (RGB) in the Geo-TIFF format. As shown in 
Fig. 2, 30% of the total area from the Southwest and Northwest districts 
were extracted for labelling and utilized as the training (85%), valida-
tion (10%), and testing (5%) datasets, and the entire area is used for PV 
area segmentation. Building rooftop polygons enriched with the height 
attribute were acquired from Urban Redevelopment Authority. Histor-
ical data of daily cloud coverage percentage in years from 2020 to 2022 
were acquired from World Weather Online (www.worldweatheronline. 
com), which was used to calculate Mt and Md in Eqs. (3) and (4). Cloud 
cover taking 0–30%, 31–70%, and 71–100% is defined as clear sky, 
partly cloudy, and cloudy, respectively. Solar radiation elevation angles 
and azimuths were obtained from Weather Spark (www.weatherspark. 
com) for solar potential estimation. 

3. Results 

3.1. Segmented PV areas 

Fig. 3 presents rooftop PV area segmentation results based on the 
satellite imagery, and Fig. 4 visualized the PV areas conversion from 
Raster to Polygon followed by boundary regularization and interior ring 

Table 2 
Crucial parameters for PV manufacturing in six countries.  

Country Market sharing of PV systems in 
Singapore 

National CO2 emission factor (EFM, 
kg-CO2/kWh) 

China 41.2% 0.5572 
Canada 4.0% 0.1197 
Germany 2.7% 0.3288 
Japan 0.4% 0.4615 
USA 8.0% 0.3580 
Singapore 43.7% 0.4057  

Table 3 
Crucial parameters for PV transportation [44].  

Category Country Transport 
distance (D, 
km) 

Emission factor 
(EFT , kg-CO2/t- 
km) 

Energy 
input (EIT, 
MJ/m2) 

Ocean 
transport to 
Singapore 

China 4142 0.3541 1.1832 
Canada 13,108 1.1207 3.7444 
Germany 15,729 1.3448 4.4931 
Japan 5378 0.4598 1.5363 
USA 14,203 1.2144 4.0572 

Road transport Singapore 64 0.0778 0.0022  
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removal. Furthermore, 4-fold cross-validations were conducted to 
evaluate the performance of the trained models (Table 4). It shows that 
all experiments obtained similar results with tiny variations, and the 
mean scores are 75.01% for Accuracy, 79.16% for F1-score, 83.69% for 
Precision, and 75.01% for Recall. Based on the first trained model, the 
post-processing yielded true positive (TP), false positive (FP), false 
negative (FN), and true negative (TN) samples at 47.68%, 9.31%, 
14.28%, and 28.73%, respectively. Consequently, the performance was 
enhanced, with Accuracy, F1-score, Precision, and Recall equalling to 
76.41%, 80.17%, 83.66%, and 76.95%, respectively. The results are 
acceptable, according to a study that revealed accuracy distribution of 
rooftop PV area segmentation, influenced by various spatial resolutions 
[15]. Thus, we suggest it is effective for estimating the carbon reduction 
potential although the overall accuracy is not dramatically high. 

The results have shown that rooftop PV systems in Singapore have a 
total installed area of approximately 1,859,949 m2. By considering the 
product power of two types of PV modules (Table 1) and their market 
sharing (i.e., 61% for mono-Si and 39% for multi-Si), the total installed 
capacity is estimated to be 360.95 MWp. Notably, in this study, we 
investigated installed rooftop PVs by 2020, meaning that installed PVs 
on the ground and water surface were not counted. Thus, it is incom-
parable to the total 431.2 MWp by 2020 that includes all the sectors of 
private sector, town councils, public service agencies, and residential 
[62]. 

3.2. Spatial distribution patterns of installed rooftop PVs 

In the spatial perspective, Fig. 5 shows that nearly all subzones in 
Singapore have installed rooftop PV systems. Specifically, Tuas Coast, a 
primarily industrial area in the southwest region, has the largest 
installed rooftop PV area, followed by Changi Airport in the northeast 
region. Meanwhile, it is noticeable that Lim Chu Kang and Western 
Water Catchment in the northwest and Jurong Island in the south have 
large size of rooftop PV areas. In comparison, rooftop PVs installed in 
Bukit Merah, the downtown area fulfilled by high density of tall build-
ings, are insignificantly large. In the thematic perspective, Fig. 6 reveals 
that the industrial, port & airport, and residential land use types take the 
largest PV installations, equalling 8.43 × 105 m2 (45.33%), 2.58 × 105 

m2 (13.89%), and 1.57 × 105 m2 (8.46%) PV areas, respectively. The 
two results are aligned with each other. It can be explained that the 

Fig. 3. Segmented rooftop PV areas. (a) GES images. (b) PV areas in the raster format.  

Fig. 4. Post-processing of segmented PV areas. (a) Raster format. (b) Polygon 
format. (c) PV boundary regularization. (d) Interior ring removal. 

Table 4 
Evaluation of the PV area segmentation using Deep Solar PV Refiner.  

No. Accuracy (%) F1-score (%) Precision (%) Recall (%) 

1 76.41 79.83 83.57 76.41 
2 74.65 78.96 83.79 74.65 
3 75.28 79.68 84.63 75.28 
4 74.04 78.16 82.76 74.04 
Mean 75.01 79.16 83.69 75.01 
Post-processing 76.41 80.17 83.66 76.95  
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industrial (Tuas Coast) and port & airport (Changi Airport) areas have a 
great number of large and flat rooftops, suitable for PV installations and 
the Government has also established large initiatives to promote PV 
installations on residential buildings (e.g., HDB buildings built by the 
Government, home of 80% populations) and landed properties. 

3.3. Annual electricity output of installed rooftop PVs 

The average transmittivity (equalling 0.54) and diffuse proportion 
(equalling 0.39) over the three years from 2020 to 2022 were used for 
solar potential estimation (Section 2.3.1). Table 5 presents the average 
solar radiation on the installed rooftop PV surfaces throughout the year, 

Fig. 5. Installed rooftop PV area categorized by districts.  

Fig. 6. Installed rooftop PV areas and the percentages categorized by land use types.  

R. Zhu et al.                                                                                                                                                                                                                                     
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with insignificant variation ranging from 120 to 150 kWh/m2. As a 
result, Singapore receives an average annual solar radiation of 1600 
kWh/m2 for installed rooftop PVs according to our estimation, which is 
slightly higher than the figure (i.e., 1580 kWh/m2) released by Energy 
Market Authority [41] and is almost 50% higher than that of many other 
countries [63]. This demonstrates that Singapore has abundant rooftop 
PV potential. Fig. 7 illustrates the monthly heterogeneous distribution of 
rooftop solar irradiation and its annual accumulation within a confined 
geographical area, featuring segmented PV areas depicted as semi- 
transparent blue polygons. Our analysis indicates that the shadowing 
effect on most PV areas is negligible because of the moderate building 
density and relatively uniform building heights. While a minority of PV 
areas receive comparatively low solar energy every month, the cumu-
lative effect over the course of a year can be substantial. 

By integrating the segmented rooftop PV areas with the 

heterogenous distribution of annual solar potential on rooftops, it allows 
us to estimate spatial-associated annual electricity generation. It is 
found that all rooftop PVs can generate electricity at 553,456,428 kWh/ 
year, equivalent to 0.55 TWh/year, approximately. According to Sta-
tistical Review of World Energy 2022 [64], Singapore utilized renewable 
energy (including wind, geothermal, solar, biomass, and waste) and 
produced electricity at 1.0 TWh in 2020. This indicates that solar energy 
played an important role in energy transition in Singapore. 

At this stage, we obtain a more meaningful and valuable estimation 
of annual electricity generation adaptive to the dynamic weather con-
dition and 3D urban environment, comparing to the traditional esti-
mation which only provides a static value about PV installed capacity. 
Fig. 8 presents that Tuas Coast, Changi Airport, and Jurong Island have 
the largest three PV installed capacities, which is consistent with the 
distribution pattern of rooftop PV areas as shown in Fig. 5. This can be 
explained by the fact that one of the largest rooftop solar installations in 
Singapore was completed in the Tuas area with an installed capacity of 
4.7 MWp in 2019 and the project was expanded to 8.5 MWp in 2021. In 
2022, a rooftop solar power system with an installed capacity of 3.5 
MWp was also installed in the Changi Airport. In addition, the propor-
tion of annual electricity generation is smaller than that of the installed 
capacity of rooftop PVs in the West Coast region, as shown in the red 
dashed rectangles in Fig. 5 and Fig. 8. This implies that the rooftop 
shadow effect is obvious in this region, where there is relatively high 
density of tall buildings. 

3.4. Carbon mitigation potential 

Based on the above results that provide crucial information of PV 
electricity production associated to specific urban locations, we can 
ultimately perform LCA of the energy input and carbon emission for a 

Table 5 
Monthly average and annual solar irradiation in Singapore.  

Month Solar Irradiation (kWh/m2) 

Jan 125.69 
Feb 122.70 
Mar 149.13 
Apr 140.88 
May 134.48 
Jun 122.77 
Jul 131.32 
Aug 142.72 
Sep 150.15 
Oct 136.57 
Nov 123.57 
Dec 120.84 
Annual total 1600.82  

Fig. 7. Detailed visualization of spatiotemporal distribution of rooftop solar irradiation.  
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unit PV area. Table 6 demonstrates that PV manufacturing contributes to 
the largest energy input, taking 75% and 70% of the total energy con-
sumption for mono-Si PV and multi-Si PV, respectively. Although the 
shipping distances sailing from the five countries to Singapore are 
significantly long, the energy input for ocean transport only takes a 
small proportion, suggesting considerably low-energy consumption. 
Furthermore, energy input for road transport is even ignorable since the 
road transportation distance in Singapore is rather short. Table 7 un-
ravels large variation of carbon emission in the six countries for PV 
manufacturing. Specifically, China corresponds to the largest carbon 
emission as high as 127 kg-CO2/m2 for mono-Si and 97 kg-CO2/m2 for 
multi-Si, while Canada has the smallest carbon emission less than 30 kg- 
CO2/m2 for both types of PVs. This is mainly caused by various national 
energy structures. It is also revealed that carbon emission of ocean 

transport from five countries is insignificant, which only takes a tiny 
proportion in a range of 0.27–3.54% for mono-Si PV and 0.35–4.19% for 
multi-Si PV out of the total carbon emission. Meanwhile, recycling can 
almost offset carbon emissions produced by decommissioning. 

The above modelling suggested the total rooftop PV area and the 
corresponding installed capacity are 1,859,949 m2 and 360.95 MWp, 
which can produce an annual electricity at 0.5535 TWh equivalent to 
297.57 kWh/m2. By integrating the results derived in Tables 6 and 7, the 

Fig. 8. Annual electricity output of installed rooftop PV categorized by districts.  

Table 6 
Energy input during the PV life cycle.  

Phase Source Energy input 

EI for mono-Si 
PV (MJ/m2) 

EI for multi-Si PV 
(MJ/m2) 

Manufacturing PV module and BOS 822.2595 628.5894 
Ocean transport From China 1.1832 

From USA 4.0572 
From Canada 3.7444 
From Germany 4.4931 
From Japan 1.5363 

Road transport In Singapore 0.0022 
Maintenance Inverter replacement 0.8223 0.6286 
Decommissioning Deconstruction and 

disposal 
262.50 250.00  

Table 7 
Carbon emission during the PV life cycle.  

Phase Source Emission factor 

EF (kg-CO2/m2) 
for mono-Si PV 

EF (kg-CO2/m2) 
for multi-Si PV 

Manufacturing China 127.2777 97.2995 
USA 81.7757 62.5147 
Canada 27.3423 20.9023 
Germany 75.1057 57.4158 
Japan 105.4175 80.5881 
Singapore 92.6715 70.8442 

Ocean transport From China 0.3541 
From USA 1.2144 
From Canada 1.1207 
From Germany 1.3448 
From Japan 0.4598 

Road transport In Singapore 0.0778 
Maintenance Inverter 

replacement 
0.1273 0.0973 

Decommissioning Deconstruction and 
disposal 

29.5847 28.1759 

Recycling Reuse of PV cells − 26.6063 − 23.6250  
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life-cycle Energy Input Factor and Carbon Emission Factor are 1006.19 
MJ/m2 and 98.18 kg-CO2/m2 (Table 8). Furthermore, by calculating the 
difference of reduced carbon emission equivalent to the life-cycle elec-
tricity generation and produced carbon emission for a life-cycle unit PV, 
the Net Carbon Reduction Benefit is derived and equals 2919.87 kg- 
CO2/m2. This corresponds to a significant Total Carbon Reduction 
Benefit (i.e., carbon reduction of all existing rooftop PVs) at 
5,430,819.69 t. Based on the totally reduced carbon reduction and 
electricity generation, the Carbon Emission Rate (CER) is calculated, 
which equals 13.20 g-CO2/kWh. As a result, The Carbon Payback Time 
(CPBT) is 0.81 year and Energy Payback Time (EPBT) is 0.94 year only 
(Table 8). 

A similar study which also investigated in Singapore in 2018 stated 
that the CER was 30.2, 29.2, and 20.9 g-CO2/kWh for three types of 
multi-Si PVs with different technologies, and the EPBT was 1.01–1.11 
years [39]. Although one study conducted in 2019 suggested that the 
CPBT and EPBT were 1.86–9.16 years and 1.98–4.58 years, respectively, 
in Morocco and Portugal [65], other studies found that it was shorter 
than one year for CPBT (i.e., 0.39 years [37,66], and 0.884 years [67], 
and 143 days in Delhi, India [68]) and EPBT (i.e., 0.7, 0.83, and 0.9 
years for Brazil, US, and China, respectively [49] and 0.68 and 0.92 
years based on the equipment manufacturers’ estimation [69]). The 
shorter periods derived from our study are mainly because of (i) refined 
estimation of annual electricity generation from existing PV panels to 
replace the conventionally installed capacity-based estimation, and (ii) 
considerably improved energy structure of the two major PV 
manufacturing countries – China and Singapore. 

4. Discussion 

Our results imply that Singapore, as a city-scale state, has a strong 
capability in carbon mitigation derived from installed rooftop PVs. This 
is based on the evidence that CER achieves almost a 50% reduction, and 
both CPBT and EPBT become significantly shorter compared to previous 
studies conducted roughly five years ago in Singapore. There are three 
major reasons to get a noticeable improvement of the carbon mitigation 
potential. Firstly, both China and Singapore experienced improvements 
in their energy structures, resulting in smaller national carbon emission 
factors for electricity generation. Additionally, the two countries man-
ufactured approximately 84% of the PVs installed in Singapore. Sec-
ondly, rather than relying on static installed capacity figures, we 
advanced the estimation by simulating annual PV electricity generation, 
accounting for the spatiotemporally dynamic and heterogeneous solar 
conditions, including explicit PV locations, varying weather conditions, 
and dynamic shadowing effects. Thirdly, we developed a model that 
encompasses complete life-cycle carbon emissions, considering the in-
fluence of multiple PV providers, global supply chains, and various types 
of PV cells. 

Our results highlight an environmental inequality concern. We sug-
gest Singapore can obtain a large amount of carbon reduction during the 
whole life cycle of existing rooftop PVs. However, this is contingent on 

the fact that 56.3% of the PVs were imported from other countries, with 
41.2% originating from China, the largest PV exporter with the highest 
carbon emission factor among the five countries. Although China has 
significantly improved energy structure during the past few years, the 
result still implies that the cumulative carbon emissions from PV 
manufacturing in China could be significant. Given these considerations, 
the continuous improvement of the energy structure, adaptive to global 
supply chains and coupled with an increased reliance on renewable 
energy sources, becomes crucial for sustainable development. 

The framework presented in this study is scalable and can be applied 
to any other cities. The major reasons are that advanced semantic seg-
mentation models (including, but not limited to, Deep Solar PV Refiner) 
with transfer learning can be employed to accurately identify PV areas 
and locations, GES images are publicly accessible, and rooftop solar PV 
potential can be estimated using well-established Area Solar Radiation 
models. Since Singapore has flat terrain, this study relied solely on 
building heights for rooftop solar potential estimation. For a steep and 
elevated city like Hong Kong, a Digital Surface Model or a Digital 
Elevation Model may be integrated. Once statistics about the market 
share of PV providers and PV types are obtained, all information can be 
integrated into the advanced LCA framework with a high degree of 
accuracy. 

The semantic segmentation correctly identified 76.41% of PV sam-
ples (i.e., Accuracy) while mistakenly identified 9.31% of PV samples 
(proportion of FP) and 14.28% of non-PV samples (proportion of FN). 
This implies that 9.31% of FP and 9.31% of FN precisely offset each 
other on annual PV electricity generation to a large extent. This is 
because rooftop PV areas belonging to either FP or FN are generally 
located at solar-abundant locations in Singapore. Consequently, the 
4.97% residual PV samples (the difference of FN and FP), which should 
represent actual PV areas but have not been segmented successfully, will 
cause directly adverse effects. As positive predictions encompass 
56.99% of PV samples (the sum of TP and FP), the 4.97% residual PV 
samples will likely introduce uncertainty into accumulated statistics, 
with an upper limit of 8.72%, such as the total rooftop PV area. 
Nevertheless, the uncertainty has insignificant effects on carbon miti-
gation potential estimation, such as the key figures of CER, CPBT, and 
EPBT presented in Table 8. This is because the estimation was based on 
the unit area, not accumulated areas. Additionally, we conducted 
mathematically significant analyses to quantify annual averaged PV 
electricity generation per unit area by integrating all the segmented 
rooftop PV areas and accurate solar potential distribution, and we 
created carbon emission profiles by tracing the global supply chains. 

This study may produce certain discrepancy or uncertainty because 
of the resolution of LCA analysis and the spatial resolution of GIS data. 
First, we assumed that PV modules were manufactured in six countries 
according to their PV brands and market shares. This means that some 
PVs might be manufactured in other countries, which, however, only 
took around 14% PVs not coming from China and Singapore. Second, we 
assumed all rooftop PVs were installed with a title angle of 10◦, which is 
widely applied in Singapore. Although this assumption may create 
certain bias to reality, the effects should be considerably small since 
exceptional cases typically occur at only a few landed properties. Third, 
we assumed a static PV conversion efficiency. This means that the 
conversion efficiency was not reduced by urban thermal environment 
and had no degradation over the years. Future work can improve the 
model by integrating these effects into the spatiotemporal estimation 
and analyse the carbon mitigation capacity when PV modules are 
installed on new rooftops amidst the ongoing urbanization process in the 
future. 

5. Conclusion 

In conclusion, this study developed a geospatial-enriched life-cycle 
assessment model to estimate city-scale carbon mitigation capability of 
existing rooftop PV systems. The results reveal that, at the city scale, 

Table 8 
Summary of all important estimations.  

No. Parameter Value Unit 

1 Total rooftop PV area 1,859,949 m2 

2 Total installed rooftop PV capacity 360.95 MWp 
3 Total annual electricity output 0.5535 TWh 
4 Annual electricity output per unit area 297.57 kWh/m2 

5 Life-cycle Energy Input Factor 1006.19 MJ/m2 

6 Life-cycle Carbon Emission Factor 98.18 kg-CO2/m2 

7 Net Carbon Reduction Benefit 2919.87 kg-CO2/m2 

8 Total Carbon Reduction Benefit 5,430,819.69 tonne 
9 Carbon Emission Rate (CER) 13.20 g-CO2/kWh 
10 Carbon Payback Time (CPBT) 0.81 year 
11 Energy Payback Time (EPBT) 0.94 year  
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installed rooftop PVs in Singapore have a strong carbon reduction 
capability. The model is scalable and generalizable to other cities for 
rapid, complete, and cost-effective assessment, which can facilitate 
policymakers to review and adjust their strategies towards sustainability 
targets. This study contributes to GIS spatiotemporal data modelling and 
the transition to renewable energy. 
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