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A B S T R A C T   

Existing Land Surface Temperature (LST) fusion models encounter some challenges due to missing data, complex 
weather areas, and rapid land cover changes. To overcome these limitations, we proposed the Integrated 
SpatioTemporal Fusion Algorithm (ISFAT). ISFAT is developed based on contemporary fusion models but in 
addition incorporates data from partially contaminated LSTs using the masked weight function. This helps to 
predict fine-scale LST on prediction date while considering error resulting from landcover changes between the 
base and prediction date. This algorithm also factors in the calculation of model residuals, which are distributed 
back to the predicted fine-scale LST using the thin-plate spline function. The fine-scale LST on prediction can 
thereafter employed for predicting hourly fine-scale LST images by integrating a coarse resolution LST with 
hourly temporal resolution. Compared to contemporary LST fusion models, ISFAT demonstrates superior per
formance, with mean average differences of 0.1 K and 0.27 K over SADFAT and STITFM, respectively. Addi
tionally, diurnal LST predictions from ISFAT compare well with air temperatures from automatic weather 
stations. Notably, on February 18, 2020, ISFAT effectively optimized fine-scale LST for Hong Kong, achieving an 
RMSE of 3.33 K, despite the limitation of cloud cover in the base date. The newly developed ISFAT could 
facilitate better LST retrieval over a large spatial coverage under different degrees of cloud contamination.   

1. Introduction 

Land surface temperature (LST) is an important index in studying 
surface energy exchange and interaction between the atmosphere and 
the land surface (Gong et al., 2023). Retrieving LST data from satellite 
sensors using remote sensing methods help overcome the limitations of 
in-situ LST measurement under varying temporal and spatial variations 
(Adeniran et al., 2022). However, the trade-off between temporal and 
spatial resolution of remotely sensed LSTs has also been a constraint to 
the widely-used remotely sensed LSTs (Sobrino et al., 2012). For 
example, geostationary satellites like Himawari-8/9, Geostationary 
Operational Environmental Satellites (GOES), and Meteosat 2–7 can 
obtain LST at a high temporal resolution (~1 h or higher) suitable for 
diurnal LST analysis but have a relatively coarse spatial resolution 
(~2000 m or lower), which makes detailed spatial analysis of LST in 

heterogeneous surfaces difficult (Zhan et al., 2013). In contrast, polar- 
orbiting satellites like Landsat 4–9, ECOsystem Spaceborne Thermal 
Radiometer Experiment on Space Station (ECOSTRESS) and Advanced 
Spaceborne Thermal Emission and Reflection Radiometer (ASTER), 
which can measure LST at high spatial resolution (~100 m or higher) 
and are capable of detailed spatial LST analysis in heterogenous sur
faces, have a relatively coarse temporal resolution (~12 h or lower) 
(Adeniran et al., 2022). 

To address this constraint, several LST fusion methods have been 
proposed to optimize the spatial and temporal resolution of LSTs from 
satellite sensors. These methods can be classified into two broad cate
gories (Quan et al., 2018). The approaches in the first category require 
data from a single satellite sensor. This method entails spatial down
scaling of geostationary satellite LSTs or temporal interpolation of polar 
satellite LSTs (Zhan et al., 2012). The second category uses pairs of 
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multi-resolution LSTs from different satellites at distinct time instances. 
Sparse representation, endmember unmixing, and weight function- 
based fusion approaches are employed. 

Owing to the longer wavelength of the thermal infrared (TIR) 
channel, compared to the visible and near-infrared (NIR) channel, LST 
are retrieved at coarse spatial resolution compared to data in the NIR 
channel of same satellite (Herrero-Huerta et al., 2019; Reddy & Man
ikiam, 2017). The spatial downscaling method thus optimizes the spatial 
resolution of the LST data by capitalizing on the finer resolution of data 
in the visible and near-infrared channels. The limitation of this method, 
however, is that the finest spatial resolution achievable using the 
method is derived from other bands on the same satellite. This resolution 
may not be sufficient for LST analysis in heterogeneous regions (Yunhao 
et al., 2014; Quan et al., 2018). 

Temporal interpolation methods are developed to increase the tem
poral resolution of LST estimations primarily derived from polar orbit
ing satellites, which have long revisiting periods. The interpolation 
involves associating temporally discrete observations with the surface 
energy balance model or annual/diurnal temperature cycle (ATC/DTC) 
(Duan et al., 2014). In contrary to the spatial downscaling, temporal 
interpolation method integrates data from external source to improve 
the temporal resolution of LST estimates. The limitation of this tech
nique is that, for effective interpolation at the diurnal scale, at least four 
LST observations on the prediction day are required. However, 
achieving this requirement is challenging, as it relies on a limited 
collection of cloud-free MODIS observations with a spatial resolution of 
1 km (Quan et al., 2016), which is not suitable for LST analysis in highly 
heterogeneous areas. 

Recently, the adoption of methods which can combine the TIR data 
from geostationary and polar orbiting satellite sensors has gained sig
nificant attention. These methods optimize the coarse spatial/low tem
poral resolutions of geostationary/polar orbiting satellite sensors for 
optimized prediction of LST. These methods capitalize on the spatial 
strength of polar orbiting satellites and the temporal strength of geo
stationary satellites. They achieve this by combining LST or TIR data 
from both satellites using various techniques, such as end-member 
unmixing methods (EMUM), sparse representation methods, or weight 
function-based methods. The spatial and temporal adaptive reflectance 
fusion model (STARFM) developed by Gao et al. (2006) is the most 
representative of the fusion models that employs data from multiple 
satellite sensors. STARFM, originally developed for the fusion of data 
from the visible and NIR bands primarily relies on weight function-based 
method and has been revised by several studies to meet different 
research objectives (Zhu et al., 2010; Quan et al., 2018; Weng et al., 
2014). Notably the spatiotemporal integrated temperature fusion model 
(STITFM) developed by Wu et al. (2015) and Spatiotemporal Adaptive 
Data Fusion Algorithm for Temperature mapping (SADFAT) by Weng 
et al. (2014) emerged as one of the contemporary multi sensor based LST 
fusion model. 

As an improvement, SADFAT integrates the interpolation of Annual/ 
Diurnal Temperature Cycle (ATC) with the STARFM methodology to 
predict LST data at high spatiotemporal resolution. In SADFAT, fine- 
scale LST is achieved by firstly optimizing the radiance data to fine 
scale, after which the optimized fine-scale radiance data will be inverted 
to achieve the synthesized LST data. On the other end, contrary to 
STARFM, SADFAT, and other multi-sensor fusion models that use data 
from two different satellites (fine and coarse scale), STITFM introduced 
the integration of a moderate-scale LST data into the STARFM model. 
This integration aims to break large-scale differences between fine and 
coarse resolution data. Also, as against the SADFAT methodology, 
STITFM inverts the TIR data to get the LST at both fine, medium, and 
coarse scale before employing the fusion model to achieve fine-scale 
LST. 

Although both the SADFAT and STITFM has been applied for fine 
scale LST optimization and has achieved relatively high accuracy, some 
limitation still influences their wide range application. This includes 

difficulty in the adoption of SADFAT in region with complex environ
mental condition that results in large scale cloud cover. This is because it 
will be difficult to acquire multiple pairs of fine and coarse scale (FnCs) 
LST that are cloud free on the same base date which is an important 
requirement for this model. Also, given that prediction at fine scale LST 
in STITFM is based on a single fine-scale observation, it becomes difficult 
to capture large-scale LST changes between the base and prediction 
date. These changes may not be captured in the moderate and coarse 
resolution LST data used in the final prediction (Hilker et al., 2009), 
resulting in poor prediction result especially in regions with rapid land 
cover change over short period. 

Considering the limitation facing the existing model, this study aims 
to develop an integrated spatiotemporal fusion algorithm (ISFAT) for 
generating fine scale LST data suitable for diurnal LST analysis under all- 
weather condition. To achieve this, a two-staged model was developed, 
estimating fine-scale LST on the prediction date and diurnal LST on the 
same date. Initially, both clear and partly contaminated LST data from 
multiple base dates were combined for fine-scale LST prediction on the 
prediction date. Subsequently, recognizing the relatively insignificant 
diurnal land use changes on the prediction date, a single fine-scale LST 
data point was integrated with medium and coarse-scale LST data for 
diurnal prediction. Additionally, considering that the two identified 
benchmark LST models follow two different approaches, i.e., SADFAT 
optimizes radiance data before inversion to LST, while STITFM inverts 
radiance data before fusion, this study first experiments with the two 
approaches. The aim is to determine the optimum method to be adapted 
in the improved model. Finally, the improved fusion model developed 
was employed for the estimation of diurnal LST at high spatial resolution 
over Hong Kong which is the study area for this study. 

The next section focuses on the description of the study area and 
materials employed for this study. Section 3 focuses on the research 
methodology, while results from the analysis are presented in Section 4. 
Discussion and conclusions are provided in Section 5. 

2. Study area and materials 

Hong Kong was selected as the study area, which is located between 
longitude 111◦50′7″ E ~ 114◦26′30″ E and latitude 22◦9′14″ N ~ 
22◦33′44″ N. Hong Kong has undergone a tremendous urbanization 
trend in recent years (Wang et al., 2020). While it is characterized by the 
abundance of highlands and hills, resulting in remarkably high density 
in the shallow landscape across its 18 districts (Liu & Zhang, 2011) 
(Fig. 1). With a population of 7.6 million over a land area of 1,114 km2, 
Hong Kong is one of the most densely populated cities in the world (Lang 
et al., 2019). The region is in the subtropic humid climate zone and 
witnesses long rainy and cloudy weather throughout the year, making 
the use of remotely sensed data for urban analysis difficult (Fan et al., 
2008). For example, from 2006 to 2022, out of the 610 Landsat satellite 
acquisitions covering the study area, only 9.5 % (58 satellite acquisi
tions) are cloud free, most of these cloud-free data acquisitions are be
tween November and January. Therefore, exploring the functionality of 
LST fusion model in this area is of high significance (Ling et al., 2021). 
For the assessment of both the contemporary and the improved fusion 
models, clear sky and partly cloudy images covering the study area were 
collected. These images were obtained from Landsat-8, Sentinel-3, and 
Himawari-8 satellite sensors at spatial resolutions of 100 m, 1000 m, and 
2000 m, respectively. The acquisition dates of these satellite data are 
limited to dates with clear and partially clouded (cloud cover < 50 %) 
fine scale satellite data details presented in Table1. Landsat-8 data were 
sourced from the United States Geological Survey website (https://g 
lovis.usgs.gov/app?fullscreen=1). Sentinel-3 data from the Copernicus 
Sci-Hub and Himawari-8 data from the JAXA where it was archived in 
the NetCDF format using the P-Tress system. Hourly air temperature 
data (AT) from automatic weather station (AWS) sparsely distributed 
across the study area were sourced from the Hong Kong Observatory 
(HKO) to validate the optimized hourly LST data. While Hong Kong has 
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a total of 50 AWS recording at an hourly temporal resolution, this study 
focused on 36 stations. These particular stations were selected because 
they fall within the tile of the fine, medium and coarse scale LST 
employed for this study. 

2.1. Pre-processing 

The digital numbers (DNs) from Band 10 and 11 of Landsat-8 satellite 
data were radiometrically corrected and converted to surface radiance. 
Simultaneously, radiance data from Sentinel-3 were retrieved from the 
SLSTR level 1B data. For Himawari 8, whose Thermal Infrared (TIR) 
data are distributed in brightness temperature, the data were converted 
to surface radiance. This conversion was done to facilitate the fusion of 
radiance. (Polehampton et al., 2022). The split window algorithm 
(SWA) was later adapted for the retrieval of LST from TIR data of the 
satellite data (Choi & Suh, 2018; Pérez-Planells et al., 2021; Rozenstein 
et al., 2014). This was achieved using ENVI 5.3 software. The surface 

reflectance and Land Surface Temperature (LST) map retrieved from the 
three satellites were clipped to the geographic extent of the study area. 
After that, the data were geometrically corrected by projecting all the 
LST images to the same coordinate system (World Geodetic System 
1984, UTM Zone 49). The surface radiance and LSTs from Himawari-8 
(2 km resolution) and Sentinel-3 (1 km resolution) were subsequently 
resampled to the same spatial resolution as the LST data with the finest 
spatial resolution, i.e., Landsat 8 (100 m). Finally, the LST maps from the 
three satellites were evaluated to determine cloud-contaminated pixels 
using the Fmask python module for Landsat 8 and the cloud data layer 
provided for Sentinel-3 and Himawari-8 (Zhu & Woodcock, 2012). 

3. Methodology 

In this study, the improved spatiotemporal fusion algorithm (ISFAT) 
is aimed at optimizing the spatial and temporal resolution of LST data by 
learning from the merit of contemporary temperature fusion algorithms 
(i.e., SADFAT and STITFM). After developing the model, its accuracy 
was assessed over a region dominated by mixed land cover types over a 
relatively small area (heterogeneous) (Fig. 1b). Additionally, the 
assessment was conducted in a region dominated by a single land cover 
type over a relatively large area (homogeneous) (Fig. 1c), as extracted 
from Fig. 1a. The performance was then compared with the performance 
of the two benchmark models. In addition, the three models were 
employed to predict fine-scale LST of the study area, and hourly LSTs 
were predicted using ISFAT for diurnal analysis. In the absence of in-situ 
LST data in the study area, the accuracy of the models was evaluated 
based on the studies by Weng et al. (2014) and Bai et al. (2015). This 
evaluation involved comparing the optimized LST data with the LSTs 
obtained from the original Landsat-8 imagery. Metrics such as Root 
Mean Square Error (RMSE), correlation coefficient (r), Mean Difference 
(MD), and Mean Absolute Difference (MAD) values were employed for 
this assessment. 

Due to the unavailability of fine-scale LST data at an hourly 

Fig. 1. Map of Hong Kong (a) locations of Automatic Weather Stations (AWS). (b) Satellite image of the relatively heterogenous region. (c) Satellite image of 
relatively homogenous region. 

Table 1 
Satellite data acquisition dates and overpass time (local time) for respective 
satellite sensors used in this study.  

Date 
ID 

Acquisition 
date 

Landsat 8 
(Acquisition 
time) 

Sentinel-3 
(Acquisition 
time) 

Himawari-8 
(Acquisition 
time) 

d1 27/09/2019 10:52 10:4822:48 00:00–23:50 
(1 h interval) 

d2 29/10/2019 10:52 10:4822:48 00:00–23:50 
(1 h interval) 

d3 14/11/2019 10:52 10:4822:48 00:00–23:50 
(1 h interval) 

d4 30/11/2019 10:52 10:4822:48 00:00–23:50 
(1 h interval) 

dp 18/02/2020 10:52 10:4822:48 00:00–23:50 
(1 h interval)  
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resolution, the accuracy assessment of the optimized hourly LST was 
based on its comparison with the relative air temperature from an AWS 
(ΔAT). An AWS with a lower temperature served as the reference sta
tion, and the temperature value from this station was subtracted from 
measurements at other stations to compute ΔAT. Similarly, the opti
mized LST value corresponding to this reference AWS location was used 
as a baseline to compute ΔLST for various satellite sensors. The r and 
coefficient of determination R2 of ΔLST and ΔAT was subsequently used 
to measure the accuracy of the optimized LST data. The study of Siu and 
Hart (2013) suggested the use of TKL as the preferred reference rural site 
for UHI and LST analysis in HK. This is based on the local climate zone 
the station is classified (Dispersed Low-Rise (BCZ10)) and its relatively 
low temperature. Further evaluations of hourly LST predictions involved 
comparisons across urban, suburban, and rural stations. Following the 
insights from Siu and Hart (2013), HKO was chosen as the urban 
reference, while CC and LFS stations were designated as suburban and 
rural reference points, respectively. 

3.1. Benchmark models 

3.1.1. STITFM 
The STITFM algorithm by Wu et al. (2015) is one of the contempo

rary models designed particularly for the fusion of data in the thermal 
infrared region. STITFM was designed to predict fine-scale LSTs using 
data from multiscale geostationary and polar-orbiting satellites. The 
model optimizes fine-scale Land Surface Temperature (LST) on the 
prediction date using at least a pair of fine and medium-scale (FnMs) LST 
on a base date acquired at the same time (t1). Additionally, it utilizes 
pairs of medium and coarse-scale (MnCs) LSTs acquired at a different 
time (t2) and a coarse-scale LST acquired at the prediction time (tp). 

3.1.2. SADFAT 
SADFAT, developed by Weng et al. (2014), is an improvement over 

the STARFM algorithm, originally developed to optimize surface 
reflectance to fuse radiance data in the TIR region of remotely sensed 
satellite data. In contrast to STARFM, which requires a pair of FnCs data 
on a base date (d1) and coarse resolution data on the prediction date (dp), 

SADFAT requires an additional pair of FnCs data on another base date 
d2. In addition, ATC was integrated into the SADFAT algorithm to esti
mate the conversion coefficient, which is a constant in the prediction of 
fine-scale radiance on dp (Quan et al., 2016). The optimized fine-scale 
radiance data will be inverted to achieve fine-scale LST in the study 
area. The algorithm is based on the linear relationship between obser
vations of radiances of a homogenous pixel (i) from two different 
sensors. 

3.1.3. ISFAT 
As presented in Fig. 2, The improved fusion model is built by two 

consecutive steps. The first step is the prediction of fine-scale LST on the 
prediction date, and the second step involves the prediction of hourly 
LST on the same day. The optimization of fine scale LST on the predic
tion date in ISFAT is based on SADFAT, a robust method that leverages 
the averaging of predictions from multiple base dates (Weng et al., 
2014). Unlike STITFM which requires fine scale LST on a single base 
date, adapting SADFAT approach enables ISFAT to accurately account 
for LST changes resulting from land use changes between the base dates 
and prediction date. In contrast diurnal prediction in ISFAT learn from 
the STITFM model by integrating data from fine, medium, and coarse 
scale satellite to improve the diurnal prediction as land use throughout 
the data is relatively constant (Wu et al., 2015). 

Step 1: Fine-scale prediction on the prediction date 
The first step in the diurnal prediction of LST is to have a fine-scale 

LST on the prediction date. In ISFAT, improvements were made to the 
structure of the SADFAT algorithm to achieve a more accurate estimate 
on the prediction date. The improvements include (i) the estimation of 
residual and its distribution using fine scale land use map., and (ii) the 
introduction of masked weight variable to integrate information from 
partly clouded LSTs for prediction in complex regions.  

(i) Estimation and distribution of residuals 

Following the multi-sensor LST fusion framework (MLFF), the fine 
scale LST on of pixel i on dp (TF,i

(
dp
)
) can be estimated using Eq. (1). 

Fig. 2. Framework for fine scale diurnal LST prediction in ISFAT.  
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TF,i
(
dp
)
= TF,i(d1)+

∑N

n=1
wn × vn ×

(
TM,i
(
dp
)
− TM,i(d1)

)
(1)  

where TF,i(d1) represents the fine-scale LST of the pixel on the base date, 
TM,i

(
dp
)

and TM,i(d1), represents the fine-scale LST of the pixel on the 
base date. wi and vi denote the weight and ATC of each similar pixel, as 
determined based on the studies by Gao et al. (2006) and Zhu et al. 
(2010). 

Although contemporary LST fusion models have attempted to mini
mize the bias in fine-scale prediction by considering information from 
spectrally similar surrounding pixels and introducing the conversion 
coefficient vn, the bias could not be completely captured. This ineptitude 
is attributed to factors such as incorrect selection of similar neighboring 
pixels and the lack of consideration for LST-related environmental fac
tors. These factors include elevation, wind speed, and humidity differ
ences across the study area, impacting the model’s accuracy across the 
region (Wu et al., 2015). The resulting residual in the predicted LST at 
both fine and coarse scales can be estimated as presented in Eqs. (2) and 
(3). 

RF,i,d0 (dp) = TF,i(dp) − TF,i,d0 (dp) (2)  

RC,d0 (dp) = TC(dp) − TC,d0 (dp) (3)  

where RF,i,d0 (dp) and RC,d0 (dp) are the model residual estimated at fine 
and coarse scale, respectively, TF,i(dp) and TC(dp) are the actual LST 
value for pixel i on dp as estimated from the true fine and coarse scale 
satellite data, respectively. Whereas TF,i,d0 (dp) and TC,d0 (dp) represents 
the predicted LST for pixel i on dp at fine and coarse scale respectively 
using data from base data d0. 

According to the LTMM, if the differences in the sensor are accounted 
for, the LST in each coarse-scale pixel should equal the aggregated sum 
of the fine-scale LST in the corresponding location and a systematic bias 

(Deng & Wu, 2013). Thus, the relationship between the fine and coarse 
scale LST at dp and d0 can be presented using Eqs. (4) and (5), 
respectively. 

TC(dp) =
1
K
∑K

k=1

(
1
a
TF,k(dp) −

b
a

)

+ ∈ (4)  

TC(d0) =
1
K
∑K

k=1

(
1
a
TF,k(d0) −

b
a

)

+ ∈ (5)  

The LST difference between dp and d0 can be estimated at coarse scale as 
presented in Eq. (6). 

TC(dp) − TC(d0) =
1

Ka

(
∑K

k=1

TF,k(dp) −
∑K

k=1

TF,k(d0)

)

(6)  

Eq. (6) is only true in an ideal situation when the predicted LST from 
base date d0 equals the actual LST estimated from the satellite data on 
prediction date. The resulting residual in the predicted fine scale LST can 
be estimated according to Eq. (7). 

RC,b(dp) = a(TC(dp) − TC(d0)) −
1
K

(
∑K

k=1
TF,k,d0 (dp) −

∑K

k=1
TF,k(d0)

)

(7)  

Given that the estimated residual is at coarse scale, to distribute them to 

the predicted fine scale LST on dp, the fine scale land use data was 
regressed against the estimated residual to estimate the weight of the 
residual on each of the land use. After which the Thin Plat Spline (TPS) 
model was employed to distribute this residual on each of the land use 
within each coarse scale pixel. This approach helps in mitigating the 
block effect that might arise from directly adding the residual. 

TF,i(dp) = TF,i,d1 (dp)+RF,i,d1 (dp) (8)    

(ii) Introduction of mask weight 

To effectively capture large scale land use change over the prediction 
period, the framework for contemporary LST fusion models like SADFAT 
recommended fine scale prediction from two pairs of FnCs cloud-free 
LSTs on two base dates (d1 and d2). In addition to a coarse-scale LST 
on the prediction date dp (Fig. 3(a)). However, due to complex atmo
spheric conditions in some regions, obtaining two pairs of cloud-free 
LSTs within an ATC becomes challenging. This limitation hinders the 
adoption of contemporary LST fusion models in these regions, as clou
ded areas result in missing information in the optimized LST (Fig. 3b). 
To overcome this limitation, ISFAT is designed to require a pair of cloud- 
free fine and coarse-scale Land Surface Temperature (LST) on at least 
one base date. Additionally, the model utilizes multiple pairs of partly 
clouded LSTs (with cloud cover below 70 %) at fine and coarse resolu
tions on other base dates, along with a coarse-scale LST on the prediction 
date dp (Fig. 3c). 

As presented in ISFAT prediction date (dp) framework (See Fig. 4), 
fine-scale LST on dp is estimated from multiple base dates (d0, d1, …dn) 
employing the improved multi-resolution framework in Eq. (8). 

The multiple date predictions are then combined using the temporal 
and mask weight of each pixel prediction. The temporal weight (wtx ) for 
each base date dx (where x = 0, 1,2 …, n) in ISFAT is determined using 
Eq. (9). 

Following the estimation of the temporal weight for each base date 
prediction, a mask is generated for each prediction date. In this mask, 
pixels with missing data receive a wc value of zero, while pixels with 
accurately predicted LST data are assigned a wc value of one. Combining 
this mask weight with the temporal weight facilitates the computation of 
the fine-scale LST on the prediction date (TF,i(dp)), as outlined in Eq. (10): 

TF,i(dp) =
∑n

x=1

(

wcx × wtx +
1 −

∑n
n=1wcn × wtn∑n

n=1wcn × wtn
× wtx

)

× TF,i,dx

(
dp
)

(10) 

Step 2: Prediction of Hourly LST 
After estimating the fine-scale LST on the prediction date (TF,i(dp)), 

the next step is the estimation of hourly LST for diurnal analysis. The 
ISFAT diurnal model integrates data from fine, medium, and coarse 
scales, addressing the significant scale gap between fine and coarse LST 
through medium-scale predictions. Utilizing improved MLFF in 
conjunction with residual estimation and distribution equation (Eq. (8)), 
ISFAT predicts the fine scale at each prediction time tp (ranging from 
t00:00 to t23:00) at an hourly resolution. This prediction follows a two- 
stage method illustrated in Fig. 5. 

Initially, a pair of medium and coarse scale LST at a base time tm 

((TM
(
dp, tm

)
and TC(dp, tm)) alongside a coarse scale LST at tp is employed 

to predict medium scale LST at tp (TM(dp, tp)) using the MLFF. Subse
quently TM(dp, tp), together with a pair of fine and medium scale LST 

wtx =
1/
⃒
⃒
∑I

i=1TM,i(dx) −
∑I

i=1TM,i(dp)

⃒
⃒

(
1/
⃒
⃒
∑I

i=1TM,i(d0) −
∑I

i=1TM,i(dp)

⃒
⃒+ 1/

⃒
⃒
∑I

i=1TM,i(d1) −
∑I

i=1TM,i(dp)

⃒
⃒+ ...+ 1/

⃒
⃒
∑I

i=1TM,i(dn) −
∑I

s=1TM,i(dn)

⃒
⃒
) x = 0, 1, ...n (9)   
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pairs at another base time to (TM(dp, to) and (TF(dp, to)) are processed 
using the MLFF to predict fine scale LST at tp denoted as TF(dp,tp). Here, 
t0 and tm are element of set tp. Prediction for the other time is achieved 
by updating the coarse resolution LST (TC(dp, tp) hourly. 

3.2. Assessment of ISFAT based on different LST fusion approaches 

LST data optimization in literature has been estimated through two 
major approaches, i.e., fusion of radiance data retrieved from TIR bands 
of different satellites (fusion before inversion) or the fusion of LST data 
estimated from TIRS of different satellites (inversion before fusion). 
Thus, after developing the improved fusion model in this study, the 
accuracy of the model will be examined using the two diverse data 
combinations to determine the combination that will give the optimum 
result. 

To achieve this, for the first combination, after downloading the 
satellite data from the fine, moderate, and coarse resolution satellites, 
satellite data processing will not include the inversion of the radiance 
data into LST. The pre-processed satellite data in the form of radiance 
data from fine, moderate, and coarse resolution satellites will thus be 
used as input data in the improved fusion model. After that, the resulting 
fine-scale radiance data will be inverted to achieve the LST for the study 
area using a suitable LST retrieval algorithm. For the other combination, 
the data pre-processing will be extended to include the inversion of the 
radiance data to get the LST data for the fine moderate and coarse res
olution satellite using the appropriate LST retrieval algorithm. 
Furthermore, the retrieved LSTs will be used as input data for the 
improved image fusion model to yield fine-scale LST data on the 

prediction date. The fusion result using the radiance data will thereafter 
be compared with the fusion result from the use of LST data as input data 
to determine the combination that have the better accuracy. For this 
study fine and medium scale LST from two base dates (d2 and d3) was 
used for the prediction of fine scale LST on the prediction date (dp). 
While for STITFM a pair of fine and medium scale LST on d3, a pair of 
medium and coarse scale LST d4 and coarse scale LST on dp was used to 
predict LST on the prediction date. While for ISFAT, pairs of fine and 
medium scale LST on d1 to d4 were combined with medium scale LST on 
dp to predict fine scale LST on the dp. 

4. Results 

4.1. Assessment of ISFAT based on the two approaches of LST fusion 

To investigate the accuracy of the two different approaches adopted 
for image fusion, ISFAT was adopted for the prediction of fine scale LST 
on February 18, 2020, using both the inversion before fusion and fusion 
before inversion approaches. The accuracy assessment as presented in 
Table 2 revealed that fusion result from optimized LST is more compa
rable to the actual LST data with a r of 0.85 compared to 0.65 when 
ISFAT is used for the optimization of radiance data before inverting it to 
LST. This indicates that fusion of inverted LST data improves the pre
diction compared to the fusion of radiance data before inversion to LST. 
This is also evident in the improved RMSE, MD and MAD from 3.62 K to 
3.07 K, 2.80 K to 1.76 K, and 2.92 K to 2.71 K respectively. This is 
primarily due to the intricacies of the fusion processes. Specifically, 
when fusion precedes inversion, errors present in the optimized radiance 

Fig. 3. Structure of LST image fusion algorithm (a) Structure of the contemporary fusion models (SADFAT) using pairs of cloud free data. (b) Structure of 
contemporary fusion models with partly clouded LSTs (clouded region represented with grey path on the fine and coarse LST). (c) Structure of Improved fusion model 
incorporating partly clouded LSTs from multiple base dates. 
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data caused either by differences in spectral response functions between 
different sensors, errors in the adopted fusion model, among others are 
compounded during the inversion stage. Given that the radiance data 

already contains inherent errors, this additional layer of inversion am
plifies the overall prediction bias. This is especially true when compared 
with the inversion of actual fine, medium, and coarse-scale LST data 
before fusion, which already eliminates errors resulting from differences 
in the spectral responses between the sensors, as data from all sensors 
are already inverted into LST. 

Fig. 4. Framework for fine-scale lst prediction ondp.  

Fig. 5. Framework for hourly LST prediction on dp.  

Table 2 
Assessment of different approach of LST fusion on February 18, 2020.  

Approach RMSE (K) MD (K) r MAD (K) 

Inversion before fusion 3.07 1.76 0.85 2.71 
Fusion before inversion 3.62 2.80 0.68 2.92  
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4.2. Assessment of LST fusion models 

4.2.1. Assessment of fusion model over homogenous and heterogenous 
region 

LST maps predicted using ISFAT, SADFAT and STITFM for Hong 
Kong on February 18, 2020, were assessed over both homogenous and 
heterogeneous regions. A quantitative assessment of fine scale LST map 
on d4 highlighted a coefficient of variation (CV) of 0.82 for the hetero
geneous region, contrasting with a CV of 0.47 for the homogeneous 
region. The higher CV in the heterogeneous region can be attributed to 
the diverse land uses present, resulting in high dominance of mixed 
pixel. 

Fig. 6 offers a visual comparison: Columns 2–4 depict predictions 
from the respective models, while Column 1 showcases the LST data 
obtained from Landsat 8. Observations from both heterogeneous (Row 
1) and homogeneous (Row 2) regions indicate that the predictions 
closely align with the actual LST values derived from Landsat 8 on the 
specified prediction date. 

However detailed comparison as presented in Table 3, revealed that 
ISFAT outperformed both SADFAT and STITFM across both regions, 
registering the lowest RMSE values: 2.71 K for the heterogeneous region 
and 2.00 K for the homogeneous region. The improved performance of 
ISFAT is attributed to its refined methodology, incorporating a weighted 
combination of predictions derived from multiple fine-scale base dates. 
Such an approach equips the model to account for nuanced land use 
changes between the base and prediction dates. Additionally, the esti
mation of model residual, which was returned after the estimation 
contributed to the high performance. This residual however could not 
totally be eliminated because it was estimated at coarse scale and 
dispersed accordingly based on spatial properties. Between the two 
contemporary models, SADFAT demonstrated superior predictive ca
pabilities over the heterogeneous region compared to STITFM. This 
advantage arises from SADFAT’s reliance on a weighted combination of 
predictions from two pairs of fine and medium-scale (FnM) LSTs. This 
contrasts with STITFM’s dependence on singular fine-scale data, which 
prevents STITFM from capturing land use changes that are not captured 
in the multiple pairs of medium and coarse-scale (MnCs) LSTs. 
Conversely, in the homogeneous region, STITFM shows better accuracy 
than SADFAT. This outcome can be attributed to STITFM’s all-inclusive 

approach, leveraging data from fine, medium, and coarse-scale LSTs. 
Additionally, the relatively static land use patterns in the region reduce 
the necessity for multiple base date predictions, as utilized by SADFAT. 

4.2.2. Assessment of fusion models over study area 
The three fusion model were thereafter employed to predict fine 

scale LST over Hong Kong. The prediction accuracy, when fusion results 
were compared with actual LST (Table 4) revealed varying degrees of 
accuracy across the models. Prediction using ISFAT is most significant 
with an RMSE, MD and r value of 3.33 K, 3.47 K, and 0.77, respectively. 
This is closely followed by prediction using SADFAT, whose prediction 
has a better r value + 0.01 but the RMSE and MD is higher with + 0.19 K 
and − 0.01 K, respectively. Also, due to inaccessibility of two pairs of 
cloud free satellite scenes on two base dates over the prediction period 
optimized data using SADFAT include no data region resulting from 
cloud mask (Fig. 7d). This issue has however been corrected in ISFAT 
with the introduction of masked weight to ensure that the algorithm 
make use of cloud free pixel data on other dates to make up for pre
dictions in cloud contaminated pixels. While STITFM was able to predict 
LST for the entire study area at fine scale because it only requires fine 
scale LST pairs at just a single date, but the accuracy is less than what is 
achievable when ISFAT or SADFAT is employed. 

4.3. Evaluating diurnal fusion model result 

The ISFAT diurnal algorithm was further employed for hourly fine 
scale LST prediction in the study area over the course of the day. As 
illustrated in Fig. 7, the spatial pattern of Land Surface Temperature 
(LST) over the course of the day revealed a noticeable increase in the LST 
over the study area from 01:00 UTC (9:00 am HKT) up till it reaches its 
peak around 05:00 UTC (1:00 pm HKT). Subsequently, the temperature 
began to drop until it hits the lowest LST around 21:00 UTC (5:00 am 
HKT). It was also observed that LST of regions along the coast in the 
study area are relatively high between 18:00 UTC (10:00 pm HKT) to 
00:00 UTC (8:00 am HKT). This could be linked to lower heating and 
cooling rate of water and coastlands when compared with more ur
banized regions in the study area (Li, 2020). The accuracy assessment of 
the predicted hourly fine-scale LST, as presented in Fig. 9, revealed that 
ISFAT is suitable for LST prediction in the study area. The r R2 values, 

Fig. 6. Actual LST from Landsat 8 (Column-1) and predictions from STITFM (Column-2), SADFAT (Column-3), and ISFAT (Column-4) on February 18, 2020, at ~ 
11:00am over heterogenous (Row-1) and homogenous (Row 2) region. 
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when comparing ΔLST to ΔAT, ranged from 0.74 to 0.83 and 0.52 to 
0.68, respectively (Fig. 9) (See Fig. 8). 

As presented in Fig. 10, the comparison of relative air temperature 
(ΔAT) and relative LST (ΔLST) across selected urban, suburban, and 

rural stations reveals interesting patterns. Both ΔLST and ΔAT exhibit a 
sinusoidal pattern over 24 h, with the urban station exhibiting the 
highest relative temperature, followed by the suburban station, and the 
rural station displaying the least temperature difference. This observa
tion further supports the findings depicted in Fig. 9, suggesting that the 
diurnal LST estimate from ISFAT is suitable for accurate fine-scale LST 
prediction throughout the day. However, a pattern of underestimation 
can be identified in the urban station, with ΔAT greater than ΔLST for 
most parts of the day. Conversely, the inverse pattern (overestimation) is 
observed in the rural station, with ΔAT lower than ΔLST for a greater 
part of the day. For the suburban station, it is a mixture of over and 
underestimation. These patterns of underestimation and overestimation 
in different stations highlight the influence of local factors and 

Table 3 
Accuracy of the predicted fine scale LST compared to the actual LST on February 18, 2020, over heterogenous and homogenous region.  

Model Heterogenous Homogenous 

RMSE (K) MD (K) r MAD (K) RMSE (K) MD (K) r MAD (K) 

STITFM  3.91  2.07  0.70  2.98  1.27  1.97  0.91  2.02 
SADFAT  3.12  2.45  0.84  2.81  2.06  3.85  0.86  4.15 
ISFAT  3.07  1.76  0.85  2.71  1.20  1.95  0.93  2.00  

Table 4 
Accuracy of the predicted fine scale LST compared to the actual LST on February 
18, 2020 over Hong Kong.  

Model RMSE (K) MD (K) r MAD (K) 

STITFM  4.01  3.97  0.68  4.43 
SADFAT  3.52  3.48  0.78  4.19 
ISFAT  3.33  3.47  0.77  3.91  

Fig. 7. Actual LST from Landsat 8 and predictions from fusion models on February 18, 2020 at ~ 11:00 am over Hong Kong (a)Actual (b) STITFM (c) SADFAT and 
(d) ISFAT. 
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Fig. 8. Predicted LSTs at an hour temporal resolution at 100 m spatial scale on 18 February 2020, the time stamp in UTC is denoted in the top corner (local time =
UTC time − 8 h). LSTs at 15:00 and 16:00 UTC could not be predicted due to missing Himawari-8 observations at these times. 

Fig. 9. Accuracy assessment of optimized hourly LST using relative optimized LST (ΔLST) and relative top of atmosphere temperature (ΔAT) from AWS.  
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microclimates on the relationship between AT and LST. Factors such as 
urban heat island effects, variations in land cover, and local land use 
patterns can contribute to the observed differences. Understanding these 
patterns and their implications is crucial for accurate temperature 
modelling, urban planning, and assessing the impact of temperature 
variations on local environments and communities. 

5. Discussion 

This research introduces ISFAT, an improved LST fusion model 
designed to optimize LST data with a fine spatial resolution of 100 m and 
an hourly temporal resolution. By combining data from Landsat 8 (fine 
resolution), Sentinel-3 (medium resolution), and Himawari-8 (coarse 
resolution), ISFAT presents a multifaceted approach to diurnal LST 
optimization. The model’s framework is subdivided into two pivotal 
stages. Initially, ISFAT concentrates on predicting fine-scale LST for a 
designated prediction date dp. Subsequently, it focuses on diurnal pre
diction of fine-scale LST across the day. This subdivision allows the 
model to first, focus on capturing all spatial and temporal changes be
tween prediction and base dates, followed by temporal changes across 
the day. 

Thus, to predict fine scale LST on the prediction date, ISFAT requires 
pairs of fine and medium scale LSTs (FnMs) at multiple base dates, with 
only on cloud free LST pair mandatory as against contemporary model 
that require pairs of clear sky FnMs LST on two base dates. To account 
for missing data resulting from cloud cover in data, ISFAT introduced 
the mask weight variable (wc). This variable combined with the tem
poral weight (wt), bolsters the algorithm’s accuracy in predicting fine- 
scale LST for the prediction date. Additionally, to mitigate model bia
ses, ISFAT incorporates the estimation of prediction residuals. These 
residuals are subsequently integrated back into the predicted fine-scale 
LST, using the TPS model. Notably, when applied to LST prediction over 
Hong Kong in this study, ISFAT showcased enhanced accuracy, 
demonstrating an improved RMSE of 3.33 K. Transitioning to the algo
rithm’s second stage, ISFAT learns from STITFM’s methodology. In 
doing so ISFAT integrates fine, medium and coarse scale data in its 
prediction. In order to break the large-scale gap between fine and coarse 
scale LST, in diurnal prediction a pair of medium and coarse scale 
(MnCs) LST together with the coarse scale (Cs) LST on the prediction 
time tp is combined to predict medium scale LST at the prediction time. 
After which pairs of FnMs LST another time stamp t0 is combined with 
predicted medium scale LST at tp. This method was able to achieve 
highly accurate diurnal LST predictions as revealed when compared to 

relative air temperature data. 
The limitation of this study however lies in the absence of in-situ LST 

data source to validate Fusion results. Consequently, accuracy assess
ments on the prediction date hinged on comparing optimized fine scale 
LST with LST inverted from fine scale satellite data on the prediction 
date. Then for diurnal LST accuracy assessment when fine scale LST is 
not available, diurnal LST prediction was assessed by comparing relative 
fusion result with relative diurnal air temperature from automatic 
weather stations. 

6. Conclusion 

The inherent trade-off between temporal and spatial resolutions in 
satellite-derived Land Surface Temperature (LST) has long hindered its 
effectiveness for urban thermal environment analyses. Despite ad
vancements achieved by existing fusion models, challenges persist, 
notably the impact of missing data due to cloud cover and biases 
stemming from land use variations between prediction and base dates. 
Addressing these limitations, our study proposed a novel two staged LST 
fusion model, Integrated Spatiotemporal Fusion Algorithm (ISFAT). The 
first stage of the model focuses on fine-scale prediction for a specific 
date, while the second stage emphasizes hourly fine-scale prediction. 
ISFAT incorporate both clear sky and partly clouded fine and medium 
scale LST pairs from multiple base date for prediction of fine scale LST 
on the prediction date, with the condition of only one pair needs to be 
clear sky. By introducing the masked weight variable, the model effec
tively circumvents errors arising from missing data due to cloud cover in 
the base date pairs. Additionally, the model integrates the estimation of 
residual errors and redistributes them to the fine-scale predictions to 
minimize prediction inaccuracies. For the empirical application, we 
employed ISFAT to predict fine-scale LST over Hong Kong on February 
18, 2020, utilizing data from Landsat 8 (fine scale), Sentinel 3 (medium 
scale), and Himawari 8 (coarse scale). An accuracy assessment of the 
fine-scale LST predictions on this date reveals that ISFAT outperformed 
SADFAT and STITFM, achieving an improved RMSE of 0.19 K and 0.68 
K, respectively. Additionally, when comparing the relative diurnal fine- 
scale LST predictions with relative air temperature data from weather 
stations, ISFAT’s diurnal predictions exhibited satisfactory performance, 
yielding an r score ranging between 0.74 and 0.83. 
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Valor, E., Galve, J.M., 2021. Validation of Sentinel-3 SLSTR land surface temperature 
retrieved by the operational product and comparison with explicitly emissivity- 
dependent algorithms. Remote Sens. 13 (11). 

Polehampton, E., Cox, C., Smith, D., Ghent, D., Wooster, M., Xu, W., Bruniquel, J., 
Dransfeld, S. 2022. Sentinel-3-SLSTR-Land-Handbook Preparation and Operations of 
the Mission Performance Centre (MPC) for the Copernicus Sentinel-3 Mission. 

Quan, J., Zhan, W., Chen, Y., Wang, M., Wang, J., 2016. Time series decomposition of 
remotely sensed land surface temperature and investigation of trends and seasonal 
variations in surface urban heat islands. J. Geophys. Res. Atmos. 121 (6), 
2638–2657. 

Quan, J., Zhan, W., Ma, T., Du, Y., Guo, Z., Qin, B., 2018. An integrated model for 
generating hourly Landsat-like land surface temperatures over heterogeneous 
landscapes. Remote Sens. Environ. 206, 403–423. 

Reddy, S.N., Manikiam, B., 2017. Land surface temperature retrieval from LANDSAT 
data using emissivity estimation. Int. J. Appl. Eng. Res. 12 (20), 9679–9687. 

Rozenstein, O., Qin, Z., Derimian, Y., Karnieli, A., 2014. Derivation of land surface 
temperature for Landsat-8 TIRS using a split window algorithm. Sensors 14 (4), 
5768–5780. 

Siu, L.W., Hart, M.A., 2013. Quantifying urban heat island intensity in Hong Kong SAR, 
China. Environ.. Monit. Assess 185 (5), 4383–4398. 

Sobrino, J., Oltra-Carrió, R., Sòria, G., Bianchi, R., Paganini, M., 2012. Impact of spatial 
resolution and satellite overpass time on evaluation of the surface urban heat island 
effects. Remote Sens. Environ. 117, 50–56. 

Wang, X., Yan, F., Su, F., 2020. Impacts of urbanization on the ecosystem services in the 
Guangdong-Hong Kong-Macao greater bay area, China. Remote Sens. 12 (19), 3269. 

Weng, Q., Fu, P., Gao, F., 2014. Generating daily land surface temperature at Landsat 
resolution by fusing Landsat and MODIS data. Remote Sens. Environ. 145, 55–67. 
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