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Abstract—Recent booming successes of electric vehicles (EVs)
motivate emerging exploration of spatio-temporal (ST) EV
charging demand forecasting to inform policy making. Recent
studies have contributed to remarkable accuracy improvement
by developing deep learning methods. However, when they access
massive amounts of data and frequently exchange data through
the Internet of Things (IoT), data silos and inefficient training
emerge as main challenges. To tackle these challenges, this
study proposes an integrated approach for regional EV charg-
ing demand forecasting, named federated meta learning-based
graph convolutional network, which consists of two modules,
namely, 1) ST learning module, which introduces spatial and
temporal attentions to capture the underlying charging patterns
between different regions and cities effectively and 2) distributed
pretraining module, which incorporates federated learning and
meta-learning to enhance the adaptivity and generalisability of
the forecasting model. A comprehensive evaluation based on a
real-world data set of 25 246 public EV charging piles shows
that the proposed model outperforms other representative models
with 1) an average improvement of 29.9% in forecasting errors;
2) an acceleration of 65% in convergence speed; and 3) a sound
adaptability to support varying charging demand.

Index Terms—Charging demand forecasting, federated learn-
ing (FL), graph convolution networks (GCNs), meta-learning.
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I. INTRODUCTION

GROWING concerns about climate change are driving
emerging exploration of the renewable energy transition,

amongst which vehicle electrification plays a major role. This
is due to the remarkable potential of electric vehicles (EVs) to
reduce carbon emissions and mitigate global warming [1], [2].
Despite these impressive benefits, insufficient battery capacity
and limited availability of charging infrastructure still remain
significant challenges that hinder the proliferation of EVs. For
instance, range anxiety can force EV drivers to charge their
cars too frequently, placing additional load on the urban power
grid [3], [4], [5]. This has sparked an upsurge of studies on EV
charging demand forecasting to inform EV charging-related
smart services that can improve energy and charging space
efficiency [6], [7].

Thanks to recent successes of Internet of Things (IoT)
techniques, sensing data can be collected and exchanged
over interconnected devices, enabling spatio-temporal (ST)
EV charging demand forecasting across urban regions and
cities. Related to that, several challenges are emerging. First,
compared to previous prediction methods, such as recurrent
neural network (RNN) and its variants [8], the feature learning
capability should be enhanced to capture not just time-series
patterns but also spatial correlations, given the increasing
connectivity between urban areas. Furthermore, the process
of model training requires data security considering the fre-
quent data interactions between clients and servers in IoT
environments. Last but not least, the generalisability of the
method needs to be enhanced to enable demand prediction
across different cities, from where the EV charging demand
and related factors [e.g., weather and socio-economic data
(SED)] exhibit nonindependent and identically distributed
(IID) patterns deteriorating model aggregation.

Many methods have been proposed to tackle the
aforementioned challenges, namely, 1) to capture ST fea-
tures by incorporating RNNs and graph neural networks
(GNNs) [9], [10], [11]; 2) to bridge data silos while ensur-
ing no raw data leakage by applying federated learning
(FL) frameworks [12], [13], [14]; and 3) to transfer shared
knowledge between cities by enabling the process of meta-
learning [15], [16] for an acceleration of model aggregation
and optimization. However, an integrated approach that sup-
ports the regional EV charging demand forecasting by building
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a private-preserving ST model with a fast convergence speed
and high generalisability is still missing to date.

To fill the gap, a novel approach for real-time demand
forecasting, named federated meta learning-based graph con-
volutional network (FMGCN) is proposed with two modules,
i.e., ST Learning and Distributed Pretraining. To be spe-
cific, inspired by the attention-based graph convolutional
network [17], a graph convolution network (GCN) model
with ST attention for regional charging demand prediction
(GCNSA) is designed as the backbone. Furthermore, by
incorporating federated meta-learning [18], the Distributed
Pretraining module is designed and implemented to bridge data
silos and enable rapid localization.

Through a comprehensive evaluation based on a real-world
data set of 25 246 EV charging piles in six cities in the greater
bay area (GBA) of China, from 11th December 2022 to 14th
January 2023 (35 days), the efficiency and effectiveness of
the proposed model are tested and compared with other SOTA
methods. In particular, the results show that FMGCN outper-
forms other representative prediction models and distributed
training strategies with 1) a reduction of forecasting errors by
37%, 36%, 22%, and 25% in mean absolute error (MAE),
root mean square error (RMSE), mean absolute percentage
error (MAPE), and R-square, respectively; 2) an acceleration
of convergency speed by 62%; and 3) a sound adaptation to
different cities with various changing patterns of EV charging
demands.

To sum up, the main contributions of this article include the
following.

1) Adaptation of an effective prediction model with a ST
attention mechanism for EV charging demand forecast-
ing, which can handle not only underlying time-series
patterns but also potential correlations between regions
and cities.

2) Application of a distributed pretraining step incor-
porated with FL and meta-learning to improve
the training performance with data silos bridged,
forecasting errors remedied, and convergence speed
accelerated.

3) An integration of GCN and federated meta-learning,
which enables knowledge learning and propaga-
tion among cities with different feature patterns,
thus building a high-quality predictor with high
generalisability.

The remainder of this article is structured as follows.
Sections II and III provide overviews of related work and
preliminary material, respectively. Then, Section IV intro-
duces the proposed approach FMGCN, which is evaluated in
Section V. Finally, Section VI draws conclusions and future
works.

II. LITERATURE REVIEW

In this section, the emerging challenges and solutions
associated with EV charging demand forecasting and the
applied techniques are summarized. Additionally, the main
abbreviations used in FMGCN are listed in Table I for the
readability of the method of FMGCN.

TABLE I
MAIN ABBREVIATIONS USED IN FMGCN

A. Emerging Challenges

In general, to establish an efficient and effective model
for EV charging demand forecasting, several challenges are
emerging.

1) C.1—Feature Extraction: Advanced sensing and IoT
techniques can equip prediction methods with more
diverse information [19]. However, given not only
temporal but also spatial data, EV charging demand
forecasting models are required to extract and capture
the underlying patterns and correlations properly.

2) C.2—Data Security: With practical considerations,
the model training process has to be optimized to
prevent raw data leakage, when exchanging important
information (e.g., charging records) through IoT proto-
cols.

3) C.3—Knowledge Sharing and Adaptation: The utiliza-
tion patterns of EV charging spaces in different regions
and cities may vary from each other. Therefore, the
distributed and collaborative training step becomes cru-
cial to enable efficient knowledge learning with non-IID
data, so that the model can be easily adapted to down-
stream tasks.

B. Existing Solutions

In recent years, the growing number of EVs has sparked
a research surge in charging demand forecasting. Initially,
the main focus of most early methods remained on the
intrinsic patterns hidden in historical time series [20], e.g., [21]
applied support vector regression (SVR) to model statistical
features underlying the power load on EV charging stations,
while [22] combined fuzzy clustering, least squares support
vector machine (SVM), and wolf pack algorithm for further
improvement in predictive accuracy. Although these statistical
and traditional machine learning models can be computation-
ally efficient and easy to interpret, there is still a limitation in
expressing high-dimensional and nonlinear features.

More recently, with the booming successes of deep learning
techniques, several studies have proposed to leverage RNNs
to extract complex temporal features. Examples include long
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short-term memory (LSTM) [23] and grated recurrent unit
(GRU) [24], which have contributed to a remarkable improve-
ment of feature learning ability in various forecasting tasks,
including charging load prediction. Nevertheless, the neglect
of spatial correlations limits the further development of these
methods.

To fill the gap, some pioneering work has attempted to
employ GNNs, such as GCNs [25], [26], [27], which can
incorporate features hidden in vertexes and edges of a graph
structure to model the dependencies of data in the spatial
dimension. Specifically, the integration of GNNs and RNNs
has gained significant popularity in the field of ST forecasting
scenarios, such as traffic flow, traffic speed, and parking
availability predictions [28], [29], [30]. Without exception, it
is also used to forecast EV charging demands, e.g., SGCN [31]
combines GRU and GCN to model temporal and spatial
features of the operating status at EV charging stations, respec-
tively, to better assist the prediction. Furthermore, motivated
by model structure optimization, a few studies on traffic flow
prediction, such as ASTGCN [17], have facilitated a more
flexible and implicit allocation of weights through the use of
an advanced technique known as the attention mechanism [32].
Despite these benefits, the potential challenges in data security
and training efficiency are overlooked.

Taking into account frequent data exchange, the training
process of the ST models is required to be not only efficient
but also secure in real-world scenarios, where EV drivers
are reluctant to disclose their records and city administrators
are restricted in data sharing. Various FL methods, e.g.,
FedAvg [33], FedProx [34], FedALA [35], and so on [36],
[37], [38], and [39], have been proposed to address the training
limitations that arise from data islands and data security
concerns. The key idea of these methods is to engage in local
data training on each edge device and then upload the updated
local models to a central server for global model aggregation.
Among these, FedAvg [33] is one of the most widely used
frameworks, due to its simple but effective structure. However,
these FL methods still struggle with the problem of non-IID
data. In other words, heterogeneous data from different regions
and cities have different characteristics that could affect the
distributed training process.

For the purpose of facilitating knowledge sharing as well
as personalized adaptation, a novel technique known as
model-agnostic meta-learning (MAML) [40] starts to be incor-
porated with the FL frameworks. Unlike previous FL, the
federated meta-learning framework focuses on training a meta-
model with well-optimized initial parameters to enable rapid
local adaptation. Given that, the meta-model can adapt to
diverse domains and tasks to achieve exceptional predictive
performance and high generalisability. However, limited stud-
ies have exploited such a framework in the application of EV
charging demand forecasting.

As summarized in Table II, which evaluates the reviewed
solutions based on their abilities to address the three emerging
challenges, the integration of GNNs and RNNs (i.e., STGCN,
and ASTGCN) can outperform the typical deep learning mod-
els [i.e., SVM, GRU, and long short-term memory (LSTM)]
in ST feature modeling. However, the training process in the

TABLE II
SUMMARY OF LITERATURE REVIEW

(� SUPPORTED; � NOT SUPPORTED)

data-isolated and data-heterogeneous scenarios still remains
under-explored for regional EV charging demand forecasting.
To tackle the emerging challenges and fill the research gap,
this article proposes a novel approach, named FMGCN, which
integrates and enhances ASTGCN, FedAvg, and MAML to
more efficiently and effectively support regional EV charging
demand forecasting.

III. PRELIMINARY

For consistency, this article uses lowercase letters (e.g., x)
to represent scalars, bold lowercase letters (e.g., x) to denote
column vectors, bold-face uppercase letters (e.g., X) to denote
matrices or high-order tensors and uppercase calligraphic
letters (e.g., X ) to denote sets. Besides, R is used to represent
the data space, e.g., X ∈ R

M×N means the matrix X has two
dimensions of M and N, while Xmn represents an element of
mth row and nth column of X. Moreover, the transposition of
X is denoted as XT.

On this basis, the notations and preliminaries are defined in
the order of graph structure, data silos and heterogeneity, and
objective formulation.

First, in a city, the studied areas can be structured as a graph
G = (V, E), where V and E represent the sets of nodes (e.g.,
districts or regions) and edges (i.e., neighboring relationships
between two nodes). Given N nodes in the set V , the adjacency
matrix of the city can be defined as A ∈ R

N×N , where Aij �= 0
if and only if there exists an edge between nodes Vi and Vj in
G. Besides, the edges in the set E are binary scales, determined
by whether the two urban regions are adjacent (1) or not
(0). By introducing other related factors (e.g., weather and
socio-economic conditions) to enhance the forecasting of EV
charging demands, the data set can be denoted as D = X, y,

Authorized licensed use limited to: JILIN UNIVERSITY. Downloaded on November 08,2024 at 01:54:31 UTC from IEEE Xplore.  Restrictions apply. 



YOU et al.: FMGCN FOR EV CHARGING DEMAND FORECASTING 24455

where X ∈ R
N×F×T means the input data of N nodes, F

features (including the demand), and T time intervals, while
y ∈ R

N are the near-future EV charging demands of the N
nodes in the studied city.

Second, when extracting data and knowledge from other
cities, in which related data are distributed differently, the
problem of data isolation and heterogeneity needs to be
considered and defined. Assume that there are M cities as
federated clients, the data set and graph of city m can be
denoted by Dm and Gm, and the same will go for all the
variables of this city. Note that, the data of these cities are non-
IID, and the graphs are different (i.e., Va �= Vb and Ea �= Eb

for a �= b). Since data is isolated, the raw data of federated
clients can only be processed locally, while generated model
parameters or gradients can be exchanged between the central
server and the local clients.

Finally, in contrast to the objective function in the setting of
traditional deep learning formulated as min L(ym, F(Dm,Gm)),
where only local data is used, the objective function of our task
in the setting of federated graph learning to minimize error in
predicting the EV charging demand for all collaborated cities
can be formulated as

min
M∑

m=1

L
(
ym, F(Dm,Gm, F′(D,G))

)
(1)

where F and F′ represent the personalized and pretrained
forecasting models, respectively; L denotes the loss function.
To be specific, in such a setting, it is permitted to leverage
all data and graphs in a privacy-preserving and collaborative
manner to conduct a pretraining step for a globally shareable
meta-model and finetune it for a personalized model, so as to
achieve higher local forecasting performance. Note that, the
process is required to be performed according to the workflow
of FL under the constraints of local data protection, i.e., no
raw data exchange.

IV. METHODOLOGY

As shown in Fig. 1, the proposed approach consists of two
modules, i.e., 1) a ST Learning module, which utilizes both
temporal and spatial attention to capture the ST dependencies
underlying EV charging demands and other factors (e.g.,
weather and socio-economic information); and 2) a Distributed
Pretraining module, which empowers the model with high
generalisability and fast convergence speed by incorporating
FL and meta-learning. In the following sections, the two
modules will be described.

A. Spatio-Temporal Learning Module

Considering the fluctuations in real-world demand for EV
charging, the backbone model is designed as illustrated in
Fig. 2. In general, it consists of four components, namely, ST
attention, spatial convolution, temporal convolution, and linear
decoder. Specifically, ST attention is responsible for calculat-
ing and enhancing the correlation of charging demand in ST
dimensions, followed by the spatial and temporal convolutions
to extract the charging features across both dimensions, and
the final prediction is produced by the linear decoder.

Moreover, it is worth noting that the GCNSA integrates
the SED and weather data (WA) as model input to assist
the charging demand forecasting. On the one hand, city
charging demand is highly correlated with its social economy,
and the more prosperous the city, the greater the charging
demand for EVs. On the other hand, weather conditions
will affect people’s desires to travel, and in turn, influence
the urban charging demand. Therefore, SED, WA and the
charging demand data (CDD) are embedded as model input
to improve the forecasting accuracy of the charging demand,
and their impacts are analyzed in Section V-B4. Note that
all calculations are equal for each city m, and thus for
simplicity and readability, the subscript m is omitted in this
module.

1) Spatio-Temporal Attention: First, an attention mech-
anism [32] is used to adaptively capture the dynamic
correlations between nodes in the spatial dimension, which
can be calculated by

S = Ws · σ
(
(XU1)U2(U3X)T + Bs) (2)

where S denotes the spatial attention matrix that is dynamically
computed according to the input X ∈ R

N×F×T ; Ws, Bs ∈
R

N×N , U1 ∈ R
T , U2 ∈ R

F×T , and U3 ∈ R
F are learnable

parameters; σ denotes the sigmoid activation function. Then,
a Softmax function is utilized to guarantee that the attention
weights of a node are summed up to one. To be specific, for
node Vi, its spatial attention coefficient for each neighbor node
Vj can be normalized by

S′
ij = softmax

(
Sij

) = exp
(
Sij

)
∑N

n=1 exp(Sin)
. (3)

Accordingly, the temporal attention matrix can be computed
with a similar method as described in

� = W� · σ
((

XTV1
)
V2(V3X) + B�

)
(4)

where W�, V� ∈ R
T×T , V1 ∈ R

N , V2 ∈ R
F×N , and V3 ∈ R

F

are trainable parameters as well. The normalized temporal
attention score of time i to time j can be calculated by

�′
ij = softmax

(
�ij

) = exp
(
�ij

)
∑T

t=1 exp(�it)
. (5)

Finally, we directly apply the normalized temporal attention
matrix �′ to the input X and get X′ ∈ R

N×F×T to dynamically
adjust the input by merging relevant information, which can
be formulated as

X′ = X�′. (6)

2) Spatial Convolution: In this study, the city connected by
urban areas can be considered a graph structure in nature, and
the features of each node can be regarded as the signals on
the graph. Hence, in order to make full use of the topological
relationships among urban areas, at each time slice, we adopt
graph convolutions based on spectral graph theory [41] to
directly process the signals, exploiting signal correlations on
EV charging distribution in the spatial dimension.

First of all, differently from ASTGCN [17], we introduce
the distance between neighboring nodes to augment the adja-
cency matrix, i.e., Aij is set to the shortest path distance
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Fig. 1. Overall architecture of the proposed mechanism FMGCN. (a) ST Learning module used to construct the backbone GCN model with temporal and
spatial attentions to extract forecasting features from multiple information sources; and (b) Distributed Pretraining module used to train the meta-model through
the collaboration between the server and source stations under the IoT scenario that data are isolated and heterogeneous.

Fig. 2. Structure of the GCN model with ST attention for regional charging demand prediction (GCNSA).

between nodes Vi and Vj. Given that, the Laplacian form of
the adjacency matrix A ∈ R

N×N is calculated by (7), where
L ∈ R

N×N , D ∈ R
N×N , and IN ∈ R

N×N denote the Laplacian,
degree, and unit matrices, respectively

L = D − A

= IN − D− 1
2 AD− 1

2 . (7)

Thereafter, due to the orthogonality, symmetry, and nonneg-
ative eigenvalues of the Laplacian matrix, we can decompose
the Laplacian matrix as reported in (8), where U is Fourier
basis and � is a diagonal matrix of eigenvalues

L = U�UT. (8)

Based on this, the signal of the f th channel at time t on
the graph G, denoted by x̂ = X′

tf ∈ R
N , can be filtered by a

kernel gθ , which can be formulated as (9), where ∗G denotes
the graph convolution operation

gθ ∗G x̂ = U
(
(UTgθ )(UTX′)

)

= U
(
gθ (�)(UTX′)

)

= Ugθ (�)UTX′. (9)

However, it is computationally expensive to directly per-
form the eigenvalue decomposition on the Laplacian matrix
when the size of the graph is large. Therefore, Chebyshev
polynomials are adopted in this article to solve this problem
approximately but efficiently, according to [42], which can be
written as

gθ ∗G x̂ =
K−1∑

k=0

θkCk

(
L̃

)
x̂ (10)

where θ ∈ R
K is a vector of polynomial coefficients, while

K is the order of graph propagation; L̃ = (2/λmax)L − IN ,
λmax is the maximum eigenvalue of the Laplacian matrix; and
Ck(x) = 2xCk−1(x) − Ck−2(x) is the recursive definition of
the Chebyshev polynomial, given C0 = 0 and C1(x) = x.
Using approximate expansion of Chebyshev polynomial to
solve this formulation corresponds to extracting information
of the surrounding 0 to (K − 1)-order neighbors centered on
each node in the graph.
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To account for spatial dependencies between nodes, for each
term of Chebyshev polynomial, Ck(L̂) is accompanied with
the normalized spatial attention matrix S′ ∈ R

N×N . Thus, the
graph convolution in (10) changes to (11), where � denotes
the Hadamard product. This definition can be generalized to
the graph signal with multiple data channels (i.e., features)

gθ ∗G x̂ =
K−1∑

k=0

θkCk

(
L̃ � S′)x̂. (11)

3) Temporal Convolution: After the graph convolution
operations that have captured spatial correlations for each node
on the graph, a standard convolution layer in the temporal
dimension is further stacked to update the signal of a node by
merging the knowledge at consecutive time slices, which can
be formulated as

X′′ = ReLU
(
� ∗ (ReLU(gθ ∗G X′))

)
(12)

where X′′ ∈ R
N×T ′×F′

is the output of the temporal convo-
lution layer; T ′ and F′ are the changed dimension number of
time slices and channels determined by the size of convolution
kernels; and ∗ denotes a standard convolution operation, while
� is the parameter of the temporal dimension convolution
kernel; and the action function is ReLU.

4) Linear Decoder: Finally, after the stacked attention and
convolution layers, a decoder layer based on Fully Connected
neural network (NN) is performed to obtain final prediction,
which is calculated in (13), where Wϒ is the learnable
parameters

y = Wϒ � X′′. (13)

To sum up, as shown in Fig. 2, a GCN model with spatial-
temporal attention is designed as the backbone model to
extract the complex patterns of different urban areas that vary
across space and time, so as to achieve accurate prediction of
EV charging demand.

B. Distributed Pretraining Module

Although the recent surge in increasing model size has con-
tributed to remarkable improvement in accuracy, deep learning
methods require tremendous data for training, which poses
new challenges for data security and learning efficiency [43].
In the case of EV charging demand forecasting, as data from
different regions and cities are sensitive and non-IID, not
only data exchange should be secured to prevent data leakage
but also negative transfer needs to be mitigated to facilitate
knowledge sharing [44]. To tackle these issues, building upon
the designed ST Learning module, a collaborative training
mechanism is developed by incorporating FL [33] and meta-
learning [40].

Assume that there are M clients, this module works with
the following four steps, namely, model alignment, local
meta-training, global model updating, and model personal-
ization. Specifically, model alignment is initially conducted
to ensure consistency in model structures across different
cities. Subsequently, local meta-training is designed to perform
meta-learning locally instead of centralized training at the
server so that the raw data can be better safeguarded without

Fig. 3. Process of model alignment by using graph padding. Assume that the
predetermined node number P = 7, thus the CDD and the adjacency matrix
need to zero padding until meeting the requirements of P nodes.

transmitting. After that, different from conventional centralized
training methods, global model updating is devised to aggre-
gate individual meta-models from varied cities at the server to
generate the global meta-model. Finally, after sufficient rounds
of federated meta-training, model personalization ends up
with training and deploying a personalized model for specific
forecasting tasks.

1) Model Alignment: The graphs are heterogeneous across
cities due to the varying number of nodes. This poses chal-
lenges for model aggregation in distributed learning. To enable
knowledge sharing, the model of each client is first aligned by
graph padding. To be specific, as shown in Fig. 3, we zero-
pad the graph (e.g., its adjacency matrix) of each client to a
predetermined number of nodes P to maintain consistency in
the model input dimension.

2) Local Meta-Training: Under the distributed training
framework of FL, a simple but effective meta-learning method,
i.e., First-order MAML (FOMAML) [40], is used as a means
to enhance the model generalization capability. Before exe-
cuting the meta-training, the training set of each city will
be divided into support set Ds

m and query set Dq
m for local

knowledge extraction and global gradient aggregation. In
general, the support set Ds

m is responsible for learning the
overall optimization directions across all tasks, while the
query set Dq

m focuses on learning personalized optimization
directions specific to individual tasks. In this study, the support
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set Ds
m and query set Dq

m account for 80% and 20% of the
training data set Dm, respectively.

First, in each epoch, we update the prediction model locally.
The calculation can be described in

θm = θ − α∇θ L
(
θ,Ds

m

)
(14)

where θm is the local model of client m trained based on the
global model θ and support set Ds

m; L is the loss function; ∇θ

denotes the derivative based on θ ; and α is the learning rate
of local meta-training.

Given all clients, we then collect their local gradients,
instead of model parameters, from the query set Dq

m. The
process can be written as

δm = ∇θmL
(
θm, Dq

m

)
(15)

where δm is the gradient obtained from client m and ∇θm

denotes the derivative based on θm.
3) Global Model Updating: Since there are differences in

the amount of data used by each model during the local meta-
training process, we assign weights for model aggregation
based on the amount of training data used by the clients.
Specifically, the more the training data, the higher the weight
used for model aggregation. Formally, the weight can be
calculated according to (16)

ωm = ζm∑M
l=1 ζl

(16)

where ζm and ωm represent the data size and assigned weight
of client m, respectively.

After the weight calculation, the central server starts the
global model updating by aggregating collected local gradi-
ents, which can be formulated as

θ ′ = θ − β

M

M∑

m=1

ωmδm (17)

where θ ′ is the updated global model and β is the learning
rate of global updating.

4) Model Personalization: In this step, the server dis-
tributes a well-trained global meta-model φ (which is θ ′
after the above-described learning process) and the signal of
personalized training to each client. Given the rich knowledge
encoded in the global meta-model, when encountering unfa-
miliar tasks and their associated data sets Dp, local clients can
train a personalized model rapidly according to

φp = φ − γ∇φL
(
φ, Dp

)
(18)

where φp is the personalized model of client p and γ is the
learning rate of personalized training.

C. Algorithms of the Proposed Approach

For the sake of clarity, the proposed approach FMGCN
can be depicted with two pseudocodes for server and clients,
respectively, as illustrated in Algorithms 1 and 2.

To sum up, a novel approach for EV charging demand
forecasting, called FMGCN is proposed with two dedicated
modules. On the one hand, a GCN model for regional EV

Algorithm 1 Pseudocode for Server in FMGCN
FL Training Mode

1: Send the predefined graph node number to clients
2: for m=1,2,. . . ,M do
3: Transfer θ to clients
4: Receive θm and ζm from clients
5: Calculate ωm according to (16)
6: Update the global model θ according to (17)
7: if Stop condition is reached then
8: Switch to personalisation mode
9: end if

10: Send control signal of continuous learning and updated
global model θ ′ to all clients

11: end for

Personalised Mode
1: Deliver the control signal of personalisation to all clients
2: Deliver the global meta-model φ to all clients

Algorithm 2 Pseudocode for Clients in FMGCN
FL Training Mode

1: Conduct model alignment and data alignment based on
the predefined graph node number

2: while True do
3: Receive control signal
4: if The control signal of personalisation is reached then
5: Break
6: end if
7: Receive global model of last training epoch θ

8: Sample training data of ζm size in local data
9: Update the model θm according to (14) and (15)

10: Upload θm, and ζm to the server
11: end while
12: Switch to personalisation mode

Personalised Mode
1: Receive the global meta-model φ

2: Initialize the local model as φ

3: Update the personalised model φj as (18)
4: Apply model φj to real forecasting

charging demand prediction is designed to capture the under-
lying patterns that vary across time and space. On the other
hand, a collaborative training procedure based on federated
meta-learning is implemented to tackle the challenges of data
isolation and data heterogeneity. By integrating these two
modules, the barriers can be broken down to train a shareable
global meta-model in a private-preserving manner, and thus
the personalised model for each city can be rapidly built by
finetuning the meta-model to make more accurate predictions.

V. PERFORMANCE EVALUATION

In this section, the proposed method is tested together
with other state-of-the-art forecasting methods under the same
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TABLE III
OVERALL DESCRIPTIONS OF EVALUATION DATA

evaluation settings. Moreover, the results are analyzed to
demonstrate the improvements achieved by FMGCN.

A. Evaluation Preparation

1) Data Description: For evaluation purposes, a common
data set is created based on the EV charging demand, geo-
graphic information, socio-economic indicators, and weather
conditions in six cities of the Great Bay Area (GBA), China,
namely, Guangzhou, Shenzhen, Foshan, Dongguan, Zhuhai,
and Zhongshan. Besides, the studied period is from December
11, 2022, to January 14, 2023. The overall description of the
data set is summarized in Table III. In general, the data set
contains four types of information.

1) Charging Demand: The data is organized by the EV
charging records of 25 246 piles located in the studied
cities. To be specific, the records are aggregated into
charging demand with a minimum interval of 30 min.

2) Geographic Information: The studied regions in each
city are defined according to the boundaries of its
subordinate administrative districts, in which the region
center is calculated by applying a clustering method (k-
nearest neighbor, KNN) on the distribution of charging
station and the edge between neighboring centers is
connected based on the shortest path. Accordingly, the
region centers and the shortest paths are set as the nodes
V and edges E in the graph G (which may vary among
cities).

3) Socio-Economic Indicators: They consist of the popula-
tion of each subregion and the gross domestic product
(GDP) of each city, which are the best factors reflecting
the prosperity of a region. These two indicators are
collected from the 2022 government statistical reports.

4) Weather Condition: It is represented by the maximum
and minimum temperatures in each region.

For evaluation purposes, the data set is divided into a
training set (from 11 December 2022 to 7 January 2023, 28
days) and a test set (from 8 to 14 January 2023, 7 days).
Furthermore, according to the setting of meta-learning, the
training set is further subdivided into support set and query
set, which occupy 80% and 20% of the data, respectively. Note
that the data set used in this article can be accessed at the
link.1

1https://github.com/chenqy87/FMGCN/tree/main/FMGCN_data

2) Metrics: Four metrics are adopted to compare the
prediction performance, i.e., MAE, RMSE, MAPE and
Coefficient of Determination (R2), which are defined in

MAE =
N∑

i=1

|y′
i − yi|

RMSE =
√√√√1

n

N∑

i=1

(
y′

i − yi
)2

MAPE = 100%

n

N∑

i=1

∣∣∣∣
y′

i − yi

yi

∣∣∣∣

R2 = 1 −
∑N

i=1

(
y′

i − yi
)2

∑N
i=1(ȳi − yi)

2
(19)

where y′
i and yi denote the predicted value and the real value of

the demand, respectively. Note that the value domains of MAE,
RMSE, MAPE, and R2 are [0,+∞), [0,+∞), [0,+∞), and
(−∞, 1], respectively. In addition, to reduce the random error,
each prediction task will run ten times separately, and the
averaged value will be used as the final result.

3) Compared Models: The proposed method FMGCN is
compared with four NNs, two statistical models, and one
machine learning model.

1) HA—Historical Average Method: Here, we use the
average value of the last 12 time slices to predict the
next value.

2) ARIMA [45]: Auto-regressive integrated moving aver-
age is a well-known time series analysis method for
predicting future values.

3) SVR [46]: SVR is a traditional machine learning method
for regression tasks, which is derived from SVM.

4) GRU [47]: Gate recurrent unit is an effective RNN
simplified from LSTM.

5) ChebNet [26]: It is an early GCN, applying Chebyshev
Polynomial as the convolution kernel.

6) STGCN [27]: It is a recently developed GNN, consid-
ering the impacts of ST characteristics.

7) GCNSA [17]: It is the backbone model implemented in
FMGCN.

Furthermore, the collaborative training procedure implemented
in FMGCN is compared with other ten representative training
strategies.

1) Separate: A simple training strategy, which is to train
the model local data only.
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2) FedAvg [33]: A typical decentralized training strategy
that aggregates and averages local model parameters or
gradients for global model updating.

3) FedProx [34]: A special FL framework improved based
on FedAvg, which resolves data heterogeneity by adding
proximal terms.

4) pFedMe [48]: A popular FL method that aims at
personalizing model for each client.

5) FedAMP [36]: An FL method addressing data hetero-
geneity by maintaining a personalised model for each
client at the server.

6) FedDyn [49]: A dynamic FL method assisting the model
to converge to the global optimum in an efficient path.

7) FedRep [37]: An FL mechanism boosting the model’s
generalisability by learning shared representation.

8) FedFomo [50]: An FL method that adapts local models
based on different contributions of participated clients
to the target tasks.

9) FedALA [35]: An FL framework that personalizes the
local model by aggregating the old local model and the
global model.

Since the training mechanisms for deep learning models and
statistical models are quite different, the evaluation is done
in different ways. Specifically, for deep learning models (i.e.,
GCNSA, STGCN, ChebNet and GRU), each city client is first
trained on its own training set, then personalised on the support
set of the test set, and finally tested on the query set of the
test data set. However, for statistical methods, such as SVR,
ARIMA, and HA, the model will be tested directly on the
query set of the test data set without the need to train on the
training set.

Finally, several important hyperparameters and experimental
configurations of the compared models are listed in Table IV.
Note that to make a fair comparison, the training task is to
forecast the future 30-min charging demand at the county level
by using the past 6-h charging demand (i.e., charging demand
of the past 12 time slices) as the input.

4) Running Environment: The evaluation is carried out on
a Windows workstation equipped with two NVIDIA GeForce
RTX 3090 GPUs, an Intel Gold 5218R Two-Core Processor
CPU, and 512G RAM.

B. Evaluation Results

The performance of evaluated methods is analyzed in three
aspects, namely, 1) the forecasting error to illustrate how well
the model is to predict the future; 2) the convergence speed
to demonstrate how fast the model is to stabilize, and 3) the
model generalisability to show how agile the model is to
handle contexts with different cities. Moreover, we also discuss
the impact of layer number of graph propagation and the
introduced factors on the prediction performance. It is worth
noting that the bold numbers in the table represent the best
performances among all the baseline models.

1) Forecasting Error: As shown in Tables V and VI,
respectively, the assessment of forecasting error is divided into
the comparison of varied backbone models and the comparison
of different FL frameworks based on the proposed GCNSA

TABLE IV
HYPERPARAMETER SETUPS OF BASELINES

model. According to Table V, the proposed method, i.e.,
FMGCN implementing GCNSA, outperforms other methods
in all four metrics with fewer forecasting errors. Specifically,
on average, it achieves significant improvements of 16.33% in
MAE, 5.48% in RMSE, and 24.17% in MAPE, respectively.
Moreover, FMGCN reaches the best fit with less than 10%
residuals in R2. These results illustrate that the regional EV
charging demand forecasting model equipped with ST atten-
tion (i.e., GCNSA) and the model pretraining step designed
with federated meta-learning can work jointly and smoothly
to achieve state-of-the-art performance.

Moreover, the results also show that the models with graph
learning ability (i.e., ChebNet, STGCN, and GCNSA) can
reduce predictive error significantly, compared to the nongraph
ones (i.e., HA, ARIMA, SVR, and GRU), demonstrating the
superiority of deploying GNNs for ST EV charging demand
forecasting. Especially, non-GCN models (i.e., HA, ARIMA,
SVR, and GRU), exhibit bad performances on R2 (< −1.00),
indicating that the models without adopting GCN are incapable
of fitting the correlation between predicted values and data
features accurately. It is worth noting that, when the same
backbone model is used, i.e., GCNSA, the model with FL (i.e.,
GCNSA with FMGCN or FedAvg) can outperform the one
without, with an improvement of 36.59%, 36.23%, 47.76%,
and 44.44% in MAE, RMSE, MAPE, and R2, respectively.
This demonstrates that FL is an effective way to improve
model performance by exchanging knowledge among cities.

Finally, as shown in Table VI, FMGCN exhibits superior
performance compared to other representative and SOTA train-
ing strategies. To be specific, the proposed training strategy can
help the backbone model GCNSA to decrease MAE, RMSE
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TABLE V
PERFORMANCE COMPARISON BETWEEN DIFFERENT BACKBONE MODELS

TABLE VI
PERFORMANCE COMPARISON BETWEEN DIFFERENT TRAINING STRATEGIES ON GCNSA

and MAPE by 36.59%, 36.23% and 22.23%, respectively, and
increase R2 by 24.66%. This result convincingly demonstrates
the merits of FMGCN in facilitating the training of graph
convolutional models that can be effectively adapted to a
variety of personalised prediction tasks, where the data of each
client is isolated and heterogeneous. In addition, to directly
visualize the forecasting effects of GCNSA adopting different
FL training strategies, the forecasting curves of all the cities
are plotted, as shown in Fig. 4, which demonstrates that the
proposed mechanism FMGCN can assist GCNSA to best fit
the ground truth.

2) Convergence Speed: To analyze the convergence speed
of different baseline models, we compare the training duration
of different models when converging to the target MAE,
RMSE, MAPE, and R2. Based on the second-best values in
MAE, RMSE, MAPE, and R2 and values in multiples of 5 can
be better observed in the figure, we set the target values of
MAE, RMSE, MAPE, and R2 as 0.45, 0.80, 0.20, and 0.75,
respectively.

As shown in Fig. 5, FMGCN has the fastest convergence
speed in all four cases. In particular, the MAE curve of
FMGCN can reach the target value of 0.45 at the 165th epoch,
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Fitting curves of GCNSA adopting different FL training strategies in the case of (a) Guangzhou, (b) Shenzhen, (c) Dongguan, (d) Foshan, (e) Zhongshan
and (f) Zhuhai.

(a) (b)

(c) (d)

Fig. 5. Evaluation curves for different metrics: (a) MAE, (b) RMSE, (c) MAPE, and (d) R2, and the red dashed lines represent the convergence target value.

cutting the number of training rounds by 64.59% compared to
the second-best (i.e., the 466th epoch in FedAvg). Similarly,
in the case of RMSE, FMGCN only requires 164 epochs

to converge to the target value of 0.80, reducing 78.39%
compared to the second-fastest FedAvg (759 epochs). Further,
FMGCN assists the GCNAS to reach the target MAPE at 743
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Fig. 6. R2 heatmap of charging demand forecasting for different regions. Blank area without numbers means that this area is not used for prediction due to
lack of data.

epochs, decreasing at least 25.70% (even if none of the other
training strategies can reach the target value). Lastly, compared
to FedAvg which spends 978 epochs to reach the target value
0.75 in R2, FMGCN (196 epochs) can reach an improvement
in convergence speed by 79.96%. To sum up, FMGCN can
accelerate the convergence speed by 62.16% on average.

3) Model Generalisability: To demonstrate the generalis-
ability of the model trained by FMGCN, we plot a heatmap
of prediction accuracy in R2, which is illustrated in Fig. 6.
We can see that, with the exception of a few districts in
Zhongshan, most of the regions have R2 higher than 0.85,
indicating that the FMGCN can maintain high accuracy
for different regions. Especially, in Shenzhen, the proposed
approach achieves a remarkable result (> 0.90) for EV
charging demands in all the studied regions, which shows its
ability to be applied as a basis to support related services, e.g.,
smart grid. These findings indicate that FMGCN can train a
model with high generalisability even if the charging patterns
may vary across time and space.

4) Impact Analysis: The impact of the layer number of
graph propagation and other introduced factors as model
inputs are analyzed. First, as described in Section IV-A2, K
can be recognized as the range of graph-based information
propagation in GNNs. As an important hyperparameter, we
deploy different values of K on the proposed model. As
shown in Table VII, FMGCN performs the best when K
equals 1. Moreover, with the K value growing, the forecasting
performance decreases. It shows that the spillover effect of EV
charging demand may be limited to neighboring regions.

Second, as for the amount of information included in the
input, Table VIII shows that 1) the improvement is propor-
tional to the amount of information contained, including CDD,
SED, and WA; and 2) SED (i.e., population and GDP) are
more favorable to the model than WD (i.e., temperature) for

TABLE VII
PERFORMANCE OF FMGCN WITH DIFFERENT K VALUES

TABLE VIII
COMPARISON BETWEEN FMGCN ADOPTING DIFFERENT

INFORMATION AS THE INPUT VECTOR

regional EV charging demand forecasting in short-term (i.e.,
30 min).

In summary, the proposed approach is superior in terms
of prediction performance, convergence speed, and model
generalisability compared to other baselines. In particular,
first, FMGCN can outperform the second-best model with
an improvement of 36.59%, 36.23%, and 22.23% in MAE,
RMSE, and MAPE, respectively. Second, FMGCN accelerates
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the model training speed, resulting in an average reduction of
62.16% in epoch spending to reach the target value. Third, the
model can be well personalised for each studied city, showing
high-model generalisability. Finally, the graph propagation
length K = 1 used in FMGCN is more suitable for regional
EV charging demand prediction, and the extra information
about population, GDP, and temperature is beneficial for the
forecasting task when it is used as model input.

VI. CONCLUSION

To promote environmentally friendly and low-carbon
lifestyles, regional EV charging demand predictions have been
investigated as a way to alleviate the problem of power scarcity
caused by spatial and temporal differences in urban charging
demand. However, ST forecasting and distributed training
remain under-explored in the field. To fill the gap, we propose
a federated-meta-learning-based GCN for regional charging
demand forecasting, called FMGCN. It comprises two main
modules, namely, 1) ST Learning module, which designs
a dedicated GCN model with ST attention to discover the
dynamic characteristics among cities and 2) distributed pre-
training module, which incorporates FedAvg and FOMAML
to train a global model with strong personalisation ability to
address issues of data isolation and heterogeneity.

Compared to other SOTA models, FMGCN can achieve
notable improvements in MAE, RMSE, and MAPE by
36.59%, 36.23%, and 22.23%, respectively, and also a signifi-
cant enhancement in R2 by 24.66%. Second, the results reveal
that FMGCN can accelerate model convergence by approx-
imately 62.16%. Third, FMGCN can provide a model with
high generalisability to support personalisation for different
cities to better support forecasting tasks in their own contexts.
Finally, the impact analysis shows that most charging demands
propagate among neighboring regions (i.e., K = 1, one-hop
information propagation in GCN), and adding information
about population, GDP, and temperature into the model input
can be beneficial to further improve the prediction result.

In the future, first, multisource data fusion will be further
explored to further enhance the forecasting capability of
the GCN model for EV charging demand. Moreover, an
asynchronous update strategy will be studied to resolve the
straggler issues caused by the lagging clients during the global
model training. Last but not least, an adaptive client selection
mechanism will be designed to enable the global model to
obtain more beneficial knowledge from high-quality clients.
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