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Abstract—Recent booming successes of electric vehicles (EVs)
motivate emerging exploration of spatio-temporal EV charging
demand forecasting to inform policy making. Recent studies have
contributed to remarkable accuracy improvement by developing
deep learning methods. However, when they access massive
amounts of data and frequently exchange data through the
Internet of Things (IoT), data silos and inefficient training emerge
as main challenges. To tackle these challenges, this study proposes
an integrated approach for regional EV charging demand fore-
casting, named FMGCN, which consists of two modules, namely
1) Spatio-temporal Learning module, which introduces spatial
and temporal attentions to capture the underlying charging
patterns between different regions and cities effectively; and 2)
Distributed Pretraining module, which incorporates Federated
Learning and Meta-Learning to enhance the adaptivity and gen-
eralisability of the forecasting model. A comprehensive evaluation
based on a real-world dataset of 25,246 public EV charging piles
shows that the proposed model outperforms other representative
models with 1) an average improvement of 29.9% in forecasting
errors; 2) an acceleration of 65% in convergence speed; and 3)
a sound adaptability to support varying charging demand.

Index Terms—Charging Demand Forecasting, Graph Convo-
lution Networks, Federated Learning, Meta-Learning.

I. INTRODUCTION

GROWING concerns about climate change are driving
emerging exploration of the renewable energy transition,

amongst which vehicle electrification plays a major role. This
is due to the remarkable potential of electric vehicles (EVs) to
reduce carbon emissions and mitigate global warming [1], [2].
Despite these impressive benefits, insufficient battery capacity
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and limited availability of charging infrastructure still remain
significant challenges that hinder the proliferation of EVs. For
instance, range anxiety can force EV drivers to charge their
cars too frequently, placing additional load on the urban power
grid [3]–[5]. This has sparked an upsurge of studies on EV
charging demand forecasting to inform EV charging-related
smart services that can improve energy and charging space
efficiency [6], [7].

Thanks to recent successes of Internet of Things (IoT)
techniques, sensing data can be collected and exchanged
over interconnected devices, enabling spatio-temporal (ST)
EV charging demand forecasting across urban regions and
cities. Related to that, several challenges are emerging. First,
compared to previous prediction methods, such as Recur-
rent Neural Network (RNN) and its variants [8], the feature
learning capability should be enhanced to capture not just
time-series patterns but also spatial correlations, given the
increasing connectivity between urban areas. Furthermore, the
process of model training requires data security considering
the frequent data interactions between clients and servers in
IoT environments. Last but not least, the generalisability of
the method needs to be enhanced to enable demand prediction
across different cities, from where the EV charging demand
and related factors (e.g., weather and socio-economic data) ex-
hibit non-IID (independent and identically distributed) patterns
deteriorating model aggregation.

Many methods have been proposed to tackle the afore-
mentioned challenges, namely 1) to capture spatio-temporal
features by incorporating Recurrent Neural Networks (RNNs)
and Graph Neural Networks (GNNs) [9]–[11]; 2) to bridge
data silos while ensuring no raw data leakage by applying
federated learning (FL) frameworks [12]–[14]; and 3) to
transfer shared knowledge between cities by enabling the
process of meta-learning [15], [16] for an acceleration of
model aggregation and optimization. However, an integrated
approach that supports the regional EV charging demand
forecasting by building a private-preserving spatio-temporal
model with a fast convergence speed and high generalisability
is still missing to date.

To fill the gap, a novel approach for real-time demand
forecasting, named Federated Meta Learning-based Graph
Convolutional Network (FMGCN) is poposed with two mod-
ules, i.e., Spatio-temporal Learning and Distributed Pretrain-
ing. To be specific, inspired by the attention-based graph con-
volutional network [17], a graph convolution network (GCN)
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model with spatio-temporal attention for regional charging
demand prediction (GCNSA) is designed as the backbone. Fur-
thermore, by incorporating federated meta-learning [18], the
Distributed Pretraining module is designed and implemented
to bridge data silos and enable rapid localization.

Through a comprehensive evaluation based on a real-world
dataset of 25,246 EV charging piles in six cities in the Greater
Bay Area (GBA) of China, from 11th December 2022 to 14th
January 2023 (35 days), the efficiency and effectiveness of
the proposed model are tested and compared with other SOTA
methods. In particular, the results show that FMGCN outper-
forms other representative prediction models and distributed
training strategies with 1) a reduction of forecasting errors by
37%, 36%, 22%, and 25% in MAE, RMSE, MAPE, and R-
square, respectively; 2) an acceleration of convergency speed
by 62%; and 3) a sound adaptation to different cities with
various changing patterns of EV charging demands.

To sum up, the main contributions of this paper include:
• Adaptation of an effective prediction model with a spatio-

temporal attention mechanism for EV charging demand
forecasting, which can handle not only underlying time-
series patterns but also potential correlations between
regions and cities.

• Application of a distributed pretraining step incorporated
with Federated Learning and Meta-learning to improve
the training performance with data silos bridged, forecast-
ing errors remedied, and convergence speed accelerated.

• An integration of GCN and Federated Meta-learning,
which enables knowledge learning and propagation
among cities with different feature patterns, thus building
a high-quality predictor with high generalisability.

The remainder of this paper is structured as follows.
Sections II and III provide overviews of related work and
preliminary material, respectively. Then, Section IV introduces
the proposed approach FMGCN, which is evaluated in Section
V. Finally, Section VI draws conclusions and future works.

II. LITERATURE REVIEW

In this section, the emerging challenges and solutions
associated with EV charging demand forecasting and the
applied techniques are summarized. Additionally, the main
abbreviations used in FMGCN are listed in Table I for the
readability of the method of FMGCN.

A. Emerging Challenges

In general, to establish an efficient and effective model
for EV charging demand forecasting, several challenges are
emerging, including:

• C.1 Feature extraction: Advanced sensing and IoT tech-
niques can equip prediction methods with more diverse
information [19]. However, given not only temporal but
also spatial data, EV charging demand forecasting models
are required to extract and capture the underlying patterns
and correlations properly.

• C.2 Data security: With practical considerations, the
model training process has to be optimized to prevent raw

TABLE I: The main abbreviations used in FMGCN

Notation Description
GCN Graph Convolution Network

GNN Graph Neural Network

ASTGCN
Attention-based Spatio-temporal Graph

Convolution Network

STA Spatio-temporal Attention

SC Spatial Convolution

TC Temporal Convoltuion

LD Linear Decoder

GCNSA
Graph Convolution Network Model with

Spatio-temporal Attention

FOMAML First-order Model-agnostic Meta-learning

FedAvg Federated Averaging

FMGCN
Federated Meta Learning-based Graph

Convolutional Network

data leakage, when exchanging important information
(e.g., charging records) through IoT protocols.

• C.3 Knowledge sharing and adaptation: The utilization
patterns of EV charging spaces in different regions and
cities may vary from each other. Therefore, the distributed
and collaborative training step becomes crucial to enable
efficient knowledge learning with non-IID data, so that
the model can be easily adapted to downstream tasks.

B. Existing Solutions

In recent years, the growing number of EVs has sparked a
research surge in charging demand forecasting. Initially, the
main focus of most early methods remained on the intrinsic
patterns hidden in historical time series [20]. E.g., [21] applied
Support Vector Regression (SVR) to model statistical features
underlying the power load on EV charging stations, while
[22] combined Fuzzy Clustering, Least Squares Support Vector
Machine, and Wolf Pack Algorithm for further improvement in
predictive accuracy. Although these statistical and traditional
machine learning models can be computationally efficient and
easy to interpret, there is still a limitation in expressing high-
dimensional and non-linear features.

More recently, with the booming successes of deep learning
techniques, several studies have proposed to leverage RNNs
to extract complex temporal features. Examples include Long
Short-Term Memory (LSTM) [23] and Grated Recurrent Unit
(GRU) [24], which have contributed to a remarkable improve-
ment of feature learning ability in various forecasting tasks,
including charging load prediction. Nevertheless, the neglect
of spatial correlations limits the further development of these
methods.

To fill the gap, some pioneering work has attempted to
employ GNNs, such as GCNs [25]–[27], which can incor-
porate features hidden in vertexes and edges of a graph
structure to model the dependencies of data in the spatial
dimension. Specifically, the integration of GNNs and RNNs
has gained significant popularity in the field of spatio-temporal
forecasting scenarios, such as traffic flow, traffic speed, and
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parking availability predictions [28]–[30]. Without exception,
it is also used to forecast EV charging demands, e.g., SGCN
[31] combines GRU and GCN to model temporal and spatial
features of the operating status at EV charging stations, respec-
tively, to better assist the prediction. Furthermore, motivated
by model structure optimization, a few studies on traffic flow
prediction, such as ASTGCN [17], have facilitated a more
flexible and implicit allocation of weights through the use of
an advanced technique known as the attention mechanism [32].
Despite these benefits, the potential challenges in data security
and training efficiency are overlooked.

Taking into account frequent data exchange, the training
process of the spatio-temporal models is required to be not
only efficient but also secure in real-world scenarios, where
EV drivers are reluctant to disclose their records and city
administrators are restricted in data sharing. Various Federated
Learning (FL) methods, e.g., FedAvg [33], FedProx [34],
FedALA [35], and so on [36]–[39], have been proposed to
address the training limitations that arise from data islands
and data security concerns. The key idea of these methods is
to engage in local data training on each edge device and then
upload the updated local models to a central server for global
model aggregation. Among these, FedAvg [33] is one of the
most widely-used frameworks, due to its simple but effective
structure. However, these FL methods still struggle with the
problem of non-IID data. In other words, heterogeneous data
from different regions and cities have different characteristics
that could affect the distributed training process.

For the purpose of facilitating knowledge sharing as well as
personalised adaptation, a novel technique known as model-
agnostic meta-learning (MAML) [40] starts to be incorporated
with the FL frameworks. Unlike previous federated learning,
the federated meta-learning framework focuses on training a
meta-model with well-optimized initial parameters to enable
rapid local adaptation. Given that, the meta-model can adapt
to diverse domains and tasks to achieve exceptional predictive
performance and high generalisability. However, limited stud-
ies have exploited such a framework in the application of EV
charging demand forecasting.

As summarized in Table II, which evaluates the reviewed
solutions based on their abilities to address the three emerging
challenges, the integration of GNNs and RNNs (i.e., STGCN,
and ASTGCN) can outperform the typical deep learning
models (i.e., SVM, GRU, and LSTM) in spatio-temporal
feature modeling. However, the training process in the data-
isolated and data-heterogeneous scenarios still remains under-
explored for regional EV charging demand forecasting. To
tackle the emerging challenges and fill the research gap, this
paper proposes a novel approach, named FMGCN, which
integrates and enhances ASTGCN, FedAvg, and MAML to
more efficiently and effectively support regional EV charging
demand forecasting.

III. PRELIMINARY

For consistency, this paper uses lowercase letters (e.g., x)
to represent scalars, bold lowercase letters (e.g., x) to denote
column vectors, bold-face uppercase letters (e.g., X) to denote

TABLE II: The summary of literature review
( Supported; # Not Supported)

Model CDF1 GCN1 FL1 PA1

SVM [20]–[22]  # # #
LSTM [23]  # # #
GRU [24]  # # #

ChebNet [26] #  # #
STGCN [27] #  # #

ASTGCN [17] #  # #
FedAvg [33] # #  #
FedProx [34] # #   
FedAMP [36] # #   
FedRep [37] # #   
FedALA [35] # #   
MAML [40] # # #  

FMGCN (Ours)     
1 CDF, GCN, FL and PA represent charging demand forecasting, graph

convolution networks, federated learning and personalised adaptation,
respectively.

matrices or high-order tensors and uppercase calligraphic
letters (e.g., X ) to denote sets. Besides, R is used to represent
the data space, e.g., X ∈ RM×N means the matrix X has two
dimensions of M and N , while Xmn represents an element of
mth row and nth column of X . Moreover, the transposition
of X is denoted as XT.

On this basis, the notations and preliminaries are defined in
the order of graph structure, data silos and heterogeneity, and
objective formulation.

First, in a city, the studied areas can be structured as a graph
G = (V, E), where V and E represent the sets of nodes (e.g.,
districts or regions) and edges (i.e., neighboring relationships
between two nodes). Given N nodes in the set V , the adjacency
matrix of the city can be defined as A ∈ RN×N , where Aij ̸=
0 if and only if there exists an edge between nodes Vi and
Vj in G. Besides, the edges in the set E are binary scales,
determined by whether the two urban regions are adjacent (1)
or not (0). By introducing other related factors (e.g., weather
and socio-economic conditions) to enhance the forecasting of
EV charging demands, the dataset can be denoted as D =
X,y, where X ∈ RN×F×T means the input data of N nodes,
F features (including the demand), and T time intervals, while
y ∈ RN are the near-future EV charging demands of the N
nodes in the studied city.

Second, when extracting data and knowledge from other
cities, in which related data are distributed differently, the
problem of data isolation and heterogeneity needs to be
considered and defined. Assume that there are M cities as
federated clients, the dataset and graph of city m can be
denoted by Dm and Gm, and the same will go for all the
variables of this city. Note that, the data of these cities are non-
IID, and the graphs are different (i.e., Va ̸= Vb and Ea ̸= Eb
for a ̸= b). Since data is isolated, the raw data of federated

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3369655

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Harbin Institute of Technology. Downloaded on March 15,2024 at 03:19:56 UTC from IEEE Xplore.  Restrictions apply. 



IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, XXX 2024 4
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Fig. 1: The overall architecture of the proposed mechanism FMGCN. (A) Spatio-temporal Learning module used to construct
the backbone GCN model with temporal and spatial attentions to extract forecasting features from multiple information sources;
and (B) Distributed Pretraining module used to train the meta-model through the collaboration between the server and source
stations under the IoT scenario that data are isolated and heterogeneous.

clients can only be processed locally, while generated model
parameters or gradients can be exchanged between the central
server and the local clients.

Finally, in contrast to the objective function in
the setting of traditional deep learning formulated as
minL(ym,F(Dm,Gm)), where only local data is used, the
objective function of our task in the setting of federated graph
learning to minimize error in predicting the EV charging
demand for all collaborated cities can be formulated as:

min

M∑
m=1

L(ym,F(Dm,Gm,F′(D,G))) (1)

where F and F′ represent the personalised and pretrained
forecasting models, respectively; L denotes the loss function.
To be specific, in such a setting, it is permitted to leverage
all data and graphs in a privacy-preserving and collaborative
manner to conduct a pretraining step for a globally shareable
meta-model and finetune it for a personalised model, so as to
achieve higher local forecasting performance. Note that, the
process is required to be performed according to the workflow
of FL under the constraints of local data protection, i.e., no
raw data exchange.

IV. METHODOLOGY

As shown in Figure 1, the proposed approach consists of
two modules, i.e., 1) a Spatio-temporal Learning module,
which utilises both temporal and spatial attention to capture
the spatio-temporal dependencies underlying EV charging
demands and other factors (e.g., weather and socio-economic
information); and 2) a Distributed Pretraining module, which
empowers the model with high generalisability and fast
convergence speed by incorporating Federated Learning and
Meta-learning. In the following sections, the two modules will
be described.

A. Spatio-temporal Learning Module

Considering the fluctuations in real-world demand for EV
charging, the backbone model is designed as illustrated in
Figure 2. In general, it consists of four components, namely
spatio-temporal attention, spatial convolution, temporal con-
volution, and linear decoder. Specificially, spatio-temporal
attention is responsible for calculating and enhancing the
correlation of charging demand in spatio-temporal dimensions,
followed by the spatial and temporal convolutions to extract
the charging features across both dimensions, and the final
prediction is produced by the linear decoder.

Moreover, it is worth noting that the GCNSA integrates
the socio-economic data and weather data as model input
to assist the charging demand forecasting. On the one hand,
city charging demand is highly correlated with its social
economy, and the more prosperous the city, the greater the
charging demand for electric vehicles. On the other hand,
weather conditions will affect people’s desires to travel, and
in turn, influnce the urban charging demand. Therefore, socio-
economic data, weather data and the charging demand data are
embedded as model input to improve the forecasting accuracy
of the charging demand, and their impacts are analyzed in
Section V-B4. Note that all calculations are equal for each
city m, and thus for simplicity and readability, the subscript
m is omitted in this module.

1) Spatio-temporal Attention: First, an attention mecha-
nism [41] is used to adaptively capture the dynamic corre-
lations between nodes in the spatial dimension, which can be
calculated by (2),

S = Ws · σ
(
(XU1)U2(U3X)T +Bs

)
(2)

where S denotes the spatial attention matrix that is dynam-
ically computed according to the input X ∈ RN×F×T ;
Ws,Bs ∈ RN×N , U1 ∈ RT , U2 ∈ RF×T , and U3 ∈ RF

are learnable parameters; σ denotes the sigmoid activation
function. Then, a softmax function is utilised to guarantee that
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Fig. 2: The structure of the GCN model with spatio-temporal attention for regional charging demand prediction (GCNSA).

the attention weights of a node are summed up to one. To be
specific, for node Vi, its spatial attention coefficient for each
neighbor node Vj can be normalized by (3).

S′
ij = softmax(Sij) =

exp(Sij)∑N
n=1 exp(Sin)

(3)

Accordingly, the temporal attention matrix can be computed
with a similar method as described in Formula (4),

Γ = WΓ · σ
(
(XTV1)V2(V3X) +BΓ

)
(4)

where WΓ,VΓ ∈ RT×T , V1 ∈ RN , V2 ∈ RF×N and V3 ∈
RF are trainable parameters as well. The normalized temporal
attention score of time i to time j can be calculated by (5),

Γ′
ij = softmax(Γij) =

exp(Γij)∑T
t=1 exp(Γit)

(5)

Finally, we directly apply the normalized temporal attention
matrix Γ′ to the input X and get X′ ∈ RN×F×T to dynami-
cally adjust the input by merging relevant information, which
can be formulated as (6).

X′ = XΓ′ (6)

2) Spatial Convolution: In this study, the city connected by
urban areas can be considered a graph structure in nature, and
the features of each node can be regarded as the signals on
the graph. Hence, in order to make full use of the topological
relationships among urban areas, at each time slice, we adopt
graph convolutions based on spectral graph theory [42] to
directly process the signals, exploiting signal correlations on
EV charging distribution in the spatial dimension.

First of all, differently from ASTGCN [17], we introduce
the distance between neighboring nodes to augment the ad-
jacency matrix, i.e., Aij is set to the shortest path distance
between nodes Vi and Vj . Given that, the Laplacian form
of the adjacency matrix A ∈ RN×N is calculated by (7),
where L ∈ RN×N , D ∈ RN×N , and IN ∈ RN×N denote the
Laplacian, degree, and unit matrices, respectively.

L = D−A

= IN −D− 1
2AD− 1

2

(7)

Thereafter, due to the orthogonality, symmetry, and non-
negative eigenvalues of the Laplacian matrix, we can decom-
pose the Laplacian matrix as reported in (8), where U is
Fourier basis and Λ is a diagonal matrix of eigenvalues:

L = UΛUT . (8)

Based on this, the signal of the f -th channel at time t on
the graph G, denoted by x̂ = X′

tf ∈ RN , can be filtered by a
kernel gθ, which can be formulated as (9), where ∗G denotes
the graph convolution operation.

gθ ∗G x̂ = U((UTgθ)(U
TX′))

= U(gθ(Λ)(U
TX′))

= Ugθ(Λ)U
TX′

(9)

However, it is computationally expensive to directly per-
form the eigenvalue decomposition on the Laplacian matrix
when the size of the graph is large. Therefore, Chebyshev
polynomials are adopted in this paper to solve this problem
approximately but efficiently, according to [43], which can be
written as (10),

gθ ∗G x̂ =

K−1∑
k=0

θkCk(L̃)x̂ (10)

where θ ∈ RK is a vector of polynomial coefficients, while
K is the order of graph propagation; L̃ = 2

λmax
L − IN ,

λmax is the maximum eigenvalue of the Laplacian matrix; and
Ck(x) = 2xCk−1(x)−Ck−2(x) is the recursive definition of
the Chebyshev polynomial, given C0 = 0 and C1(x) = x.
Using approximate expansion of Chebyshev polynomial to
solve this formulation corresponds to extracting information
of the surrounding 0 to (K − 1)-order neighbors centered on
each node in the graph.

To account for spatial dependencies between nodes, for
each term of Chebyshev polynomial, Ck(L̂) is accompanied
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with the normalized spatial attention matrix S′ ∈ RN×N .
Thus, the graph convolution in (10) changes to Formula (11),
where ⊙ denotes the Hadamard product. This definition can
be generalised to the graph signal with multiple data channels
(i.e., features).

gθ ∗G x̂ =

K−1∑
k=0

θkCk(L̃⊙ S′)x̂ (11)

3) Temporal Convolution: After the graph convolution op-
erations that have captured spatial correlations for each node
on the graph, a standard convolution layer in the temporal
dimension is further stacked to update the signal of a node by
merging the knowledge at consecutive time slices, which can
be formulated as (12).

X′′ = ReLU(Φ ∗ (ReLU(gθ ∗G X′))) (12)

where X′′ ∈ RN×T ′×F ′
is the output of the temporal convo-

lution layer; T ′ and F ′ are the changed dimension number of
time slices and channels determined by the size of convolution
kernels; ∗ denotes a standard convolution operation, while Φ
is the parameter of the temporal dimension convolution kernel;
and the action function is ReLU.

4) Linear Decoder: Finally, after the stacked attention and
convolution layers, a decoder layer based on Fully Connected
Neural Network is performed to obtain final prediction, which
is calculated in (13), where WΥ is the learnable parameters.

y = WΥ ⊙X′′ (13)

To sum up, as shown in Figure 2, a GCN model with
spatial-temporal attention is designed as the backbone model
to extract the complex patterns of different urban areas that
vary across space and time, so as to achieve accurate prediction
of EV charging demand.

B. Distributed Pretraining module

Although the recent surge in increasing model size has
contributed to remarkable improvement in accuracy, deep
learning methods require tremendous data for training, which
poses new challenges for data security and learning efficiency
[44]. In the case of EV charging demand forecasting, as data
from different regions and cities are sensitive and non-IID, not
only data exchange should be secured to prevent data leakage
but also negative transfer needs to be mitigated to facilitate
knowledge sharing [45]. To tackle these issues, building upon
the designed Spatio-temporal Learning module, a collaborative
training mechanism is developed by incorporating Federated
Learning [33] and Meta-Learning [40].

Assume that there are M clients, this module works with
the following four steps, namely Model Alignment, Local
Meta-training, Global Model Updating and Model Personal-
isation. Specifically, model alignment is initially conducted
to ensure consistency in model structures across different
cities. Subsequently, local meta-training is designed to perform
meta-learning locally instead of centralised training at the
server so that the raw data can be better safeguarded without
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padding. Assume that the predetermined node number P = 7,
thus the charging demand data and the adjacency matrix need
to zero padding until meeting the requirements of P nodes.

transmitting. After that, different from conventional centralised
training methods, global model updating is devised to aggre-
gate individual meta-models from varied cities at the server to
generate the global meta-model. Finally, after sufficient rounds
of federated meta-training, model personalisation ends up
with training and deploying a personalised model for specific
forecasting tasks.

1) Model Alignment: The graphs are heterogeneous across
cities due to the varying number of nodes. This poses chal-
lenges for model aggregation in distributed learning. To enable
knowledge sharing, the model of each client is first aligned by
graph padding. To be specific, as shown in Figure 3, we zero-
pad the graph (e.g., its adjacency matrix) of each client to a
predetermined number of nodes P to maintain consistency in
the model input dimension.

2) Local Meta-training: Under the distributed training
framework of Federated Learning, a simple but effective
meta-learning method, i.e., First-order Model-agnostic Meta-
learning (FOMAML) [40], is used as a means to enhance the
model generalisation capability. Before executing the meta-
training, the training set of each city will be divided into
support set Ds

m and query set Dq
m for local knowledge extrac-

tion and global gradient aggregation. In general, the support
set Ds

m is responsible for learning the overall optimization
directions across all tasks, while the query set Dq

m focuses
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on learning personalised optimization directions specific to
individual tasks. In this study, the support set Ds

m and query
set Dq

m account for 80% and 20% of the training dataset Dm,
respectively.

First, in each epoch, we update the prediction model locally.
The calculation can be described in (14):

θm = θ − α∇θL(θ,Ds
m) . (14)

where θm is the local model of client m trained based on the
global model θ and support set Ds

m; L is the loss function;
∇θ denotes the derivative based on θ; and α is the learning
rate of local meta-training.

Given all clients, we then collect their local gradients,
instead of model parameters, from the query set Dq

m. The
process can be written as (15):

δm = ∇θmL(θm, Dq
m) . (15)

where δm is the gradient obtained from client m, and ∇θm

denotes the derivative based on θm.
3) Global Model Updating: Since there are differences in

the amount of data used by each model during the local meta-
training process, we assign weights for model aggregation
based on the amount of training data used by the clients.
Specifically, the more the training data, the higher the weight
used for model aggregation. Formally, the weight can be
calculated according to (16):

ωm =
ζm∑M
l=1 ζl

. (16)

where ζm and ωm represent the data size and assigned weight
of client m, respectively.

After the weight calculation, the central server starts the
global model updating by aggregating collected local gradi-
ents, which can be formulated as (17):

θ′ = θ − β

M

M∑
m=1

ωmδm . (17)

where θ′ is the updated global model, and β is the learning
rate of global updating.

4) Model Personalisation: In this step, the server distributes
a well-trained global meta-model ϕ (which is θ′ after the
above-described learning process) and the signal of person-
alised training to each client. Given the rich knowledge en-
coded in the global meta-model, when encountering unfamiliar
tasks and their associated datasets Dp, local clients can train
a personalised model rapidly according to (18):

ϕp = ϕ− γ∇ϕL(ϕ,Dp) . (18)

where ϕp is the personalised model of client p, and γ is the
learning rate of personalised training.

C. Algorithms of the proposed approach

For the sake of clarity, the proposed approach FMGCN
can be depicted with two pseudocodes for server and clients,
respectively, as illustrated in Algorithm 1 and 2.

Algorithm 1 The pseudocode for server in FMGCN
FL Training Mode

1: Send the predefined graph node number to clients
2: for m=1,2,. . . ,M do
3: Transfer θ to clients
4: Receive θm and ζm from clients
5: Calculate ωm according to (16)
6: Update the global model θ according to (17)
7: if Stop condition is reached then
8: Switch to personalisation mode
9: end if

10: Send control signal of continuous learning and updated
global model θ′ to all clients

11: end for

Personalised Mode
1: Deliver the control signal of personalisation to all clients
2: Deliver the global meta-model ϕ to all clients

Algorithm 2 The pseudocode for clients in FMGCN
FL Training Mode

1: Conduct model alignment and data alignment based on
the predefined graph node number

2: while True do
3: Receive control signal
4: if The control signal of personalisation is reached then
5: Break
6: end if
7: Receive global model of last training epoch θ
8: Sample training data of ζm size in local data
9: Update the model θm according to (14) and (15)

10: Upload θm, and ζm to the server
11: end while
12: Switch to personalisation mode

Personalised Mode
1: Receive the global meta-model ϕ
2: Initialize the local model as ϕ
3: Update the personalised model ϕj as (18)
4: Apply model ϕj to real forecasting

To sum up, a novel approach for EV charging demand
forecasting, called FMGCN is proposed with two dedicated
modules. On the one hand, a GCN model for regional EV
charging demand prediction is designed to capture the under-
lying patterns that vary across time and space. On the other
hand, a collaborative training procedure based on Federated
Meta-Learning is implemented to tackle the challenges of
data isolation and data heterogeneity. By integrating these two
modules, the barriers can be broken down to train a shareable
global meta-model in a private-preserving manner, and thus
the personalised model for each city can be rapidly built by
finetuning the meta-model to make more accurate predictions.
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TABLE III: The overall descriptions of evaluation data

City Node Edge Station Pile GDP (Billion Yuan) Population (Million)

Guangzhou 11 21 770 6,152 2,823.20 20.95
Shenzhen 10 16 1,220 14,241 3,059.39 18.95

Foshan 5 6 278 2,048 1,215.65 10.72
Dongguan 32 73 266 2,019 1,120.03 10.44

Zhuhai 3 3 78 432 388.18 2.63
Zhongshan 20 43 61 354 289.05 3.96

Total 81 162 2,673 25,246 8,895.50 67.65
1 Evaluation data range from December 11th, 2022 to January 14th, 2023, with a 30-minute interval.

V. PERFORMANCE EVALUATION

In this section, the proposed method is tested together
with other state-of-the-art forecasting methods under the same
evaluation settings. Moreover, the results are analysed to
demonstrate the improvements achieved by FMGCN.

A. Evaluation Preparation

1) Data Description: For evaluation purposes, a common
dataset is created based on the EV charging demand, geo-
graphic information, socio-economic indicators, and weather
conditions in six cities of the Great Bay Area (GBA), China,
namely Guangzhou, Shenzhen, Foshan, Dongguan, Zhuhai,
and Zhongshan. Besides, the studied period is from December
11, 2022, to January 14, 2023. The overall description of the
dataset is summarised in Table III. In general, the dataset
contains four types of information:

• Charging Demand: The data is organised by the EV
charging records of 25,246 piles located in the studied
cities. To be specific, the records are aggregated into
charging demand with a minimum interval of 30 minutes.

• Geographic Information: The studied regions in each city
are defined according to the boundaries of its subordinate
administrative districts, in which the region center is
calculated by applying a clustering method (k-Nearest
Neighbor, KNN) on the distribution of charging station
and the edge between neighboring centers is connected
based on the shortest path. Accordingly, the region cen-
ters and the shortest paths are set as the nodes V and
edges E in the graph G (which may vary among cities).

• Socio-economic Indicators: They consist of the popula-
tion of each sub-region and the gross domestic product
(GDP) of each city, which are the best factors reflecting
the prosperity of a region. These two indicators are
collected from the 2022 government statistical reports.

• Weather Condition: It is represented by the maximum and
minimum temperatures in each region.

For evaluation purposes, the dataset is divided into a training
set (from 11 December 2022 to 7 January 2023, 28 days) and
a test set (from 8 to 14 January 2023, 7 days). Furthermore,
according to the setting of meta-learning, the training set
is further subdivided into support set and query set, which
occupy 80% and 20% of the data, respectively. Note that the
dataset used in this paper can be accessed at the link 1.

1https://github.com/chenqy87/FMGCN/tree/main/FMGCN data

2) Metrics: Four metrics are adopted to compare the pre-
diction performance, i.e., Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), Mean Absolute Percentage Error
(MAPE) and Coefficient of Determination (R2), which are
defined in Formula (19):

MAE =

N∑
i=1

|y
′

i − yi|

RMSE =

√√√√ 1

n

N∑
i=1

(y
′
i − yi)2

MAPE =
100%

n

N∑
i=1

∣∣∣∣∣y
′

i − yi
yi

∣∣∣∣∣
R2 = 1−

∑N
i=1(y

′

i − yi)
2∑N

i=1(ȳi − yi)2

(19)

where y
′

i and yi denote the predicted value and the real value
of the demand, respectively. Note that the value domains of
MAE, RMSE, MAPE, and R2 are [0,+∞), [0,+∞), [0,+∞)
and (−∞, 1], respectively. In addition, to reduce the random
error, each prediction task will run ten times separately, and
the averaged value will be used as the final result.

3) Compared Models: The proposed method FMGCN is
compared with four neural networks (NNs), two statistical
models, and one machine learning model, namely:

• HA: Historical Average method. Here, we use the average
value of the last 12 time slices to predict the next value;

• ARIMA [46]: Auto-Regressive Integrated Moving Av-
erage is a well-known time series analysis method for
predicting future values;

• SVR [47]: Support Vector Regression is a traditional
machine learning method for regression tasks, which is
derived from Support Vector Machine (SVM);

• GRU [48]: Gate Recurrent Unit is an effective recurrent
neural network (RNN) simplified from Long Short-term
Memory (LSTM);

• ChebNet [49]: It is an early graph convolution network
(GCN), applying Chebyshev Polynomial as the convolu-
tion kernel;

• STGCN [50]: It is a recently developed Graph Neu-
ral Network (GNN), considering the impacts of spatio-
temporal characteristics;

• GCNSA [51]: It is the backbone model implemented in
FMGCN.
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Furthermore, the collaborative training procedure implemented
in FMGCN is compared with other ten representative training
strategies, namely:

• Separate: A simple training strategy, which is to train
the model local data only;

• FedAvg [33]: A typical decentralized training strategy
that aggregates and averages local model parameters or
gradients for global model updating;

• FedProx [34]: A special federated learning (FL) frame-
work improved based on FedAvg, which resolves data
heterogeneity by adding proximal terms;

• pFedMe [52]: A popular FL method that aims at person-
alising model for each client;

• FedAMP [36]: An FL method addressing data hetero-
geneity by maintaining a personalised model for each
client at the server;

• FedDyn [53]: A dynamic FL method assisting the model
to converge to the global optimum in an efficient path;

• FedRep [37]: An FL mechanism boosting the model’s
generalisability by learning shared representation;

• FedFomo [54]: An FL method that adapts local models
based on different contributions of participated clients to
the target tasks;

• FedALA [35]: An FL framework that personalises the
local model by aggregating the old local model and the
global model.

Since the training mechanisms for deep learning models and
statistical models are quite different, the evaluation is done
in different ways. Specifically, for deep learning models (i.e.
GCNSA, STGCN, ChebNet and GRU), each city client is first
trained on its own training set, then personalised on the support
set of the test set, and finally tested on the query set of the
test dataset. However, for statistical methods such as SVR,
ARIMA, and HA, the model will be tested directly on the
query set of the test dataset without the need to train on the
training set.

Finally, several important hyper-parameters and experimen-
tal configurations of the compared models are listed in Table
IV. Note that to make a fair comparison, the training task is to
forecast the future 30-minute charging demand at the county
level by using the past 6-hour charging demand (i.e., charging
demand of the past 12 time slices) as the input.

4) Running Environment: The evaluation is carried out on
a Windows workstation equipped with two NVIDIA GeForce
RTX 3090 GPUs, an Intel Gold 5218R Two-Core Processor
CPU, and 512G RAM.

B. Evaluation Results
The performance of evaluated methods is analysed in three

aspects, namely 1) the forecasting error to illustrate how well
the model is to predict the future; 2) the convergence speed
to demonstrate how fast the model is to stabilise, and 3)
the model generalisability to show how agile the model is
to handle contexts with different cities. Moreover, we also
discuss the impact of layer number of graph propagation and
the introduced factors on the prediction performance. It is
worth noting that the bold numbers in the table represent the
best performances among all the baseline models.

TABLE IV: The hyperparameter setups of baselines

Model Notation Parameter Value

DL1

M Rounds of global training 1000
- Rounds of localization 1
α Learning rate of SGD 0.001
L Loss function L1 Loss
T Input time slice 12
- Batch size 16
- Optimizer Adam

GCN2 N Nodes of alignment 32
- CNN filter size 64

SVR K Kernel RBF
ϵ Epsilon 0.001

ARIMA
p Number of time lags 12
d Degree of differencing 1
q Order of model 12

FMGCN β Learning rate of FOMAML update 0.001

FedALA η Learning rate of ALA update 0.001

PS3 λ Coefficient of regularization 1.0
- Loss function of regularization L2 Loss

1 DL denotes deep learning models, including GCNSA, STGCN, ChebNet
and GRU.

2 GCN represents the graph convolution networks, i.e., GCNSA, STGCN
and ChebNet.

3 PS stands for the personalisation strategy of FL methods requiring
regularization, namely FedDyn, FedAMP, pFedMe, and FedProx.

1) Forecasting Error: As shown in Table V and Table VI
respectively, the assessment of forecasting error is divided into
the comparison of varied backbone models and the comparison
of different FL frameworks based on the proposed GCNSA
model. According to Table V, the proposed method, i.e.,
FMGCN implementing GCNSA, outperforms other methods
in all four metrics with fewer forecasting errors. Specifically,
on average, it achieves significant improvements of 16.33% in
MAE, 5.48% in RMSE, and 24.17% in MAPE, respectively.
Moreover, FMGCN reaches the best fit with less than 10%
residuals in R2. These results illustrate that the regional EV
charging demand forecasting model equipped with spatio-
temporal attention (i.e., GCNSA) and the model pretraining
step designed with Federated Meta-learning can work jointly
and smoothly to achieve state-of-the-art performance.

Moreover, the results also show that the models with graph
learning ability (i.e., ChebNet, STGCN, and GCNSA) can
reduce predictive error significantly, compared to the non-
graph ones (i.e., HA, ARIMA, SVR, and GRU), demonstrating
the superiority of deploying graph neural networks for spatio-
temporal EV charging demand forecasting. Especially, non-
GCN models (i.e., HA, ARIMA, SVR, and GRU), exhibit bad
performances on R2 (< −1.00), indicating that the models
without adopting GCN are incapable of fitting the correla-
tion between predicted values and data features accurately.
It is worth noting that, when the same backbone model is
used, i.e., GCNSA, the model with FL (i.e., GCNSA with
FMGCN or FedAvg) can outperform the one without, with
an improvement of 36.59%, 36.23%, 47.76% and 44.44% in
MAE, RMSE, MAPE and R2, respectively. This demonstrates
that federated learning is an effective way to improve model
performance by exchanging knowledge among cities.
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TABLE V: The performance comparison between different backbone models

Models MAE RMSE MAPE (%) R2 Graph-based FL-based

GCNSA (FMGCN) 0.26 0.44 15.95 0.91 ✓ ✓

GCNSA (FedAvg) 0.44 0.80 21.17 0.73 ✓ ✓

GCNSA (Separate) 0.41 0.69 30.53 0.63 ✓

STGCN 0.49 0.73 40.26 0.54 ✓

ChebNet 0.84 1.02 76.26 -0.12 ✓

GRU 1.11 1.17 99.97 -1.13

SVR 0.53 0.87 160.24 -1.15

ARIMA 0.56 0.94 163.52 -1.09

HA 0.99 1.17 213.98 -1.81
1 Numbers in bold and numbers with underline are the best and second-best performances, respectively.

TABLE VI: The performance comparison between different training strategies on GCNSA

Strategy
MAE RMSE

GZ SZ DG FS ZS ZH Average GZ SZ DG FS ZS ZH Average

FMGCN 0.51 0.60 0.16 0.47 0.08 0.13 0.26 1.15 0.94 0.20 0.77 0.13 0.28 0.44
FedAvg 1.00 1.01 0.21 0.90 0.12 0.24 0.44 2.39 2.39 0.20 1.35 0.11 0.34 0.80
FedDyn 0.69 0.62 0.39 0.51 0.37 0.41 0.46 1.13 1.02 0.71 0.87 0.69 0.74 0.81
FedAMP 0.91 2.04 0.18 0.66 0.13 0.27 0.52 1.62 1.43 0.70 1.28 0.63 0.79 0.93
FedALA 0.87 0.89 0.45 0.65 0.39 0.43 0.57 1.38 1.45 0.91 1.28 0.80 0.87 1.03
FedProx 1.62 1.50 0.87 1.40 0.85 0.91 1.08 3.39 3.39 1.21 2.35 1.11 1.34 1.81
pFedMe 1.65 1.45 0.95 1.37 0.90 1.02 1.12 3.21 3.45 1.36 1.98 1.25 1.45 1.87

FedFOMO 1.47 1.42 1.19 1.33 1.17 1.21 1.27 2.89 2.66 1.84 2.38 1.75 1.87 2.09
FedRep 2.69 2.61 1.02 1.93 0.94 1.10 1.47 2.91 2.71 2.36 2.56 2.31 2.35 2.48
Separate 1.07 0.85 0.18 0.68 0.13 0.33 0.41 1.38 2.39 0.24 1.09 0.23 0.39 0.69

Strategy
MAPE R2

GZ SZ DG FS ZS ZH Average GZ SZ DG FS ZS ZH Average

FMGCN 8.26 5.22 16.20 12.84 24.66 13.51 15.95 0.90 0.96 0.90 0.91 0.89 0.92 0.91
FedAvg 8.18 4.04 21.67 29.58 31.17 15.05 21.27 0.73 0.81 0.70 0.68 0.74 0.65 0.73
FedDyn 11.66 8.18 21.77 21.42 29.15 19.99 22.00 0.71 0.65 0.73 0.75 0.69 0.74 0.72
FedAMP 11.83 8.22 19.03 20.04 31.41 19.92 20.51 0.72 0.76 0.62 0.64 0.66 0.70 0.68
FedALA 8.08 4.15 19.88 17.64 33.84 14.59 20.71 0.69 0.68 0.62 0.68 0.66 0.70 0.66
FedProx 11.68 11.93 49.82 80.07 80.51 44.33 57.08 -0.11 -0.07 -0.05 0.01 -0.11 0.03 -0.07
pFedMe 13.62 9.75 41.17 75.08 89.94 34.56 50.04 -0.22 -0.23 -0.12 -0.06 -0.04 -0.07 -0.12

FedFOMO 24.83 25.08 72.97 89.77 94.66 57.48 77.34 -0.18 -0.59 -0.42 -0.14 -0.94 -0.34 -0.52
FedRep 69.18 65.05 101.87 126.24 134.01 82.35 103.36 -1.07 -0.97 -1.03 -1.00 -1.11 -1.00 -1.05
Separate 20.77 17.36 29.16 26.80 42.51 24.12 30.53 0.61 0.70 0.66 0.67 0.47 0.68 0.63

1 GZ, SZ, DG, FS, ZS, ZH denote Guangzhou, Shenzhen, Dongguan, Foshan, Zhongshan, Zhuhai, respectively.
2 Numbers in bold and numbers with underline are the best and second-best performances, respectively.

Finally, as shown in Table VI, FMGCN exhibits superior
performance compared to other representative and SOTA train-
ing strategies. To be specific, the proposed training strategy can
help the backbone model GCNSA to decrease MAE, RMSE
and MAPE by 36.59%, 36.23% and 22.23%, respectively, and
increase R2 by 24.66%. This result convincingly demonstrates
the merits of FMGCN in facilitating the training of graph
convolutional models that can be effectively adapted to a
variety of personalised prediction tasks, where the data of each
client is isolated and heterogeneous. In addition, to directly
visualize the forecasting effects of GCNSA adopting different
FL training strategies, the forecasting curves of all the cities

are plotted, as shown in Figure 4, which demonstrates that the
proposed mechanism FMGCN can assist GCNSA to best fit
the ground truth.

2) Convergence Speed: To analyze the convergence speed
of different baseline models, we compare the training duration
of different models when converging to the target MAE,
RMSE, MAPE, and R2. Based on the second-best values in
MAE, RMSE, MAPE, and R2 and values in multiples of 5
can be better observed in the figure, we set the target values
of MAE, RMSE, MAPE, and R2 as 0.45, 0.80, 0.20, and 0.75,
respectively.

As shown in Figure 5, FMGCN has the fastest convergence
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(a) Guangzhou (b) Shenzhen (c) Dongguan

(d) Foshan (e) Zhongshan (f) Zhuhai

Fig. 4: The fitting curves of GCNSA adopting different FL training strategies in the case of (A) Guangzhou, (B) Shenzhen,
(C) Dongguan, (D) Foshan, (E) Zhongshan and (F) Zhuhai.

speed in all four cases. In particular, the MAE curve of
FMGCN can reach the target value of 0.45 at the 165th epoch,
cutting the number of training rounds by 64.59% compared to
the second-best (i.e., the 466th epoch in FedAvg). Similarly,
in the case of RMSE, FMGCN only requires 164 epochs
to converge to the target value of 0.80, reducing 78.39%
compared to the second-fastest FedAvg (759 epochs). Further,
FMGCN assists the GCNAS to reach the target MAPE at 743
epochs, decreasing at least 25.70% (even if none of the other
training strategies can reach the target value). Lastly, compared
to FedAvg which spends 978 epochs to reach the target value
0.75 in R2, FMGCN (196 epochs) can reach an improvement
in convergence speed by 79.96%. To sum up, FMGCN can
accelerate the convergence speed by 62.16% on average.

3) Model generalisability: To demonstrate the generalis-
ability of the model trained by FMGCN, we plot a heatmap
of prediction accuracy in R2, which is illustrated in Figure
6. We can see that, with the exception of a few districts in
Zhongshan, most of the regions have R2 higher than 0.85,
indicating that the FMGCN can maintain high accuracy for
different regions. Especially, in Shenzhen, the proposed ap-
proach achieves a remarkable result (> 0.90) for EV charging
demands in all the studied regions, which shows its ability to
be applied as a basis to support related services, e.g., smart
grid. These findings indicate that FMGCN can train a model
with high generalisability even if the charging patterns may
vary across time and space.

4) Impact analysis: The impact of the layer number of
graph propagation and other introduced factors as model

TABLE VII: Performance of FMGCN with different K values

K MAE RMSE MAPE (%) R2

1 0.26 0.44 15.95 0.91

2 0.35 0.62 17.58 0.83

3 0.43 0.77 19.31 0.76

4 0.44 0.79 20.24 0.75
1 Numbers in bold and numbers with underline are the best and

second-best performances, respectively.

inputs are analysed. First, as described in Section (IV-A2),
K can be recognized as the range of graph-based information
propagation in GNNs. As an important hyperparameter, we
deploy different values of K on the proposed model. As
shown in Table VII, FMGCN performs the best when K
equals 1. Moreover, with the K value growing, the forecasting
performance decreases. It shows that the spillover effect of EV
charging demand may be limited to neighboring regions.

Second, as for the amount of information included in the
input, Table VIII shows that 1) the improvement is pro-
portional to the amount of information contained, including
charging demand data (CDD), socio-economic data (SED),
and weather data (WA); 2) SED (i.e., population and GDP)
are more favourable to the model than WD (i.e., temperature)
for regional EV charging demand forecasting in short-term
(i.e., 30 min).

In summary, the proposed approach is superior in terms
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(a) MAE (Target Value: 0.40) (b) RMSE (Target Value: 0.80)

(c) MAPE (Target Value: 0.20) (d) R2 (Target Value: 0.75)

Fig. 5: The evaluation curves for different metrics: (A) MAE, (B) RMSE, (C) MAPE and (D) R2, and the red dashed lines
represent the convergence target value.
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Fig. 6: The R2 heatmap of charging demand forecasting for different regions. Blank area without numbers means that this
area is not used for prediction due to lack of data.
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TABLE VIII: The comparison between FMGCN adopting
different information as the input vector

Input Data MAE RMSE MAPE R2

Only CDD 0.39 0.71 22.20 0.74

CDD+WD 0.37 0.68 19.47 0.77

CDD+SED 0.26 0.44 17.19 0.88

All the Data 0.26 0.44 15.95 0.91
1 Numbers in bold and numbers with underline are the best and

second-best performances, respectively.
2 CDD, SED and WD represent charging demand data, socio-economic

data and weather data, respectively.

of prediction performance, convergence speed, and model
generalisability compared to other baselines. In particular,
first, FMGCN can outperform the second-best model with
an improvement of 36.59%, 36.23%, and 22.23% in MAE,
RMSE, and MAPE respectively. Second, FMGCN accelerates
the model training speed, resulting in an average reduction of
62.16% in epoch spending to reach the target value. Third, the
model can be well personalised for each studied city, showing
high model generalisability. Finally, the graph propagation
length K = 1 used in FMGCN is more suitable for regional
EV charging demand prediction, and the extra information
about population, GDP, and temperature is beneficial for the
forecasting task when it is used as model input.

VI. CONCLUSIONS

To promote environmentally friendly and low-carbon
lifestyles, regional EV charging demand predictions have been
investigated as a way to alleviate the problem of power scarcity
caused by spatial and temporal differences in urban charging
demand. However, spatio-temporal forecasting and distributed
training remain under-explored in the field. To fill the gap,
we propose a federated-meta-learning-based graph convolution
network for regional charging demand forecasting, called
FMGCN. It comprises two main modules, namely 1) Spatio-
temporal Learning module, which designs a dedicated GCN
model with spatio-temporal attention to discover the dynamic
characteristics among cities; and 2) Distributed Pretraining
module, which incorporates FedAvg and FOMAML to train
a global model with strong personalisation ability to address
issues of data isolation and heterogeneity.

Compared to other SOTA models, FMGCN can achieve no-
table improvements in MAE, RMSE, and MAPE by 36.59%,
36.23%, and 22.23%, respectively, and also a significant
enhancement in R2 by 24.66%. Second, the results reveal
that FMGCN can accelerate model convergence by approx-
imately 62.16%. Third, FMGCN can provide a model with
high generalisability to support personalisation for different
cities to better support forecasting tasks in their own contexts.
Finally, the impact analysis shows that most charging demands
propagate among neighboring regions (i.e., K = 1, one-hop
information propagation in GCN), and adding information
about population, GDP, and temperature into the model input
can be beneficial to further improve the prediction result.

In the future, first, multi-source data fusion will be fur-
ther explored to further enhance the forecasting capability
of the GCN model for EV charging demand. Moreover, an
asynchronous update strategy will be studied to resolve the
straggler issues caused by the lagging clients during the global
model training. Last but not least, an adaptive client selection
mechanism will be designed to enable the global model to
obtain more beneficial knowledge from high quality clients.
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