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A B S T R A C T

Assessing the solar photovoltaic (PV) potential on buildings is essential for environmental protection and
sustainable development. However, currently, the high costs of data acquisition and labor required to obtain
3D building models limit the scalability of such estimations extending to a large scale. To overcome the
limitations, this study proposes a method of using freely available multi-source Remote Sensing (RS) data
to estimate the solar PV potential on buildings at the city scale without any labeling. Firstly, Unsupervised
Domain Adaptation (UDA) is introduced to transfer the building extraction knowledge learned by Deep
Semantic Segmentation Networks (DSSN) from public datasets to available satellite images in a label-free
manner. In addition, the coarse-grained land cover product is utilized to provide prior knowledge for reducing
negative transfer. Secondly, the building heights are derived from the global open Digital Surface Model (DSM)
using morphological operations. The building information obtained from the above two aspects supports the
subsequent estimation. In the case study of Wuhan, China, the solar PV potential on all buildings throughout
the city is estimated without any data acquisition cost or human labeling cost through the proposed method. In
2021, the estimated solar irradiation received by buildings in Wuhan is 289737.58 GWh. Taking into account
the current technical conditions, the corresponding solar PV potential is 43460.64 GWh, which can meet the
electricity demands of residents. The code and test data for building information extraction are available at
https://github.com/WHU-USI3DV/3DBIE-SolarPV.
1. Introduction

For a long time in the past, the energy required for urban con-
struction and economic development heavily depended on fossil fuels,
resulting in problems of environmental pollution [1]. After the Paris
Agreement, which sets a target of reducing net anthropogenic green-
house gas emissions in the latter half of the 21st century [2], the
clean energy industry is booming, with solar photovoltaic (PV) industry
experiencing significant growth [3,4].

In China, as a response to the sustainable development and dual
carbon goals, the cumulative installed capacity has reached 250 GW
by the end of 2020 [5]. There is a concerted effort to not only con-
struct concentrated solar power stations but also to vigorously promote
distributed solar PV within urban areas, especially building-integrated
photovoltaics (BiPVs). This is mainly due to the fact that buildings are
ideal locations for the placement of solar PV modules [6], overcoming
the limitations of high land rent and unavailability [7,8]. Besides, build-
ings are the main source of city energy consumption. BiPV-generated
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electricity can be directly applied to buildings, reducing transmission
losses and contributing to net-zero energy buildings [9,10]. However,
due to factors such as location, shading, and energy demand, not every
building is appropriate for installing solar PV modules [11]. Thus, it
is indispensable to estimate the solar PV potential on buildings for
planning installations.

Some scholars directly use publicly available building data or statis-
tics to estimate [12–14]. Nevertheless, the data employed by these
methods are usually outdated and unavailable for most regions, which
limits their application [15]. Therefore, studies have focused on how
to obtain building information for solar PV potential estimation. Some
studies use Light Detection and Ranging (LiDAR) data or stereo photos
to obtain accurate 3D models [16,17]. These methods can describe the
precise 3D form of buildings and even the rooftop geometry [18]. But
such data are expensive to obtain, limiting their application on a city-
wide scale. In contrast, the Remote Sensing (RS) image is relatively
cost-effective, and it is widely used in building extraction for solar
vailable online 1 February 2024
306-2619/© 2024 Published by Elsevier Ltd.

https://doi.org/10.1016/j.apenergy.2024.122720
Received 25 May 2023; Received in revised form 25 November 2023; Accepted 21
 January 2024

https://www.elsevier.com/locate/apenergy
https://www.elsevier.com/locate/apenergy
https://github.com/WHU-USI3DV/3DBIE-SolarPV
mailto:bshyang@whu.edu.cn
https://doi.org/10.1016/j.apenergy.2024.122720
https://doi.org/10.1016/j.apenergy.2024.122720


Applied Energy 359 (2024) 122720Z. Chen et al.
potential estimation [19,20]. These methods usually obtain the building
footprints through deep learning but neglect detailed 3D information
such as height. Yan et al. [21] proposed a detail-oriented method for
constructing 3D building models from optical RS images. However,
deep learning, as a data-driven approach [22], requires lots of data
with labels, restricting its scalability. Zhong et al. [11] designed a
sampling strategy to reduce the required labels and estimated solar
PV potential using open Google Earth Satellite (GES) images. However,
this approach still requires manual labeling. The limitations of current
methods can be summarized as follows based on the above analysis: (1)
High-precision data is constrained by cost and challenging to promote.
(2) Low-cost data is limited in accuracy, making it difficult to obtain 3D
information. (3) Due to data heterogeneity, the generalization ability
of deep learning methods is relatively weak. In summary, due to the
limitations of data or labeling costs, it is still challenging to assess the
solar PV potential at the city scale from a 3D perspective.

To solve the problem, this study proposes a framework based on
multi-source RS data that are publicly available, extracting 3D building
information in a label-free manner to conduct a city-scale solar PV
potential estimation. This study’s primary contributions are listed as
follows:

(1) The 3D building information is obtained without any data or la-
bel costs. Specifically, building footprints are extracted through
Unsupervised Domain Adaptation (UDA) with a prior sample
selection strategy which aims to reduce negative transfer, and
the building heights are derived from the global open Digital
Surface Model (DSM) using morphological operations.

(2) An in-depth analysis of solar PV potential from multiple perspec-
tives is conducted based on the acquired 3D building informa-
tion. According to the estimated potential, this study considers
the perspectives of spatial and temporal distribution, rooftop and
facade distribution, and supply and demand balance, providing
a basis for planning and decision-making.

2. Related work

2.1. Solar energy potential estimation

Considerable effort has been dedicated to estimating the potential
of solar energy on different geographic scales. Several studies uti-
lized social factors for estimation. For instance, solar-applicable rooftop
area was estimated throughout Spain based on available data such as
building density, population, and land use [23]. The roof area was
calculated in the sample region and extrapolated using the roof area-
population relationships [12]. These methods are low-cost and can be
used for regional policy-making with agglomerate values, but the PV
potential is coarse and not well geo-referenced. In a complex urban
environment, it is necessary to conduct a more accurate estimation
to select suitable places for installing solar PV modules [24]. When
geospatial data is available, some researchers use it directly for esti-
mation. Li et al. [13] obtained the building footprints and the digital
contour file in the Geographic Information System (GIS) database, and
the solar irradiation was mathematically calculated in the pixel cell.
Hong et al. [24] acquired building data from government agencies
to assess the physical, geographical, and technological potential of
solar energy in the Gangnam district of Seoul using hillshade analysis.
With the combination of GIS and solar potential estimation models,
Assouline et al. [25] evaluated the potential of rooftop PV across the en-
tirety of Switzerland by employing the random forest algorithm. Zhang
et al. [26] employed ERA-interim meteorological reanalysis data from
the European Centre for Medium-Range Weather Forecasts (ECMWF)
to investigate the spatio-temporal distribution of solar energy in China.
However, detailed building information for large-scale estimation is
rare due to data limitations and rapid urbanization, and some studies
acquire building information from RS data for the estimation of solar
potential.
2

2.2. Building information acquisition

As LiDAR can capture 3D information of objects, many studies
used this data to accurately estimate the potential of solar PV. For
example, Kodysh et al. [27] estimated the solar PV potential of in-
dividual rooftops using an upward-looking hemispherical viewshed
algorithm [28] with DSM derived from LiDAR. Huang et al. [29]
developed a GPU-accelerated model named SHORTWAVE-C which in-
troduced the influence of clouds and estimated the potential using
airborne LiDAR. Suomalainen et al. [30] considered the orientation
and slope of roofs based on LiDAR to assess the potential on buildings
at the regional and urban levels. Liang and Yang [31] calculated the
solar potential on building roofs and facades by utilizing ubiquitous
point clouds obtained through Unmanned Aerial Vehicles (UAV) and
Terrestrial Laser Scanning (TLS). Mohajeri et al. [32] conducted the
Support Vector Machine (SVM) with hand-crafted features to classify
building roofs into six categories and explored the impact of each
category on solar energy potential. Vo et al. [18] utilized airborne
LiDAR, directly performing per-point processing based on distributed
computing to make full use of all the details provided by the point
clouds. Besides, some researchers conducted photogrammetry to obtain
building information for estimation. Chen et al. [17] generated DSM
from airborne stereo images [33], and developed a quadrant-based
segmentation approach to categorize different roof types to better
calculate solar energy utilization cost. Some studies discarded the 3D
information, directly estimating the solar PV potential from RS images.
Li et al. [34] designed a multi-task learning framework to obtain the
building footprint and the orientation of each segment of the roof from
the Very High Resolution (VHR) images for a more accurate estimation.
Notably, Yan et al. [21] suggested a method based on deep learning
that constructed 3D building models from VHR satellite images and
estimated the potential of solar PV on 3D urban surfaces. However,
it is difficult to extend the above methods to other regions due to
the limitations of labeled datasets. Thus, open-access data has been
explored. Li and Ratti [35] used Google Street View (GSV) panoramas
and the building height model to generate hemispherical images, which
were combined with the solar path to assess the spatio-temporal solar
irradiation distribution in street canyons. Cheng et al. [14] collected
building footprints and the corresponding number of floors from Open-
StreetMap (OSM) to form the LOD1 model, then discretized the model
into a point array and calculated the solar irradiation on the building
roof and facade based on points. OSM is a crowd-sourced database,
hence there are significant data gaps in many regions, including China,
which limited its application. Zhong et al. [11] designed an optimized
sampling strategy to produce a training set with less manual labeling
costs and utilized deep learning to extract building roofs from GES im-
ages. However, this method still requires labeling in the corresponding
area, and the trained model cannot be used directly in different regions
because of the heterogeneity of GES images. In addition, estimation
from 3D perspectives such as occlusion analysis is not possible as only
planar information is extracted. Therefore, 3D building information for
solar PV potential estimation is difficult to obtain at low human and
data costs, which motivates this study.

3. Study area and data collection

3.1. Study area

Wuhan, the capital of Hubei Province and the central city of middle
China, is selected as the study area (Fig. 1a). It has a subtropical
monsoon climate and significant seasonal variation in solar irradiation.
With a permanent population of 13.64 million and a total area of
8569.15 km2, Wuhan has a large energy consumption demand. Assess-
ing the solar PV potential on buildings within the city is a feasible
approach for distributed solar PV farming.

The city comprises 13 districts (Fig. 1b) with varying building styles,
making it an ideal sample for testing the effectiveness and scalability

of the method.
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Fig. 1. Study area. (a) The geographic location. (b) Administrative diagram.
3.2. Data collection

The data used comprises GES images, SpaceNet, GlobalLand30, and
AW3D30 DSM. Among them, SpaceNet serves as the source domain
for UDA, and the knowledge learned from this dataset for building
extraction is transferred to GES images. GlobalLand30 is used to pro-
vide prior knowledge of land cover to alleviate the domain shift caused
by differences in label distribution during the adversarial training.
AW3D30 DSM is utilized to provide elevation information to support
3D analysis.

3.2.1. Google earth satellite images
The RS images are collected from the Google Earth platform (https:

//earth.google.com/), which offers several advantages, including high
resolution and wide coverage, making it ideal for large-scale solar PV
potential estimation.

The GES images are available in various resolutions with red, green,
and blue bands, and cell values range from 0 to 255. In order to
extract the buildings accurately, high-resolution images (0.26 m) were
downloaded. To ensure the validity of the results, high-quality images
from the period between 2019 and 2021 were selected based on the
cloudiness and quality of images in each district.

3.2.2. SpaceNet dataset
To extract buildings without additional labeling, UDA semantic

segmentation provides a feasible way. This method utilizes a public
building dataset as the source domain to transfer knowledge to an
unseen target domain. SpaceNet dataset (https://spacenet.ai/datasets/)
offers a repository of freely available imagery, which contains about
67,000 km2 of VHR imagery, more than 11 million building footprints,
and about 20,000 km of road labels for research. Building detection
dataset [36] provides the need for use in this study, which includes
five Areas of Interest (AOI), namely Vegas, Rio, Shanghai, Khartoum,
and Paris. Since Shanghai and Wuhan have a similar architectural style
and spatial layout, it is appropriate to use SpaceNet-Shanghai as the
source domain dataset. The area of SpaceNet-Shanghai is 1000 km2

and contains 92,015 building footprint polygons, given in the GeoJSON
format. To facilitate the training of the UDA network, the labels in
GeoJSON format were converted into NumPy format.

3.2.3. GlobalLand30
GlobeLand30 is a global Land Use and Land Cover (LULC) product

developed by China with a 30-m spatial resolution [37]. In 2014, the
GlobeLand30 2000 and 2010 versions were released. The Ministry of
Natural Resources initiated the GlobeLand30 2020 in 2017, which is
complete now, and the latest version is utilized in this article. The
images employed for GlobeLand30 2020 are primarily 30-m multi-
spectral images, encompassing ETM+, TM5, OLI multispectral images
3

from Landsat, multispectral images from China Environmental Disaster
Mitigation Satellite (HJ-1), and 16-m resolution multispectral images
from Gaofen-1 (GF-1). GlobeLand30 2020 includes a total of 10 first-
level types, namely: artificial surface, cultivated land, grassland, forest
land, shrubland, water body, wetland, tundra, bare land, glaciers and
permanent snow cover. The data were collected from http://www.
globallandcover.com/. A tile covering the city of Wuhan was down-
loaded and cropped using the Wuhan outline vector, and finally, the
artificial surface category was used as a mask.

3.2.4. AW3D30 data
The ALOS World 3D-30 m (AW3D30) dataset is a global DSM with

30 m horizontal resolution (30 arcseconds), which is license-free [38].
It was interpolated from the high-resolution DSM generated by the
Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM),
carried on the Advanced Land Observing Satellite (ALOS). Previous
works have confirmed that the AW3D30 DSM has higher vertical
accuracy than both the Shuttle Radar Topography Mission (SRTM)
and the Global Digital Elevation Model (GDEM) [39,40], exhibiting
an RMSE of less than 5 m. These properties indicate that AW3D30
DSM is suitable for deriving city-scale building heights. This study
utilized the latest version 3.2, and the DSM data for Wuhan was
generated from the PRISM data collected in 2014. The data was down-
loaded from https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.
htm, and subsequently cropped using the outline vector of Wuhan.

4. Method

The overall framework for estimating building solar PV potential
consists of three parts, as shown in Fig. 2. First, with the help of
the public SpaceNet-Shanghai and Globalland30 2020, the building
footprints are extracted based on open-source GES images using UDA
semantic segmentation. Then, the nDSM of the city is derived by utiliz-
ing morphological operations on the AW3D30 DSM. After obtaining the
building footprints and heights, shadow occlusion can be considered to
assess the potential of solar PV on buildings from a 3D perspective for
subsequent analysis.

4.1. Cross-domain building footprint extraction

The Deep Semantic Segmentation Network (DSSN) is biased towards
the dataset, so when the trained model is directly applied to other
scenes with inconsistent distribution, the performance declines signifi-
cantly, which is called domain shift [41], as shown in Fig. 3. A certain
amount of labeling for new scenes can reduce the domain shift, but
it is difficult to extend to a large area as labeling is labor-intensive
and time-consuming. To enable the proposed method to be generalized
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Fig. 2. Framework of solar PV potential estimation on buildings.
Fig. 3. Visualization difference and spectral inconsistency between datasets.

and applied nationally or globally, UDA is conducted without any
additional labeling. This study proposes a method for cross-domain
building extraction, as shown in Fig. 4. The labeled SpaceNet-Shanghai
dataset is selected as the source domain. The DSSN trained on this
dataset is then transferred to the Wuhan GES dataset, which serves
as the target domain. Before performing UDA, the downloaded GES
images are resized to match the size of the Spacenet-Shanghai dataset,
which is 650 × 650, and z-score normalization is employed for the
images of both domains.

4.1.1. Label distribution unifying
SpaceNet-Shanghai dataset is a collection of urban area images

in Shanghai. Compared with images in the rural area, although the
landcover categories are the same, there is an inconsistency between
urban and rural in label distribution [42]. One common approach to
address this issue is self-training, which involves iteratively generat-
ing pseudo-labels for the target data and using them to retrain the
network [43–45]. However, when the domain shift is significant, it
becomes challenging to generate sufficient accurate pseudo-labels to
guide the training. Conducting adversarial training to diminish domain
shift before self-training can improve overall performance.
4

Unlike street-view images, RS images typically have a vertically
downward perspective. This identity can facilitate the comprehensive
processing of multi-source RS data, even if the data are in different time
phases. This study proposes a method for processing raw imagery using
the existing coarse-grained LULC product, to ensure a consistent label
distribution between urban and rural areas.

As shown in the green area in Fig. 4, when the target area is rural,
the Globalland 30 is first indexed according to the category number of
artificial surfaces to obtain a mask. The mask is then cropped to the
size of the target area using the contours. Finally, the rural GES image
is masked to obtain an image with a similar label distribution to the
urban area, as shown in the following formula:

𝐼𝑖,𝑗 = 0 if 𝑀𝑖,𝑗 ≠ 𝐼𝑛𝑑𝑎𝑠 (1)

Among them, 𝐼 represents the GES image, 𝑀 represents the mask,
𝑖 and 𝑗 correspond to the row and column of the image, and 𝐼𝑛𝑑𝑎𝑠 is
the index of the artificial surface.

Since we only keep the GES images belonging to the artificial
surface category, although not very accurate, it guarantees a label
distribution close to the source domain, which can greatly reduce the
negative transfer when conducting the adversarial domain adaptation.

4.1.2. Alignment in multi-space
Although the gap in label distribution has been eliminated, there

is still a domain shift in the image style. To tackle the issue, this
study jointly aligns the distribution in both the input space and feature
space [46]. Since the resolution of target images is the same as that
of source images, the Resolution Uniform (RU) module is removed. As
shown in the yellow area in Fig. 4, target images are first processed
through Digital Number Transfer (DNT), which can model the mapping
relationship of the digital number in the channel dimension. Then
multi-level features are extracted from source images and transformed
target images, fused by the Multi-Scale Feature Aggregation (MSF),
respectively. Finally, the fine-grained discriminator is utilized to dis-
criminate the fused features. The entire network can be partitioned into
two components, the segmentation network 𝐺 and the fine-grained dis-
criminator 𝐷, and optimized through a zero-sum game. 𝐺 is optimized
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Fig. 4. Framework of cross-domain building footprint extraction.
by solving the following formula with a fixed 𝐷:

min
𝐺

= seg + 𝜆advadv (2)

The hyperparameter 𝜆𝑎𝑑𝑣 is used to balance the two losses. The
cross-entropy loss 𝐿𝑠𝑒𝑔 is computed using 𝐼𝑠 from the source domain
and its corresponding label 𝑌𝑠.

𝑠𝑒𝑔 = −
∑

ℎ,𝑤

∑

𝑘
𝑦(ℎ,𝑤,𝑘)
𝑠 log

(

𝑃 (ℎ,𝑤,𝑘)
𝑠

)

(3)

where 𝑦(ℎ,𝑤,𝑘)
𝑠 denotes the one-hot label entry for the pixel located at

position (h, w) and 𝑃 (ℎ,𝑤,𝑘)
𝑠 refers to the probability predicted by 𝐺

that the pixel belongs to class 𝑘. The following formula presents the
adversarial loss 𝐿𝑎𝑑𝑣:

𝑎𝑑𝑣 = −
∑

ℎ,𝑤

∑

𝑘
𝑒(ℎ,𝑤,1)
𝑘 log

(

𝐷
(

𝑃𝑡
)(ℎ,𝑤,0,𝑘)

)

(4)

To optimize 𝐷, 𝐿𝐷 is minimized with a fixed 𝐺, which is expressed
in Eq. (5):

𝐷 = −
∑

ℎ,𝑤

∑

𝑘
𝑒(ℎ,𝑤,0)
𝑘 log

(

𝐷
(

𝑃𝑠
)(ℎ,𝑤,0,𝑘)

)

−
∑

ℎ,𝑤

∑

𝑘
𝑒(ℎ,𝑤,1)
𝑘 log

(

𝐷
(

𝑃𝑡
)(ℎ,𝑤,1,𝑘)

)

(5)

where 𝑒 is called domain encodings. For a more detailed introduc-
tion of the method, please refer to Chen et al. [46].

4.1.3. Building footprint mapping
The red area in Fig. 4 illustrates the specific process of mapping

the building footprints. To adapt to the characteristics of different
scales of buildings and further improve the extraction accuracy, Multi-
Scale Testing (MST) is used [47,48]. The input image is interpolated to
different scales and predicted separately, and then the probability maps
at multiple scales are restored to the original size, followed by mean
fusion. In addition, morphological opening and closing operations are
used to further filter out noisy predictions and fill building holes. Due to
memory limitations, a fixed window without overlap is used to perform
subregion-by-subregion prediction on the entire GES image, and finally,
the building extraction result for the district is obtained. It should be
noted that the Globalland 30 is relatively rough, and there are errors
5

in land use, so the mapping is carried out directly on the original GES
image, which can ensure that buildings will not be missed due to the
erroneous land use.

4.2. Deriving building height from AW3D30 DSM

To estimate and analyze building solar PV potential from a 3D
perspective, this study uses AW3D30 DSM as the data source to extract
building heights.

Algorithm 1: Building height extraction
Input: AW3D30 DSM 𝐷, sliding window size 𝑠, image height 𝐻 ,

image width 𝑊 , hyperparameter 𝑘
Output: nDSM 𝑛𝐷
for 𝑖 = 1, 2, ...,𝐻 do

for 𝑗 = 1, 2, ...,𝑊 do
𝑤𝑖𝑛𝑑𝑜𝑤 = 𝐷(𝑖 − 𝑠 ∶ 𝑖 + 𝑠, 𝑗 − 𝑠 ∶ 𝑗 + 𝑠)
𝑤𝑖𝑛𝑑𝑜𝑤 = Sort(Flatten(𝑤𝑖𝑛𝑑𝑜𝑤))[0: k]
mean = Mean(𝑤𝑖𝑛𝑑𝑜𝑤)
std = Std(𝑤𝑖𝑛𝑑𝑜𝑤)
foreach n in window do

if |𝑤𝑖𝑛𝑑𝑜𝑤(𝑛) − 𝑚𝑒𝑎𝑛| > 3 * std then
Remove 𝑤𝑖𝑛𝑑𝑜𝑤(𝑛) from 𝑤𝑖𝑛𝑑𝑜𝑤

end
end
𝐷𝐸𝑀(𝑖, 𝑗) = Mean(𝑤𝑖𝑛𝑑𝑜𝑤)
𝐷𝑆𝑀(𝑖, 𝑗) = 𝐷(𝑖, 𝑗)
𝑛𝐷(𝑖, 𝑗) = 𝐷𝑆𝑀(𝑖, 𝑗) - 𝐷𝐸𝑀(𝑖, 𝑗)

end
end

Inspired by Huang et al. [49], sliding window operation is con-
ducted to detect surface height and ground elevation, obtaining the
DSM and Digital Elevation Model (DEM) of the entire study area. Then,
the normalized DSM (nDSM) can be obtained by subtracting the DEM
from the DSM, which can indicate the building height. In addition,
for noises present in the raw data, outlier detection is used in nDSM



Applied Energy 359 (2024) 122720Z. Chen et al.

t
t
s
g
a
r
c
k
D
t
b
o

4

f
b
T
l
e
i

𝐺

f
r

e
m
a
b
m
t
e
a

c
c
i
b
c
n
u
w
r
a
a

𝐺

generation to filter them out. Algorithm. 1 presents the flow of the
building height extraction method.

The process of calculating ground height (DEM) involves the size
of the sliding window 𝑠. A larger 𝑠 makes the area too large, and the
calculation result cannot well represent the height of the center point,
while a smaller 𝑠 may cause the window to fall inside a large building,
resulting in no ground pixels within the window. 𝑠 is set to 7 according
o experiments in this study. After obtaining the window according to
he center pixel, all the pixel values in the window are counted and
orted in ascending order, and the top 𝑘 smallest values are taken as
round point candidates. In addition, the 3𝛿 criterion is used to detect
nd remove the outliers in the window. Then, the mean value of the
emaining candidate points is calculated as the ground height of the
enter. Unlike Huang et al. [49], this study does not use the Gaussian
ernel for processing, because it will lead to blurred edges of buildings.
ifferent from the processing of ground points, this paper directly uses

he height of AW3D30 DSM as surface points, which can preserve the
oundaries of buildings. Finally, the nDSM reflecting building height is
btained by subtracting DSM and DEM.

.3. Estimating solar irradiation and photovoltaic production

Solar irradiation is adjusted when it passes through the atmosphere,
urther modified by topology and surface features, and finally received
y the surface in the form of direct, diffuse, and reflected components.
ypically, since the proportion of reflected irradiation is quite minimal,

ess than 2.4 percent of the total [29], this component is not consid-
red in the calculation and analysis. The calculation of global solar
rradiation (𝐺𝑙𝑜𝑏𝑎𝑙𝑅) is shown in the following formula:

𝑙𝑜𝑏𝑎𝑙𝑅 = 𝐷𝑖𝑟𝑒𝑐𝑡𝑅 +𝐷𝑖𝑓𝑓𝑢𝑠𝑒𝑅 (6)

Among them, 𝐷𝑖𝑟𝑒𝑐𝑡𝑅 and 𝐷𝑖𝑓𝑓𝑢𝑠𝑒𝑅 quantify the direct and dif-
use components of solar irradiation received by the surface objects,
espectively.

In this study, the hemispherical viewshed algorithm is employed to
stimate the solar irradiation received by roofs, taking into account the
utual shading effects between buildings. Solar irradiation calculations

re primarily based on the resulting raster of building heights while
uilding footprint vectors are used to limit the calculation area. For a
ore detailed description, please refer to Kodysh et al. [27]. To obtain

he amount of solar irradiation under the clear sky condition, this study
mpirically sets the atmospheric transmittance and diffuse ratio as 0.7
nd 0.2.

After acquiring the estimated value of solar irradiation under the
lear sky condition, conducting further estimations for actual scenarios
an more accurately help the decision-making of solar PV module
nstallation. The amount of solar irradiation received by the earth can
e significantly impacted by sky clearness conditions (such as sunny,
loudy, or rainy) and atmospheric air turbidity levels (such as pure,
ormal, or polluted) [50]. Motivated by Cheng et al. [14], this study
ses the Ångström-Prescott (Å-P) formula to correct the irradiation,
hich considers the local weather conditions in the study area. The

elationship between sunshine time and solar irradiation is commonly
ssumed to be linear, and the Å-P formula can describe this relationship
s follows:

𝑙𝑜𝑏𝑎𝑙𝑐𝑜𝑟𝑟 = 𝐺𝑙𝑜𝑏𝑎𝑙𝑅

(

𝑎 + 𝑏
𝐷𝑠𝑢𝑛
𝐷𝑑𝑎𝑦

)

(7)

where 𝐺𝑙𝑜𝑏𝑎𝑙𝑐𝑜𝑟𝑟 is the amount of global solar irradiation corrected
by the actual weather conditions, 𝐷𝑠𝑢𝑛 is the daily sunshine duration,
which can be obtained from the observation data of the meteorological
station, and 𝐷𝑑𝑎𝑦 is the daily daytime, which can be calculated based
on the latitude of the study area [51]. The coefficients 𝑎 and 𝑏 of the
Å-P formula can be calculated from the statistical data by linear fitting.
In this study, 𝑎 and 𝑏 are assigned values of 0.25 and 0.75, respectively,
following the previous works [14,52].
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Table 1
Quantitative results of building extraction under different settings.

District Source only DA only DA+LU DA+LU+MST

Wuchang District IoU 20.07 37.48 65.35 66.76
F1 33.42 38.11 79.04 80.07

Dongxihu District IoU 29.62 51.60 60.42 60.64
F1 45.69 68.07 75.33 75.50

5. Study results

The building footprints, building heights, and solar irradiation dis-
tribution results are presented in this section to exhibit the effectiveness
of the proposed method.

5.1. Building footprint extraction results

5.1.1. Mask GES images using LULC
According to the spatial layout of urban and rural areas in Wuhan,

six of its thirteen districts, including Dongxihu District, Jiangxia Dis-
trict, Caidian District, Huangpi District, Hannan District, and Xinzhou
District, are predominantly rural with large expanses of farmland and
limited artificial surfaces. In addition, Wuchang District, while urban,
features a significant amount of water bodies, resulting in the domain
shift between the SpaceNet dataset and the GES images in the label
space. Thus, label distribution unifying was applied to these seven
districts to bridge the gap in label distribution.

As shown in Fig. 5, the water bodies in Wuchang District were been
removed, and a large area belongs to the artificial surface. The other
six districts are rural areas with a lot of grassland, forest land, and
cultivated land, so a large proportion of the areas were masked out.
However, due to the large area of these districts, it is guaranteed that
the generated dataset is sufficient for UDA.

5.1.2. Building footprint extraction results
The thumbnail image of the building footprints for the entire Wuhan

city is presented in Fig. 6a. The area covered by buildings in Wuhan
amounts to 276.7 km2. The building density decreases gradually from
the inside to the outside. This is because the inside districts develop ear-
lier and have a higher degree of urbanization, while the outer districts
develop later and the city landscape still belongs to the rural. Fig. 6b
further illustrates the phenomenon. The rural district with the blue
outline has a lower building density, and the density of buildings near
the urban area is relatively high, while the density of the urban districts
with the orange outline is higher and the distribution is more uniform.
Fig. 6c and d present the more detailed building footprint extraction
results in the rural and urban areas, respectively. The proposed building
footprint extraction method can achieve excellent performance without
any annotation. Since the GES images are not orthorectified, this will
affect the extraction results in two ways. On the one hand, buildings
will have a certain offset in the image, causing misalignment of foot-
prints and roofs. The offset is more significant in urban districts as the
buildings are high-rise, while the GES images in rural districts are close
to the orthographic image because numerous buildings are low-rise,
so the offset is not obvious. This offset will not affect the cumulative
value of building footprints [11]. On the other hand, facades of high-
rise buildings will be in the GES image. Building facades and roofs
usually share the same material, so the spectral characteristics are
similar, which results in difficulty in roof extraction. Building facades
are often intrusive under supervised conditions, and even more so
under unsupervised conditions. Since this research is an estimation on
a large scale, such interference has little impact on subsequent results
and recommendations.

To validate the performance of each module in the proposed UDA
building footprint extraction method, 50 images in each of the two

typical areas were selected for ablation experiments. The F1-Score (F1)
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Fig. 5. GES images masked by the impervious surface in LULC.
Fig. 6. Cross-domain building extraction results. (a) Extracted building footprints in Wuhan. (b) Extracted building footprints in the selected districts. (c) Detailed building footprints
in rural. (d) Detailed building footprints in urban.
and IoU metrics are used for evaluation. The F1-Score, defined in
Eq. (8), is calculated based on precision and recall.

𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(8)

where

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(9)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(10)

The IoU is defined as Eq. (11):

𝐼𝑜𝑈 = 𝑇𝑃 (11)
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𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
where 𝑇𝑃 , 𝐹𝑃 , and 𝐹𝑁 indicate the total number of predicted pixels
that are true positives, false positives, and false negatives in the test
set, respectively.

Table 1 illustrates the quantitative results, and Fig. 7 displays the
partial visualization results. Under the source-only setting, the model
trained solely on the source domain (SpaceNet-Shanghai) is directly
applied to the GES images in Wuhan. Due to the existence of domain
shift, the performance is extremely poor, with IoU and F1 below 30%
and 46% in two areas. The DA-only method greatly mitigates domain
shift as it involves adversarial training to tackle domain shift in both
the input and feature space [46]. However, when there is significant
variation in LULC, this method can negatively impact the extraction



Applied Energy 359 (2024) 122720Z. Chen et al.
Fig. 7. Visualization results of building extraction under different settings.
Fig. 8. Building height deriving results. (a) Derived building heights in Wuhan. (b) GES image in the selected area. (c) Building heights in the selected area.
results due to the domain shift in the label space. The LU module
proposed in this study can make the LULC, that is, the label space
distribution of different domains, tend to be consistent. Therefore, the
negative transfer [53] is alleviated, further enhancing the performance
of building extraction. With the addition of the LU module, the IoU
and F1 increased from 37.48% and 38.11% to 65.35% and 79.04% in
Wuchang District, and increased from 51.60% and 68.07% to 60.42%
and 75.33% in Dongxihu District, respectively. The MST strategy fully
considers the various sizes of buildings and addresses the issue of holes
in larger buildings and small extraction errors. Finally, 66.76%, 60.64%
IoU and 80.07%, 75.50% F1 were achieved in Wuchang District and
Dongxihu District. In summary, the method proposed in this study
can effectively obtain building footprints on open GES imagery in an
unsupervised manner.

5.2. Building height deriving results

Fig. 8a depicts the building height deriving results for the entire city
of Wuhan. This study uses the artificial surface layer of GlobalLand30
to mask the results for better visualization. The results indicate a spatial
pattern of decreasing building heights from the urban areas to the rural
areas, which is consistent with the building density distribution.
8

Table 2
Total hours of the 𝐷𝑠𝑢𝑛 and 𝐷𝑑𝑎𝑦 in Wuhan in each month of 2021.

Month 𝐷𝑠𝑢𝑛 𝐷𝑑𝑎𝑦 𝐷𝑠𝑢𝑛/𝐷𝑑𝑎𝑦

Jan 129.1 322.4 0.550
Feb 118.5 283.3 0.564
Mar 71.0 371.0 0.394
Apr 59.7 388.0 0.365
May 116.5 424.7 0.456
Jun 147.2 423.5 0.511
Jul 138.0 431.4 0.490
Aug 129.6 410.2 0.487
Sep 226.0 369.5 0.709
Oct 116.1 353.9 0.496
Nov 159.8 318.0 0.627
Dec 161.4 316.2 0.633

One region is selected to show more details about building heights.
Due to the rough resolution of the data source used, which is 30 m,
it is difficult to accurately obtain the height of a single building. But
as can be seen from Fig. 8b, the distribution of buildings, especially
in residential areas, has a certain degree of aggregation, that is, the
height of buildings is consistent in a certain area. Therefore, the nDSM
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Fig. 9. Verification of the building height deriving method.
Fig. 10. Corrected values of monthly solar irradiation.

extracted from the AW3D30 DSM can describe the building heights
at the city scale, as illustrated in Fig. 8c. In this study, point clouds
obtained by Airborne Laser Scanning (ALS) in 2019 are used to generate
nDSM which is considered ground truth to verify the accuracy of
building heights extracted from AW3D30 DSM (Fig. 9a). We selected
30 buildings that exist in both time phases for verification. The RMSE
is computed to assess the performance as follows:

𝑅𝑀𝑆𝐸 =

√

√

√

√

∑𝑛
𝑖=1

(

(

ℎ𝐴 − ℎ𝐿
)2

𝑛
(12)

where 𝑛 is the count of sampling points, and ℎ𝐴 and ℎ𝐿 represent the
building heights extracted by AW3D30 DSM and ALS, respectively. As
presented in Fig. 9, the R2 and RMSE are 0.98 and 4.74 m, showing
a strong correlation and high accuracy. The regression line closely
approximates the 1:1 line, but there is a negative offset. This is because
AW3D30 DSM was interpolated based on the DSM dataset (5-m mesh
version of the World 3D Topographic Data) [38], and pixels repre-
senting building heights contain pixels representing ground heights
during interpolation. Thus, the building heights may be underestimated
slightly. However, since this deviation can be regarded as a systematic
error, it does not affect the subsequent analysis of solar PV potential
from a 3D perspective.

The AW3D30 DSM data is generated from the PRISM data collected
in 2014, while the building footprint extraction is based on GES images
from 2019 to 2021. To address this, the potential will be evaluated
using the DSM data from the upcoming ALOS-4 satellite, which will
replace the ALOS-2 satellite.
9

5.3. Spatial–temporal distribution of building solar irradiation

As mentioned above, this study utilizes the Å-P formula (Eq. (7))
to correct the negative effect of weather conditions for accurate solar
irradiation, whose parameters include the sunshine duration (𝐷𝑠𝑢𝑛)
and daytime (𝐷𝑑𝑎𝑦). The total monthly hours 𝐷𝑠𝑢𝑛 and 𝐷𝑑𝑎𝑦 listed
in Table 2 were collected from China Meteorological Data Center
(CMDC).1 Fig. 10 illustrates the comparison of solar radiance under
clear sky conditions and solar radiance corrected by the Å-P formula.
The original value under clear sky conditions changes slightly, and the
daily average irradiation reaches its highest in June. The main factor
affecting this value is the latitude of the region. In practice, this result
is overestimated to some extent. The Å-P formula takes into account the
negative impact of weather conditions and corrects the original value
through the observed sunshine duration hours. Since the result is not
only affected by the sun’s altitude angle but also affected by climate
factors such as rain, haze, etc., the change is larger than the original
result.

Fig. 11 shows the final corrected spatial–temporal distribution of
solar irradiation in Wuhan in 2021. According to the calculation re-
sults, the annual amount of solar irradiation that can be received by
the rooftops of buildings in Wuhan in 2021 is 289 737.58 GWh. The
average daily solar irradiation intensity is 2.851 kWh/m2/day. The
distribution of solar energy shows obvious seasonal differences. Com-
pared to spring and winter, the amount of solar irradiation is greater
in the summer and autumn. The density of building solar potential is
higher in urban areas compared to rural areas, and only some regions
in rural areas are concentrated, which tends to be consistent with the
distribution of building footprints. Table 3 lists the monthly total solar
irradiation received by buildings in various districts of Wuhan. Despite
the lower density of solar potential on buildings in rural areas, the
total amount is significant due to the vast land, thus it is necessary
to consider the entire city and not just the urban area when estimating
solar potential.

6. Analysis

6.1. Calculation of the solar PV potential on building surfaces

The objective of this study is to assess the solar PV potential on a
large scale. Following Hong et al. [24], the solar PV potential on the
buildings can be calculated utilizing the solar irradiation and available
building area as Eq. (13).

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑃𝑉 = 𝑘𝑃𝑉 × 𝐵𝑎𝑟𝑒𝑎 × 𝑆𝑅𝑦𝑒𝑎𝑟 (13)

1 http://www.nmic.cn/analysis/yearbooks.html.

http://www.nmic.cn/analysis/yearbooks.html
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Fig. 11. Spatial–temporal distribution of solar irradiation in Wuhan in 2021.
Table 3
Total building solar irradiation in Wuhan in each month of 2021.

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

Huangpi Disrict 674.33 900.00 927.33 1031.48 1494.67 1721.29 1583.38 1549.85 1742.13 947.30 870.99 658.47 56 291.15
Dongxihu District 326.52 435.79 435.79 499.46 723.74 833.48 766.70 750.46 843.57 458.70 421.75 318.84 26 861.31
Xinzhou District 418.45 558.49 558.49 640.08 927.51 1068.14 982.57 961.76 1081.08 587.84 540.49 408.61 34 796.70
Jiangan District 102.39 136.66 136.66 156.63 226.96 261.37 240.43 235.34 264.54 143.84 132.26 99.99 7973.47
Jianghan District 93.61 124.94 124.94 143.19 207.49 238.95 219.81 215.15 241.84 131.50 120.91 91.41 7277.96
Qingshan District 178.95 238.83 238.83 273.72 396.64 456.78 420.18 411.28 462.31 251.38 231.13 174.74 14 324.64
Qiaokou District 86.30 115.19 115.19 132.01 191.30 220.30 202.65 198.36 222.97 121.24 111.47 84.27 6842.44
Wuchang District 155.62 207.70 207.70 238.05 344.94 397.24 365.42 357.68 402.05 218.62 201.01 151.96 12 173.55
Hanyang District 186.32 248.68 248.68 285.01 412.99 475.61 437.50 428.24 481.37 261.75 240.66 181.94 15 067.29
Hongshan District 329.28 439.47 439.47 503.68 729.85 840.52 773.17 756.80 850.69 462.57 425.31 321.54 27 340.79
Caidian District 461.80 616.35 616.35 706.39 1023.60 1178.80 1084.36 1061.39 1193.07 648.74 596.48 450.94 38 676.03
Hannan District 98.40 131.33 131.33 150.51 218.10 251.17 231.04 226.15 254.21 138.23 127.09 96.08 8248.58
Jiangxia District 400.21 534.14 534.14 612.18 887.08 1021.58 939.73 919.83 1033.95 562.22 516.93 390.80 33 863.66
Total 3512.19 4687.57 4714.91 5372.38 7784.87 8965.22 8246.94 8072.27 9073.78 4933.92 4536.47 3429.60 289 737.58
where 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑃𝑉 is the potential of solar PV on buildings throughout
the year, 𝑘𝑃𝑉 represents the comprehensive transition efficiency of
solar PV systems, 𝐵𝑎𝑟𝑒𝑎 stands for the area of available buildings, 𝑆𝑅𝑦𝑒𝑎𝑟
refers to the solar irradiation received by buildings for a year. Consid-
ering the technical conditions, 𝑘𝑃𝑉 is set to 15%. Therefore, the solar
PV potential on buildings in Wuhan in 2021 is 43 460.64 GWh. Fig. 12
illustrates the distribution of solar PV potential on buildings. Fig. 12a
presents the overall distribution across the entire city. Fig. 12b focuses
on districts, showing the solar PV distribution on buildings in the rural
district (Dongxihu) and urban districts (Jianghan, Jiangan, Qiaokou,
and Hanyang). As can be observed in Fig. 12c and d, the solar PV
distribution in rural areas is uniform due to the sparse density of low-
rise buildings, which do not block each other. However, in urban areas,
due to the high-rise buildings, more areas are affected by shadows.
In practice, the installation of solar PV modules can avoid buildings
with low solar PV potential due to the shading effect. Additionally, the
installation and maintenance of solar PV modules on high-rise buildings
can be difficult, making it less convenient. Without quantifying the
building heights, it is impossible to identify suitable buildings for PV
module installation solely from a 2D perspective.

Hubei Province’s 2023 government work report calls for the opti-
mization of energy structures, accelerated transformation of industries
10
towards cleaner practices, and support for the development of renew-
able energy sources, including solar energy. And subsidies for solar
PV power generation in China are facing abolishing elimination alto-
gether [11]. Therefore, an insightful study of the solar PV potential on
buildings can assist the local government in promoting the future de-
carbonization transition. Taking the study area, Wuhan, as an example,
the government aims to achieve 370,000 kW installed capacity of PV
generation by 2025. Understanding the city-level solar PV potential can
enable more optimized site selection and promotion to meet the target.

The proposed method for estimation is entirely based on open-
source data. However, these data are limited in supporting more de-
tailed information about buildings, such as determining the aspect and
slope of the roof. Besides, the parameters of the Å-P formula for the cor-
rection of solar radiation and the comprehensive transition efficiency
𝑘𝑃𝑉 for the calculation of PV potential are empirical parameters, and
therefore inevitably cause some uncertainties. However, for a city-level
estimation, the impact of these uncertainties on policy-making and
PV planning can be ignored. The follow-up work is to obtain more
details of the building from multi-view optical images and SAR images.
Moreover, without consideration of comprehensive factors, including
grid capacity and economic considerations [11], the potential of solar
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Fig. 12. Distribution of building solar PV potential in 2021. (a) Building solar PV potential in Wuhan. (b) Building solar PV potential in the selected districts. (c) Detailed solar
PV potential in rural. (d) Detailed solar PV potential in urban.
Fig. 13. Diagram of the 3D model of the experimental area.

PV on buildings calculated in this study only represents the theoretical
design value, and more factors can be added for subsequent analysis.

In the calculation of building PV potential, only the roof is consid-
ered as a feasible location for the placement of solar PV modules. With
the advancement of technology, it is now a reality to use PV materials
on building facades and windows. Our future research will explore the
potential of solar PV on facades and windows at the city scale.
11
Fig. 14. 3D solar irradiation estimation results.

6.2. Estimation of PV potential on building facades

In this study, 3D building information obtained from multi-source
RS data can support the estimation of solar PV potential on both
facades and rooftops. A study area is selected to demonstrate that the
proposed method can provide 3D solar energy estimation for buildings.
As shown in Fig. 13, we count the height values of the DSM within each
independent polygon of the building footprint and assign the maximum
to the polygon as the height of the building. Then, the flat footprint
is raised to create a 3D model based on the height. The 3D model is
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Fig. 15. Comparison of building solar PV potential and residential electricity consumption. (a) Residential electricity consumption in Wuhan. (b) Solar PV potential of buildings
in Wuhan. (c) The subtraction between potential and consumption.
Table 4
Comparison of solar irradiation received by rooftops and facades.

Component Irradiation (kWh/year) Area (km2)

Rooftop 95 039 67.86
Facade 138 582 454.57
Total 233 621 522.43

imported into Rhino, and solar irradiation is estimated using the Geco
plugin. Since this analysis only demonstrates the potential applicability
of the proposed method for 3D solar irradiation estimation, the results
are not corrected by the Å-P formula.

The estimation results are shown in Fig. 14. It is evident that
building information obtained through multi-source RS data using the
proposed method can describe the 3D form of buildings and be applied
to estimate the solar irradiation potential of 3D buildings. In terms of
the components of the building, rooftops typically receive more solar
irradiation per unit area than facades due to their orientation towards
the sky and less occlusion caused by surrounding high-rise buildings.
Regarding orientation, the sunny facades of the building receive more
solar irradiation than the shaded facades. Under clear conditions, the
rooftop receives an annual solar irradiation of over 1500 kWh/m2,
while the sunny facade receives generally 750–900 kWh/m2, and the
shady facade receives less than 450 kWh/m2. Therefore, the shady
facade is not an optimal location for installing solar PV modules. As
shown in Table 4, in the experiment area, the estimated amount of
solar irradiation that the rooftop can receive through a year is 95 039
kWh, and the facades are 138 582 kWh. This is because the area of
the facades that can receive solar irradiation is large, so the total
amount is higher than on rooftops even at a lower unit receiving
efficiency. But considering the cost of installing solar PV modules, the
rooftop would be a preferable location compared to the facade. In
general, although placing solar PV modules on rooftops yields higher
unit revenue compared to facades, the total amount of solar irradiation
that the facade of the building can receive is significant, especially for
high-rise buildings. To achieve net-zero energy buildings, it is necessary
to develop solar PV systems on the facades.

6.3. Analysis of solar PV power supply and demand

In order to verify whether the production capacity of solar PV
can meet the electricity consumption needs of residents, the data
of LandScan Global 20212 is collected, which illustrates the distri-
bution of the population at a resolution of 1 km. According to the
China Statistical Yearbook 2021 [54], the average domestic electricity

2 https://landscan.ornl.gov/.
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consumption of Chinese residents is 756 kWh. The total amount of
electricity consumption can be assessed by multiplying the population
by the average electricity consumption per resident. By calculation, the
total residential electricity consumption in Wuhan in 2021 amounts
to 7751.88 GWh. The estimated solar PV potential on buildings in
Wuhan in 2021 reaches 43 460.64 GWh, which is far greater than the
consumption. However, due to the problem of power transmission,
potential and consumption tend to be considered locally, so we simply
assume that an off-grid power system is used to store and consume the
electricity generated by solar PV nearby. In this system, the application
of the Electric Energy Storage System (EESS) needs to be considered
because production and consumption are not always contemporary.
Solar PV generation occurs during the day, while peak electricity
demand typically happens at night. Therefore, EESS is essential for fully
exploiting solar PV energy. The distribution of residential electricity
consumption in Wuhan in 2021 is shown in Fig. 15a, with a resolution
of 1 km. The potential of solar PV on buildings is resampled to the
same resolution for comparison purposes. (Fig. 15b). The distribution
of residential electricity consumption is concentrated, while the supply
potential of solar PV, on the contrary, is relatively dispersed. This is
because the population is mainly concentrated in the central area, while
the population density in the surrounding area is low. In rural areas,
the buildings are mostly low-rise, which can support large areas for
obtaining solar irradiation. By pixel-by-pixel subtracting the potential
of solar PV on buildings and the residents’ electricity consumption, the
supply and demand can be analyzed from the local scale.

Based on Fig. 15c, the solar PV potential in most areas is sufficient
to meet the needs of residents, but there will be insufficient situations
in areas with high population density. The power sector can plan the
placement of PV modules and allocate power transmission according to
supply and demand.

7. Conclusions

This study proposes an approach for assessing the city-scale poten-
tial of solar PV on buildings using multi-source open RS data without
additional labor costs. The building footprints are extracted using pub-
licly available GES images based on UDA, and the coarse LULC product
is introduced to provide prior knowledge to reduce negative transfer. In
order to obtain the 3D information of buildings for supporting occlusion
analysis, AW3D30 DSM is used to extract the height of buildings in the
city. After obtaining the 3D information of the buildings, the potential
of solar PV is estimated. The amount of solar irradiation received by
buildings in Wuhan in 2021 is 289 737.58 GWh, and the potential of
solar PV calculated on this basis is 43 460.64 GWh. The calculation
results of this study can provide detailed solar PV potential distribution,
which can help in the selection of optimal sites and planning for the

https://landscan.ornl.gov/
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installation of PV modules. The framework proposed in this study does
not require data acquisition costs or labor costs for sample labeling used
in deep learning, thus, it demonstrates strong scalability and has the
potential to be applied globally.

Due to data limitations, it is difficult to obtain the details of building
roofs, such as slope and aspect, which can affect the amount of solar
irradiation received and the installation of solar PV modules. Other
sources of data, such as SAR images, are being considered for extracting
this part of the information to provide more refined estimation results.
In addition, solar PV materials can currently be installed on facades
and windows. The estimation on facades has been conducted in a small
area, and we will incorporate this into the city-scale framework in
future work.
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ppendix. Abbreviations and symbols

Please see Table A.1.
Table A.1
Abbreviations and symbols.

Abbreviations Symbols

RS Remote Sensing 𝐼 The remote sensing image
PV Photovoltaic 𝑀 The mask obtained by artificial

surface
UDA Unsupervised Domain Adaptation 𝐼𝑛𝑑𝑎𝑠 The index of the artificial surface
DSSN Deep Semantic Segmentation

Network
𝐺 The segmentaction network

DSM Digital Surface Model 𝐷 The fine-grained discriminator
BiPVs Building-integrated Photovoltaics 𝐿𝑠𝑒𝑔 The cross-entropy loss for

segmentation
LiDAR Light Detection and Ranging 𝜆𝑎𝑑𝑣 The parameter for balancing losses
GES Google Earth Satellite 𝐿𝑎𝑑𝑣 The adversarial loss for domain

adaptation
GIS Geographic Information System 𝑌 The labels from the source domain
ECMWF European Centre for Medium Range

Weather Forecasts
𝑦 The one-hot label entry for the pixel

UAV Unmanned Aerial Vehicle 𝑃 The class probability predicted by 𝐺
TLS Terrestrial Laser Scanning 𝐿𝐷 The discriminator loss for domain

adaptation
SVM Support Vector Machine 𝑒 The domain encodings used in

domain adaptation
VHR Very High Resolution 𝑠 The size of sliding window in

deriving building heights
GSV Google Street View 𝑘 The parameter for choosing ground

point candidates
OSM OpenStreetMap 𝐺𝑙𝑜𝑏𝑎𝑙𝑅 The global solar irradiation
AOI Areas of Interest 𝐷𝑖𝑟𝑒𝑐𝑡𝑅 The direct component of solar

irradiation
LULC Land Use and Land Cover 𝐷𝑖𝑓𝑓𝑢𝑠𝑒𝑅 The diffuse component of solar

irradiation
PRISM Panchromatic Remote-sensing

Instrument for Stereo Mapping
𝐺𝑙𝑜𝑏𝑎𝑙𝑐𝑜𝑟𝑟 The global solar irradiation corrected

by the actual weather
ALOS Advanced Land Observing Satellite 𝑎 The parameter for the Å-P formula
SRTM Shuttle Radar Topography Mission 𝑏 The parameter for the Å-P formula
GDEM Global Digital Elevation Model 𝐷𝑠𝑢𝑛 The daily sunshine duration for the

Å-P formula
RU Resolution Uniform 𝐷𝑑𝑎𝑦 The daily daytime for the Å-P

formula
DNT Digital Number Transfer ℎ𝐴 The building heights extracted by

AW3D30 DSM
MSF Multi-Scale Feature Aggregation ℎ𝐿 The building heights extracted by

ALS
MST Multi-Scale Testing 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑃𝑉 The potential of solar PV on

buildings
DEM Digital Elevation Model 𝑘𝑃𝑉 The comprehensive transition

efficiency of solar PV systems

(continued on next page)
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Table A.1 (continued).
Abbreviations Symbols

nDSM normalized Digital Surface Model 𝐵𝑎𝑟𝑒𝑎 The area of available buildings
ALS Airborne Laser Scanning 𝑆𝑅𝑦𝑒𝑎𝑟 The solar irradiation received by

buildings
CMDC China Meteorological Data Center
CSY China Statistical Yearbook
EESS Electric Energy Storage System
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