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A B S T R A C T

The increasing popularity of electric vehicles (EVs) in recent times has introduced consid-
erable load conditions for urban power grids and transportation systems, which highlights
the importance of accurately predicting charging demand to enhance charging efficiency.
However, current forecasting methods still face challenges in effectively aligning diverse data
and generating accurate predictions that can be applied to unseen scenarios. To overcome the
challenges, this work introduces a novel perspective: employing large language models (LLMs)
as EV charging demand predictors. First, we reformulate the prediction task into a text-to-
text format, enabling seamless and effective alignment of various features within a unified
language semantic space. Subsequently, we fine-tune a LLM using a meta-learning framework
to adapt it specifically for EV charging prediction. Through comprehensive evaluations, it has
been demonstrated that the proposed model, ChatEV, achieves outstanding performance in EV
charging demand forecasting, particularly in scenarios with limited data.

. Introduction

In recent years, there has been a notable increase in the adoption of electric vehicles (EVs) among vehicle consumers worldwide,
eading to a significant purchasing trend. According to the Global EV Outlook (IEA, 2023), sales of EVs surpassed 10 million in
022 and approached 14 million in 2023. This surge in EV adoption is primarily driven by the goal of aligning with climate
mbitions, as EVs can make a substantial contribution to reducing harmful emissions and fostering a more sustainable transportation
ector (You et al., 2024; Sacco et al., 2022). While such transition brings significant environmental benefits, the proliferation of
Vs also poses challenges to urban power and transportation systems, largely due to the limited availability of public charging
nfrastructure (Unterluggauer et al., 2022; Kim et al., 2023; Zhang et al., 2021a). This highlights the important role of EV charging
ptimization in promoting the advancement of urban vehicle electrification (Pasha et al., 2024; Song and Hu, 2023; Wald et al.,
023), e.g., strategically scheduling the supply of public charging infrastructure across urban areas can effectively flatten the loads
n power grids and transportation systems.
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Fig. 1. The key idea of developing a LLM-empowered predictor for EV charging demand.

To enable such optimization, a crucial component is an effective EV charging demand prediction method. In general, the method
is tasked with estimating future charging demand for EVs within a defined time frame and geographical location, which involves
analyzing historical data on EV charging patterns, along with relevant contextual information. With accurate demand predictions,
EV drivers can plan their trips more effectively and reduce cruising time for parking (Zhang et al., 2021b); regulators can adjust
the power generation and distribution accordingly to ensure a stable and reliable energy supply (Ye et al., 2023). In the pursuit
of accurate prediction, many studies have made significant contributions by developing advanced data-driven forecasting methods
(Huang et al., 2024; Meng et al., 2024; Liu et al., 2023), which encompass three main aspects: (1) capturing time-series patterns
in EV charging history through the utilization of statistical analysis (Yi et al., 2022); (2) modeling non-linear relationships between
charging-related factors (e.g., time of day and weather conditions) by employing deep learning methods (Zhang et al., 2023; Wang
et al., 2023b); and (3) incorporating geographical information around EV charging stations through the use of spatio-temporal
models (Wang et al., 2023a; Kuang et al., 2024). However, the adoption of these data-dependent methods in EV charging demand
forecasting still faces several challenges. First, the scarcity of high-quality EV charging data prevents existing models from being
adequately trained. Second is their difficulty in understanding the relationships between heterogeneous data (Qu et al., 2023), such
as time series, geographical information, and socio-economical factors. This hinders a comprehensive charging demand prediction
as well as the charging-related managements. Finally, a generalizable foundation model capable of robust demand prediction in
diverse areas remains to be explored, which is constructive and supportive for charging optimization policy-making.

Fortunately, the rapid development of Large Language Models (LLMs), like ChatGPT, has recently showcased notable milestones
for significantly advancing various areas (Brown et al., 2020; Zhao et al., 2023), highlighting the immense potential of LLMs
in revolutionizing the development of next-generation EV charging predictors. Equipped with million-scale parameters, these
language models have exhibited unprecedented natural language understanding and reasoning abilities (Zhang et al., 2024), along
with remarkable open-world knowledge that facilitate them to better generalize to time-series forecasting (Jin et al., 2024b).
For example, Xue and Salim (2023) propose a novel LLM-empowered prompt-based predictor for time-series forecasting, named
PromptCast, which exhibits impressive adaptation ability in the predictions of weather temperature, energy consumption, and
customer flow. Another notable illustration is LLM-MPE (Liang et al., 2024a), which introduces a novel paradigm utilizing the Chain-
of-Thought technique (Wei et al., 2022) to guide LLMs in predicting human mobility. This approach takes into account historical
mobility patterns but also event features.

Despite the aforementioned success, exploring LLMs for forecasting EV charging demand poses significant challenges that have
yet to be fully addressed. First, while there have been groundbreaking endeavors to utilize LLMs for general time series forecasting,
the development of a tailored model specifically for EV charging demand prediction remains imperative to fulfill the diverse demands
of real-world scenarios. For instance, companies in the EV charging industry may prioritize a specialized LLM-based predictor
distinguished by personalized insights and cost-effectiveness over a generic solution. Furthermore, although demand predictions
for EV charging and other forms of human activities in urban transportation systems, such as biking (Liang et al., 2023, 2024b) and
driving (Wang et al., 2024), share similarities, they are influenced by distinct factors, such as charging prices, to varying degrees.
These nuanced distinctions set EV charging demand prediction apart from general time-series forecasting, underscoring the need
for a specialized LLM-based EV demand predictor. Finally, well-crafted instructions are crucial to fully harness the remarkable
understanding and reasoning capabilities of LLMs for optimizing EV charging demand prediction, but this issue remains under-
explored and warrants further investigation. To bridge this gap, this paper introduces a novel LLM-empowered predictor called
ChatEV. As illustrated in Fig. 1, the proposed approach involves the finetuning and prompting of a widely-used pre-trained language
model, Sentence-T5 (Ni et al., 2022), to turn it into a generalizable EV charging demand predictor. To achieve this, there are two
essential steps: prompt-based task reformulation and multi-area alignment tuning. First, we deeply immerses the proposed predictor
into a full language environment, wherein the task of EV charging demand prediction is reformulated into a text-to-text format
by utilizing personalized prompts. By doing so, ChatEV can leverage the abundant open-world semantic knowledge embedded in
the pre-training corpora of LLMs and align heterogeneous data within the same language semantic space, thus facilitating accurate
2 
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predictions across diverse areas. Subsequently, we employ an efficient model-agnostic meta-learning method called Reptile (Nichol
and Schulman, 2018) to fine-tune the LLM backbone, thus incorporating domain-specific knowledge related to EV charging demand
prediction. In this process, the language modeling objective is used, i.e., generating the next token based on previous tokens, instead
of using task-specific loss functions. This enforces the backbone model to deeply integrate language and forecasting semantics, so
as to achieve an effective and efficient adaptation of the language model to EV charging demand prediction.

To evaluate our approach, this paper conducts extensive experiments on a real-world dataset (Qu et al., 2023) with 18,061 public
V charging piles, and study how ChatEV performs compared with both representative and recently developed prediction models
n three forecasting scenarios, namely full-, few-, and zero-shot settings of training data. In addition, ablation studies are performed

to demonstrate the effectiveness of each component in ChatEV. Overall, our main contributions are:

• This paper introduces ChatEV as a promising alternative for LLM-empowered EV charging demand prediction, by reformulating
the prediction task into a text-to-text format that is compatible for LLMs. This enables a straightforward and effective fusion of
heterogeneous charging-related factors, such as weather conditions, charging price, and road density, within a unified language
semantic space. While numerous pioneering studies have investigated the application of LLMs for time-series prediction, to
the best of our knowledge, this paper marks the very first endeavor in utilizing LLMs for EV demand forecasting.

• The proposed meta-learning-based alignment tuning method enhances the generalization capability of our LLM-based predic-
tor, enabling accurate predictions across diverse and previously unseen scenarios.

• The evaluation results show that ChatEV attains outstanding performances compared to competitive methods, especially
in few-shot and zero-shot forecasting tasks, demonstrating its exceptional generalization ability in EV charging demand
prediction.

• We discuss the policy implications of promoting LLM-empowered EV demand predictors, exploring the current challenges
and future directions in EV planning and management within the LLM era to provide in-depth insights for future research
endeavors.

The remaining sections of this paper are organized as follows. Section 2 provides a literature review that summarizes existing
olutions for EV charging demand prediction and LLM-based time-series forecasting. Next, Section 3 presents the proposed LLM-
mpowered predictor, which is evaluated in Section 4. In Section 5, we present a discussion of policy implications. Finally, Section 6

concludes the paper.

2. Related work

This section provides a brief review of the recently developed methods that focus on predicting EV charging demand.
urthermore, it highlights the emergence of time-series predictors that utilize LLMs as a promising approach.

2.1. EV charging demand prediction

At its core, predicting EV charging demand refers to the process of estimating the availability or demand status of charging
stations/areas at a given time or in the near future, by analyzing historical data on EV charging patterns, such as charging sessions,
charging duration, and charging locations, along with relevant contextual information. As the prediction models continue to advance,
several challenges are emerging in the pursuit of efficient and effective forecasting, namely

• Data Scarcity: The number of EV charging stations is still relatively small compared to traditional fuel stations, resulting in a
scarcity of data points and an inadequate training of prediction models.

• Factor Heterogeneity: Various factors influence the behavior of EV charging, including infrastructure distribution, pricing
schemes, and weather conditions (Pasha et al., 2024). However, incorporating and analyzing these diverse factors poses a
challenge for data-driven prediction models due to their heterogeneity.

• Model Generalizability: The utilization pattern of EV charging stations exhibits variations over time and across different
locations (Meng et al., 2024). Consequently, there is a need for a unified and scalable predictor that can effectively handle
both common patterns and specific contexts for the demand forecasting, even in unseen areas.

In recent years, many efforts have been made to tackle the aforementioned challenges. At the beginning, related solutions
primarily focus on statistical analysis to enhance the interpretation of temporal patterns in charging records (Jeon et al., 2022;
Yi et al., 2022). For example, Zhang et al. (2023) first leverage clustering methods with K-means kernels for analyzing the profiles
of EV users, followed by introducing a simulation process for short-term charge demand prediction. More recently, with the progress
f big data techniques, deep learning methods sparked in the field of time series forecasting, including EV charging demand modeling
nd prediction (Abdelaty et al., 2021), since these methods can effectively capture non-linear patterns. As illustrated by Wang et al.

(2023b), a recurrent model with Long Short-Term Memory blocks achieves a significant performance improvement over statistical
models in short-term EV charging demand prediction. Later on, there is an increased emphasis on incorporating spatial knowledge
o enable forecasting methods to have a comprehensive understanding of charging situations (Kim and Kim, 2024). For example,
STGCN (Wang et al., 2023a) utilizes graph convolutional layers to extract underlying relationships between neighboring areas.
oreover, PIAST (Kuang et al., 2024) combines graph and temporal attentions for capturing spatial and temporal correlations in

charging occupancy as well as price, respectively. Even though these data-driven models can handle intrinsic characteristics of the
charging data, they still struggle to align heterogeneous factors and support generalizable forecasting in unseen areas.
3 



H. Qu et al.

a

R

m
s
t

i
s

Transportation Research Part D 136 (2024) 104470 
Table 1
Example for charging area/station characterization, which can be easily
retrieved using area/station IDs.
Area/Station ID = 12

INFORMATION
Coordinates = [22◦32′29′′N, 114◦03′35′′E];
Address = ‘‘No. 66 Gongchang Rd, Guangming Dt, Shenzhen, China’’;
Time: [5:29 pm, Tuesday, April 30, 2024]
Charging Pile Number = 46;
Road Length = 83.23 km;
Weather = [22 ◦C, . . . ];
......

2.2. Time-series forecasting empowered by LLMs

Recent years have experienced a booming success of large language models, such as BERT (Kenton and Toutanova, 2019),
Sentence-T5 (Ni et al., 2022), and ChatGPT, which scales up their parameters to the million level over large-scale mixture-of-source
corpora and have demonstrated groundbreaking capabilities in natural language understanding and reasoning. Hence, pioneering
studies (Xue and Salim, 2023; Gruver et al., 2024; Lai et al., 2024; Li et al., 2024b) have attempted to explore the potential of LLMs
for time-series forecasting using a new paradigm based on prompting, which encodes time series into natural language sentences
nd generates semantic tokens as model prediction. For instance, PromptCast (Xue and Salim, 2023) achieves LLM-empowered

forecasting on weather temperature, energy consumption, and customer flow, without any modifications on the LLM architectures.
ecent advancements in LLM-based foundation models for time-series, such as Time-LLM (Jin et al., 2024a) and UrbanGPT (Li et al.,

2024a), have showcased their astonishing performance by reprogramming into a language task. Unlike conventional forecasting
odels that often involve complex parameter searching and training from scratch, the new paradigm (i.e., LLM-empowered time-

eries forecasting) offers a simpler and more accessible alternative and underscore their impressive generalizability in the realm of
ime series forecasting.

However, exploring LLMs for EV charging optimization is not a trivial task and remains largely unexplored. Firstly, it is
challenging to design personalized prompts for reformulating this intricate task when considering various heterogeneous factors
in neighboring areas. Moreover, while LLMs possess a vast amount of open-world knowledge, their training corpus may lack
nformation regarding EV charging demand forecasting. Finally, even though several generalized models have been devised for time-
eries, a dedicated model tailored for EV charging demand remains essential to explore alternatives with reduced model size and

the capability to offer personalized functions in specific scenarios. To tackle these shortcomings, this paper introduces a finetuned
language model as predictor with prompts tailored for EV charging demand prediction. To the best of our knowledge, ChatEV
represents the pioneering effort in approaching generalizable EV charging demand forecasting from a language-based perspective.

3. The proposed approach

In this work, we focus on the point prediction task but consider the average charging demand in neighboring areas. To better align
natural language with EV charging demand prediction scenarios, we propose a novel LLM-empowered predictor, named ChatEV. As
shown in Fig. 2, this is achieved by conducting two key steps, namely prompt-based task reformulation and multiarea alignment
tuning. In particular, we first create a personalized prompt template to support the reformulation from numerical forecasting to text-
to-text generation. Then, we perform a stable finetuning on a widely used pre-trained language models with million-scale parameters,
i.e., Sentence-T5 (Ni et al., 2022), integrating within a meta learning framework known as Reptile (Nichol and Schulman, 2018).
The details will be described in the following sections.

3.1. Prompt-based task reformulation

To reformulate the prediction task as natural language processing, we create a personalized prompt template, which covers
fundamental information and additional instructions. In this section, our prompt design and task formulation will be introduced.

3.1.1. Prompt design
Generally speaking, a prompt includes two templates for model inputs and targets, along with a set of related metadata. Sanh

et al. (2021). Accordingly, we design our prompts, as described below.

• Area Characterization. To provide the LLM backbone with personalized knowledge specific to a particular charging area
or station, our prompts will include a detailed description of charging-related features using natural language. These features
may include geographic information (e.g., coordinates and address), socio-economic features (e.g., road length density and POI
density), weather conditions (e.g., temperature and humidity), and more. Moreover, we compute the average charging-related
variables (such as demand and price) from neighboring areas and integrate them into the area description to incorporate
spatial awareness. This strategy is inspired by the concept of simple graph message passing (Wu et al., 2019), which uniformly
4 
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Fig. 2. The overall framework of ChatEV. Specifically, we reformulate the electric vehicle charging demand prediction task into a unified text-to-text format,
and finetune the language model (i.e., Sentence-T5) within a meta-learning framework for knowledge alignment and model adaptation.

consolidates features from neighboring nodes. By doing so, ChatEV converts spatial data into textual elements, eliminating the
need for additional training on time-series patches in current LLM-driven time-series forecasting models (Jin et al., 2024a;
Li et al., 2024a). To sum up, such a characterization helps the LLM backbone to identify the studied charging area/station
efficiently, thus facilitating personalized adaptation.

INPUT
You are an expert in electric vehicle charging management,
who is good at <charging demand prediction>.
We are now in {area characterization}.
Given the following time series of historical charging data,
Local Charging Occupancy = [..., 0.24, 0.23, 0.25, 0.26, 0.31, 0.35, ...];
Average Neighboring Charging Occupancy = [..., 0.33, 0.33, 0.32, 0.31, 0.28, 0.27, ...];
......
Now, pay attention! Your task is to <predict the charging demand in the area for the next hour> by analyzing the
given information and leveraging your common sense.
In your answer, you should provide the value of your prediction only.

TARGET
ChatEV: 0.58.

• Information Retrieval. To attain up-to-date metadata from different sources for area characterization, we adopt an emerging
technique, known as retrieval-augmented generation (RAG) (Lewis et al., 2020), which enriches LLMs’ knowledge by pulling
in information from a corpus of useful data, just like fetching a book from a library. In our case, RAG means to create
a knowledge base with EV charging-related metadata, where corresponding information can be easily retrieved based on
charging area/station IDs and inserted into our prompt template. Notably, all retrieved metadata will be transformed into
textual tokens that is compatible for LLMs, as shown in Table 1. Integrated with RAG, our ChatEV can generate not only
contextually accurate but also information-rich predictions.

• Zero-shot Augmentation Instruction. With the pursuit of enhancing the reasoning ability of our ChatEV, we apply a simple
but effective zero-shot augmentation instruction in our prompt designing, i.e., role-playing. Role-playing entails the LLM to
adopt a specific role, which the AI utilizes to perform the assigned task more proficiently (Shanahan et al., 2023). For example,
the instruction can be presented as ‘‘an expert in <specific field>, who is good at <specific task>’’. Building upon this insight, we
5 
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define a detailed role for our LLM-empowered predictor. Drawing from the psychological principle, role-playing can help us
program LLMs more effectively, which harnesses the power of the ’mindset shift’, thus being expected to refine the outputs of
our LLM-based predictor.

To be intuitive, we present our prompt template in the above text box, where texts in blue are the zero-shot augmentation
instruction, texts in orange denotes the charging-related metadata retrieved by area IDs, and texts in red are the task descriptions.
For traditional statistical or deep learning models, it is challenging to align these heterogeneous characteristics and model their
relationships. Instead, ChatEV unifies them through natural language and leverage the open-world knowledge of LLMs to achieve
an effective feature understanding. To sum up, our prompts involves instructing the LLM backbone, listing charging related factors,
and presenting certain tasks within a sequence-to-sequence format.

3.1.2. Large language model-empowered forecasting formulation
In this section, we will give a unified mathematical definition of ChatEV’s pipeline, including its input, output, and objective

unction. Firstly, for an area or station 𝑖, ChatEV’s input 𝑖 can be presented by the following combination in natural language
according to the abovementioned prompt design:

𝑖 = ( , 𝑖,𝑖), (1)

where  denotes the prompt template; 𝑖 represents the characterization of the area/station 𝑖, including time-series features (e.g., pile
occupancy, charging price, and temperature) and static factors (e.g., charging type, road length, land area, and coordinates).
𝑖 = {𝐨𝑖, 𝐨𝑗 |𝑗 ∈ 𝑖} are the local and neighboring charging demand histories from time (𝑡 − 𝑤) to current time 𝑡, where 𝑤 is

he lookback window size in recurrent forecasting tasks, and 𝑖 denotes the set of neighbors of area 𝑖. Notably, the input 𝑖 will
e tokenized by a LLM tokenizer (i.e., SentencePiece) into in-vocabulary discrete tokens. Given these input tokens, we employ a
idely-used LLM with millions of parameters, T5 (Ni et al., 2022), as our backbone to generate the future demand in area/station
based on its understanding of the task-specific instruction. Formally, the prediction 𝑖 can be calculated by:

𝑖 = LLM(𝑖). (2)

Specifically, 𝑖 is the token of target demand at time (𝑡 + 𝜆) in area/station 𝑖, where 𝜆 is the forecasting horizon. In a word,
the objective of our LLM-empowered model lies on accurately predicting the future demand in specific areas or stations based on a
ange of textual information.

Finally, we reformulate the EV charging occupancy prediction objective as a conditional language generation task in an auto-
regressive manner, i.e., generating the next token based on previously generated tokens. In this context, the model parameters 𝜃
are optimized by minimizing the negative log-likelihood (NLL) of target tokens 𝑖 given the input text 𝑖, expressed as

NLL = −
𝐼
∑

𝑖=1

𝐾
∑

𝑘=1
log𝑃𝜃(𝑦𝑘𝑖 |𝑖, 𝑦<𝑘𝑖 ), (3)

where 𝐼 and 𝐾 represent the numbers of EV charging areas and target tokens, respectively; 𝑦𝑘𝑖 is the 𝑘𝑡ℎ token of the output 𝑖
and 𝑦<𝑘𝑖 denotes the tokens before 𝑦𝑘𝑖 ; 𝑃𝜃(⋅) is the probability distribution of tokens based on the model parameters 𝜃. During the
inference phase, our model, ChatEV, has the capability to directly perform various tasks in both familiar and unfamiliar scenarios,
and the proposed model simply uses greedy decoding to generate answers. As a result, the EV charging demand prediction for
diverse scenarios are consolidate with a unified data format, a shared model, a single loss.

3.2. Alignment tuning for domain adaptation

Finetuning has recently been demonstrated as a promising technique to specialize pre-trained language models to perform
ownstream tasks. However, in real-world scenarios, the EV charging patterns usually varies across time and space. Direct fine-tuning
sing a variety of samples from different charging areas could potentially lead to the LLM backbone learning in the wrong direction,
eading to poor performance on other datasets. To enhance the learning process, we apply a simple but effective Model-Agnostic
eta-Learning method, called Reptile (Nichol and Schulman, 2018) for knowledge adaptation. It simply works by repeatedly

sampling each task and performs stochastic gradient descent (SGD) on each task in a standard way to achieve an unbiased and
efficient tuning. Next, we will detail the Reptile tuning in our cases.

Assume that there are 𝐼 EV charging stations/areas as source domains, our approach involves initially dividing their data into
two distinct sets: the Support Set for exploration and the Query Set for harvesting, as shown in the finetuning part of Fig. 2. To
elaborate further, we conduct 𝑆 steps of SGD on the Support Set. This process enables us to obtain a set of learned parameters.
Subsequently, we determine a well-established optimization direction by performing a one-step SGD on the Query Set based on the
parameters learned from the Support Set. This step allows us to refine the optimization process. Formally, the whole tuning process
of Reptile for ChatEV can be described in Algorithm 1. After the proposed tuning process, ChatEV is expected to be generalizable
for EV charging demand prediction, even in unseen charging areas.

To sum up, the novelty of the proposed approach can be expressed as: (1) Knowledgeable. ChatEV can incorporate the
open-world knowledge presented in LLMs to support EV charging demand prediction. (2) Compatible. In a unified language
emantic space, ChatEV can easily fuse heterogeneous data and make full use of various information from different sources. and (3)
Generalizable. ChatEV leverages the impressive reasoning ability in LLMs to enable accurate prediction on diverse unseen areas by
rompt engineering and alignment tuning.
6 
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Algorithm 1 Procedures of the proposed alignment tuning.
Require: A pre-trained language model 𝜃 and 𝐼 source domains from diverse charging areas for finetuning;

1: Divide the data of each area into Support and Query sets;
2: for epoch 1,2,3,...,𝑝,... do
3: Randomly sample domain 𝑖;
4: Perform 𝑆 > 1 steps of SGD using Adam optimizer on the Support set of area 𝑖, starting with the pre-trained parameters 𝜃𝑝𝑖 ,

resulting in temporary parameters 𝜙𝑝
𝑖 ;

5: Perform one-step of SGD using Adam optimizer on the Query set of area 𝑖, starting with the temporary parameters 𝜙𝑝
𝑖 , resulting

in tuned parameters �̂�𝑝𝑖 ;
6: Update: 𝜃𝑝𝑖+1 ← 𝜃𝑝𝑖 + 𝜖(�̂�𝑝𝑖 − 𝜃𝑝𝑖 )
7: end for
8: Return 𝜃

Fig. 3. Map of the 247 studied traffic zones. The image is created based on the dataset introduced by Qu et al. (2023).

4. Performance evaluation

In this section, we will evaluate ChatEV in comparison to representative forecasting methods, using a benchmarking dataset and
identical evaluation metrics, to demonstrate the improvements accomplished.

4.1. Experimental settings

4.1.1. Dataset
To demonstrate the effectiveness of the proposed method, we conduct comprehensive experiments over an up-to-date real-world

dataset: ST-EVCDP.1 This dataset offers real-time charging occupancy information of 18,061 public EV charging piles for 247 traffic
zones within Shenzhen, China. More specifically, it covers a period of 30 days, from 19 June to 18 July 2022, with a time interval of
5 min. Notably, this evaluation employs charging occupancy as the indicator of charging demand within a particular area. Besides,
various important characteristics for the studied areas are also collected, including the charging pricing schemes, coordinates, area
adjacency, road density, points of interest, and charging types (i.e., fast or slow charging). Notably, according to the zero-shot
setting, we adopt a strategy where a portion of the traffic zones are designated as unseen areas, meaning they are not included
in the fine-tuning corpus. The ratio of selection for these unseen areas is explored within the range of [0.2, 0.4, 0.6, 0.8]. For the
traffic zones that are considered as seen areas, the available data is partitioned into training set (60%, Day 1–18), validation set
(20%, Day 19–24), and test set (20%, Day 25–30) in a chronological order (see Fig. 3).

1 https://github.com/IntelligentSystemsLab/ST-EVCDP.
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4.1.2. Baseline methods
Two representative statistical methods, four competitive neural network methods, and a recently developed LLM-empowered

method are used as baselines. To be specific, the statistical methods are ARIMA, which is a statistical analysis model that makes
use of lagged moving averages to predict future values; and Lasso (Tibshirani, 1996), a regression analysis method that combines
variable selection and regularization techniques to improve prediction accuracy while maintaining interpretability of the model. The
compared neural networks are: FCNN, a vanilla full connected neural network; LSTM, a typical recurrent neural network with long
short-term memory, which is employed by Wang et al. (2023b) for EV charging demand estimates; GCN-LSTM (Chen et al., 2022),
a representative method for spatio-temporal traffic flow prediction; STGCN (Yu et al., 2018), a typical convolution-based model for
patio-temporal forecasting; HSTGCN (Wang et al., 2023a), a recently developed method that integrated graph convolutional layers
nd gated recurrent units to learn spatial and temporal patterns in the electric vehicle charging demand, respectively; PIAST (Kuang

et al., 2024), a state-of-the-art model for electric vehicle charging demand prediction that considers the underlying influence of
harging prices. The LLM-based baseline is PromptCast (Xue and Salim, 2023), which employs a pre-trained language model for

prompt-based time series forecasting in the zero-shot setting; LLMTIME (Gruver et al., 2024), which tokenizes time-series data and
ransforms discrete distributions across tokens into highly adaptable digits. Notably, in order to testify the significance of adapting
he LLM-based methods to downstream datasets, LLMTIME is allowed to be fine-tuned on the training corpus in the following
xperiments, while PromptCast is tested without finetuning.

4.1.3. Hyper-parameters
ChatEV is configured as following. First, a widely-used language model, i.e., Sentence-T5 (Raffel et al., 2020), is employed as

the LLM backbone for our ChatEV. Second, it is trained with an advanced optimizer, AdamW (Loshchilov and Hutter, 2018), in
a mini-batch manner, where the batch size and learning rate are searched in the ranges of {24, 32, 48, 64} and {0.0001, 0.001,
0.01, 0.1}, with optimal values of 48 and 0.001, respectively. Third, the fine-tuning process is set to run for 200 epochs, with an
early stopping mechanism, which stops the process if the validation loss remains unchanged for 10 consecutive epochs. Fourth,
the window sizes of historical and predicted data are 12 and 6 intervals, respectively. This means that the models being compared
are required to forecast the charging volume for the next 30 min, taking into account the charging history of the previous hour.
Finally, negative log-likelihood (NLL) is used as the loss function. Notably, in our model, we conduct a grid search on critical
hyperparameters and implement them in the compared models. Meanwhile, the default hyperparameters for baseline methods are
configured as recommended in the respective papers.

4.1.4. Running environment
Two common metrics for time series prediction are used, i.e., Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE).

All the experiments are conducted on a Linux workstation with two GeForce RTX 3090 GPUs.

4.2. Performance comparison

The compared methods are discussed in four aspects: (1) full-shot predicting to illustrate how good the model is in forecasting
EV charging occupancy; (2) few-shot forecasting to demonstrate how fast the model is to adapt to specific areas; (3) zero-shot
forecasting to show the ability of the model to handle the prediction tasks in unseen areas; and (4) the ablation experiments to
testify each key component of ChatEV.

4.2.1. Full-shot forecasting
We first compare the full-shot forecasting performance between ChatEV and all baseline methods over the benchmark dataset. In

this case, the compared prediction models and ChatEV are allowed to access the training data (i.e., Day 1–24) in all the studied traffic
zones. Table 2 presents the performance comparison in the test set (i.e., Day 25–30) on the four forecasting intervals, i.e., 15 min,
0 min, 45 min, and 60 min, where the best and second best results are marked by Bold and underlined. We can make the following

observations. First, our proposed ChatEV achieves the state-of-the-art performance and consistently outperforms all the baseline
methods across all testing intervals in terms of all metrics. In average, ChatEV exceeds the strongest baseline by 3.7% and 4.6% in
RMSE and MAE, respectively. Such improvement demonstrates the effectiveness of our proposed methods and the great potential of
xploring finetuned large language models for EV charging demand prediction. In the full-shot scenario, it can be attributed to the
xceptional learning capabilities obtained from the Transformer-based language model with million parameters, enabling our model
o effectively capture the underlying patterns in the EV data. ChatEV also leverages the benefits of the proposed alignment tuning
nd the designed prompts, gathering comprehensive information spanning from temporal to spatial aspects. Second, as an earlier
NN method designed to capture hidden patterns in time series, LSTM outperforms ARIMA, Lasso, and FCNN. This observation
uggests that the potential of integrating non-linear temporal knowledge for time-series forecasting. However, LSTM is inferior to
he spatio-temporal predictors (i.e., GCN-LSTM, STGCN, HSTGCN, and PIAST), implying its insufficient ability to capture spatial
nformation. Third, the spatio-temporal prediction methods show relatively stronger performance than the traditional methods
ARIMA and Lasso) and the representative recurrent method (i.e., LSTM). This highlights the significance of incorporating the
patial features via learning adjacency relationships. However, these advanced methods still struggle to incorporate heterogeneous
ata, such as socio-economic features, for EV charging demand prediction. For LLM-based methods, PromptCast is a competitive
aseline as it achieves impressive prediction accuracy in all metrics, without the need for additional adaptation or fine-tuning.

t accomplishes this by utilizing the natural language understanding capabilities of LLM (Language Model) to incorporate diverse
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Table 2
Performance comparison of full-shot forecasting in different prediction intervals (5 min per interval).

Metric (10−2) RMSE MAE

Model 3 6 9 12 Average 3 6 9 12 Average

ARIMA 4.57 6.48 7.85 9.06 6.99 2.49 3.71 4.69 5.60 4.12
Lasso 4.34 6.27 7.92 9.22 6.94 2.50 3.69 4.65 5.57 4.10
FCNN 4.52 6.41 7.86 8.89 6.92 2.45 3.60 4.50 5.32 3.97
LSTM 3.53 5.62 8.33 8.91 6.60 1.87 3.19 4.68 6.28 4.01
GCN-LSTM 3.29 5.69 7.26 8.66 6.23 1.95 3.30 4.27 5.21 3.68
STGCN 3.45 5.33 6.72 7.54 5.73 2.01 3.39 4.03 4.66 3.53
HSTGCN 3.34 5.27 6.52 7.44 5.64 2.00 3.30 3.94 4.55 3.45
PIAST 3.36 5.22 6.36 7.45 5.60 1.91 3.11 4.00 4.81 3.46
PromptCast 4.08 6.24 7.45 8.14 6.48 2.56 3.84 4.29 5.23 3.98
LLMTIME 3.04 5.20 6.58 7.28 5.53 1.98 3.26 4.02 4.47 3.43
ChatEV 2.97 5.06 6.46 7.13 5.40 1.85 3.09 3.90 4.34 3.29

Table 3
Performance on few-shot forecasting with limited training data, i.e.,the first {5%, 10%, 15%, 20%} of training time steps.

Metric (10−2) RMSE MAE

Model 5% 10% 15% 20% Average 5% 10% 15% 20% Average

ARIMA 15.01 16.76 14.80 12.80 14.84 10.11 9.71 9.19 8.45 9.37
Lasso 16.09 15.63 12.10 14.38 14.55 10.62 9.38 8.56 8.45 9.25
FCNN 15.58 14.69 14.40 13.32 14.50 9.56 8.90 8.49 8.19 8.78
LSTM 14.72 13.75 13.63 12.42 13.63 9.16 8.18 8.40 8.10 8.46
GCN-LSTM 17.73 15.71 15.48 14.31 15.81 9.36 9.17 9.16 9.06 9.19
STGCN 17.26 16.22 15.74 14.43 15.91 9.46 9.32 9.24 9.06 9.27
HSTGCN 17.74 16.50 15.26 13.22 15.68 10.71 10.50 9.48 9.17 9.97
PIAST 10.17 9.88 9.41 8.96 9.61 6.95 6.20 6.01 5.66 6.21
PromptCast 6.48 6.48 6.48 6.48 6.48 3.98 3.98 3.98 3.98 3.98
LLMTIME 6.36 6.20 5.72 5.65 5.98 3.84 3.60 3.55 3.48 3.62
ChatEV 5.84 5.77 5.60 5.49 5.67 3.55 3.52 3.49 3.38 3.48

factors as textual contexts for forecasting. Furthermore, LLMTIME surpasses PromptCast, owing to its tokenization approach that
inserts spaces between numbers and a typical fine-tuning process, which extracts specific knowledge from the EV data. These two
LLM-empowered methods highlight the potential of natural language processing in serving as a promising alternative approach for
next-generation EV charging demand forecasting. However, our proposed method outperforms PromptCast and LLMTIME because
of the introduction of alignment tuning, which enhances the model’s ability to align and capture relevant information effectively.

4.2.2. Few-shot forecasting
LLMs have recently demonstrated impressive capabilities in few-shot learning. Thus, in this section, we examine whether our

inetuned LLM retains this ability when applied to EV charging demand forecasting tasks. Specifically, we evaluate scenarios with
imited finetuning data (i.e., ≤ the first 20% of the training time steps). Our brief few-shot learning results are summarized in Table 3.

The results reveal that existing data-driven forecasting methods, including the statistical and deep learning methods, perform poorly
when faced with few-shot scenarios containing only {5%, 10%, 15%, and 20%} of the training data. Even though PIAST introduces
additional prior knowledge (i.e. constraints) to help it outperform other learning models on the few-shot scenarios, its performance
is still unsatisfactory. In contrast, the novel prompt-based forecasting method, PromptCast, outshines these data-driven methods
significantly, which we attribute to the open-world knowledge present in its pre-training corpus. Note that PromptCast’s prediction
results remain consistent across all few-shot settings since it is a prompt-based model that does not undergo any fine-tuning process.
Furthermore, LLMTIME incorporates the local knowledge in the limited training data and the prior knowledge derived from the LLM,
leading to a better performance to PromptCast. More impressively, our approach surpasses all baselines, underscoring the potential
prowess of language models as proficient EV charging demand predictors. Our findings also demonstrate that ChatEV can rapidly
adapt to specific downstream prediction tasks in particular areas with only a small amount of finetuning data, showcasing the fast
learning ability of our model.

4.2.3. Zero-shot forecasting
Beyond few-shot learning, LLMs hold potential as effective zero-shot reasoners (Kojima et al., 2022). In this subsection, the

zero-shot learning capabilities of the proposed predictor are evaluated within the framework of cross-domain adaptation (Qu et al.,
2022). To be specific, we examine how well a prediction model performs on unseen areas when it is optimized on other areas, where
he model has not encountered any data samples from the target (i.e., unseen) areas. This means to randomly sample {20%, 40%,

60%, 80%} of the 247 studied traffic zones as source domains, when the remaining zones are used as target domains for testing.
Notably, we use the 30-min forecasting protocol for this zero-shot evaluation, and the results on RMSE are presented by boxplots in
Fig. 4, where the mean and median values of the prediction metrics are marked by ‘‘+’’ and the horizontal lines, respectively, and
‘‘×’’ denotes outliers. We can see that ChatEV shows remarkable generalizability in zero-shot cross-area adaptation, i.e., less outliers
9 
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Fig. 4. Performance comparison on zero-shot forecasting within the framework of cross-area adaptation.

and lower forecasting errors than all baselines. This suggests that the proposed model can make reasonable predictions based on
its open-world knowledge, even if it has not seen the relevant data in particular areas. Such a property generalizability underscores
the great potential of ChatEV as a reliable online EV charging demand predictor in the real-world scenarios, where high-quality
data are usually scarce. Similarly, PromptCast and LLMTIME utilize pre-trained language models for prompt-based forecasting,
achieving fast adaptation second only to our model. This is because ChatEV capitalizes on the prompts tailored for electric vehicle
charging demand prediction, enabling it to outperform other LLM-based methods such as PromptCast and LLMTIME, which adhere
to prompts designed for general time-series forecasting. In contrast, the statistical and learning methods are stretched thin on this
zero-shot forecasting task: as the source areas dwindle, their performances on target areas become worse and worse. It is difficult
for these data-driven models to extract charging patterns common to all areas from such a small amount of data, which highlights
again the significance of introducing open-world prior knowledge to support a generalizable forecasting task.

To be specific, an illustration of the zero-shot performance is presented in Fig. 5 to show directly on how efficient and effective
he LLMs contribute to predict the charging demand (i.e., future occupancy). Specifically, sub-graph (a) showcases an example of

area characteristics with diverse features; sub-graph (b) illustrates the significance of these features in prediction, represented by
he performance changes resulting from removing each feature individually (where positive values indicate a decrease in model
erformance upon feature removal, and vice versa); sub-graph (c) displays the forecasting curves of baselines juxtaposed with the

ground truth occupancy rate. Based on the figure, we can make the following observations. First, sub-graph (a) shows that diverse
features from various data resources, such as coordinates, charging price, and weather conditions, can be fused efficiently in the
natural language space that compatible for LLMs. In sub-graph (b), we can see that the static features like Coordinates, Area Type,
Road Length, Pile Number, and Charging Type results in a performance decline. This highlights the importance of integrating static
features as textual descriptions in LLM-based EV charging demand prediction to pinpoint target areas effectively. On the other
hand, in our scenarios, the inclusion of ‘‘Land Area’’ information can introduce noise to the forecasting process. This is because the
feature may vary irregularly across difference traffic areas; for example, many large areas might have a scarcity of charging piles
instead. Compared to the static features, the dynamic variables, namely Neighboring Occupancy (N-Occupancy), Charging Price, and
Weather (Temperature), exhibit a more significant impact on the prediction accuracy of ChatEV. Excluding these dynamic features
from our model results in a notable decrease in prediction performance, indicated by an increase in RMSE. Finally, according to
sub-graph (c), the two LLM-empowered predictors, namely PromptCast, LLMTIME, and ChatEV, is able to keep in sync with the
ground-truth occupancy in the zero-shot settings. This impressive performance is attributed to the open-world knowledge provided
by LLMs, which enables them to learn rapidly and generalize effectively. In contrast, the three deep learning baselines struggle
with underfitting. Finally, ChatEV exhibits superior performance and achieves minimum prediction error thank to the personalized
knowledge learned from the proposed prompts and aligning process.

4.2.4. Ablation study
In order to assess the key components in ChatEV (i.e., the designed prompt template, the alignment tuning, and the pre-trained

knowledge), we conducted ablation experiments, where the impact of each component is eliminated separately: (1) w/o Prompting:
10 
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Fig. 5. Illustration of the forecasting results in the setting of (40% Source–60% Target). (a) Area characterization in area 235; (b) The average performance
fluctuations of ChatEV in all areas resulting from removing each feature; (c) The prediction curves of compared models in area 235.

Table 4
Ablation results in full-, few-, and zero-shot forecasting scenarios. ‘‘w/o’’ denotes ‘‘without’’.

Metric (10−2) RMSE MAE

Model Full Few Zero Average Full Few Zero Average

w/o pre-training 7.08 11.02 11.31 9.80 4.38 5.79 7.04 5.74
w/o finetuning 6.02 6.02 6.02 6.02 3.68 3.68 3.68 3.68
w/o aligning 5.57 5.83 5.95 5.77 3.51 3.62 3.81 3.65
w/o prompting 5.47 5.75 5.94 5.72 3.48 3.56 3.78 3.61
ChatEV 5.40 5.71 5.91 5.67 3.30 3.48 3.61 3.46

Remove the designed prompts, including area characterization and task instruction, while remain time series only as model input;
(2) w/o Aligning: Deactivate the proposed alignment tuning process and perform a vanilla finetuning on our LLM backbone; (3)
w/o Pre-training: A blank T5 model is used instead of the pre-trained ones to eliminate the open-world knowledge in the LLM;
(4) w/o Finetuning: perform forecasting via prompting the language model only. Notably, these experiments are performed on the
30-min forecasting protocol. The ablation results in full-, few-, and zero-shot forecasting scenarios are shown in Table 4. In which,
all few-shot metrics are averaged across four training data size: {5%, 10%, 15%, 20%}, while all zero-shot results are averaged from
four sampling ratio of unseen areas: {20%, 40%, 60%, 80%}. From the ablation results, we can make the following observations.
First, each component in our approach contributes to the overall performance since eliminating any one of them results in the
performance decline. Second, a significant performance drop occurred when removing the open-world knowledge presented in large
language models (i.e., without pre-training), especially in the few-shot and zero-shot scenarios. This emphasizes again the potential
of employing LLMs as EV charging demand predictors. Additionally, without any finetuning, ChatEV experiences a performance
reduction, but it can still achieve a comparable performance to PromptCast and LLMTIME, which demonstrates the effectiveness of
the proposed prompts and the pre-trained knowledge.

To recap, Fig. 6 provides an overview of model evaluation across different scenarios, including full-shot, few-shot, and zero-shot
scenarios. In which, the proportions of source areas available for training and finetuning {z-80%, z-60%, z-40%, z-20%} indicate
the amount of training data from the source areas, while the ‘‘zero’’ scenario represents the absence of any training data. We can
see that the utilization of Language Models (LLMs) for EV charging occupancy prediction is effective. Moreover, ChatEV exhibits
superior performance in the full-shot settings, positioning it as a state-of-the-art solution. This improvement can be attributed to
the integration of diverse information within the language space. Finally, the proposed model outperforms other baselines by a
11 
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Fig. 6. The overview of model evaluation demonstrates the performance of each method in various scenarios.

Fig. 7. ChatEV bridges the remarkable achievements of Large Language Models (LLMs) in the realm of time-series with the future investigations into LLM-based
agents for the next-generation electric vehicle-related intelligent services.

Table 5
Comparison of the computational efficiency between LLM-based models and deep learning methods.
Model GCN-LSTM STGCN HSTGCN PromptCast LLMTIME ChatEV

Milliseconds per sample 8.57 5.81 6.83 36.52 47.73 39.58

significant margin in the few-shot and zero-shot settings, showcasing its exceptional generalization ability to adapt to new scenarios
with limited data.

5. Policy implications

As an emerging branch in the transportation field, vehicle electrification has been witnessed a surge development motivated by
the pursuits of gas energy conservation and emission reduction. Meanwhile, Large Language Models (LLMs), including advanced
models like ChatGPT, have gained significant popularity and demonstrated tremendous capabilities across various areas and tasks in
the field of Artificial Intelligence. As powerful and increasingly pervasive tools, LLMs have the potential to revolutionize the future
of EV planning and management. In this context, this paper proposes to study new frontiers of EV charging demand prediction in
the era of large language models, bearing both academic and practical impacts.

From the academic perspective, although numerous groundbreaking studies have explored the use of LLMs for time-series analy-
sis, ChatEV represents the initial effort in employing LLMs for charging demand forecasting, a fundamental aspect of EV management.
As illustrated in Fig. 7, the success achieved in LLM-empowered EV charging demand prediction is poised to inspire a resurgence
of interest in addressing the research question: How can large language models be harnessed for the development of next-generation
AI agents for EV planning and management? From the practical perspective, this paper emphasizes the importance of collecting and
aggregating high-quality data in cloud-based platforms, facilitating a holistic understanding of charging dynamics and enabling
strategic resource allocation to meet evolving needs. Furthermore, given that the computational efficiency of LLM-based predictors is
roughly six times that of conventional deep learning methods, as depicted in Table 5, LLM-based approaches encounter difficulties in
scenarios requiring high concurrency. Nevertheless, with response times under 0.05 s, they can still demonstrate significant efficacy
in macro policy adjustments, where model performance and generalizability outweigh the importance of computational efficiency.
Finally, urban regulators can benefit from simplified and user-friendly forecasting solutions with interactive interfaces provided by
LLM-based agents, reducing reliance on complex coding and feature engineering. To sum up, as an emerging technique, large-scale
pre-trained language models show promise in assisting electric vehicle management, thus facilitating the transition of vehicle power
from gasoline to electricity.
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Additionally, we present a series of policies in this section aimed at regulating LLM-based agents for electric vehicle charging
rediction and management. First and foremost, urban administrations may be required to set forth regulations and norms
oncerning the utilization of large language models in overseeing electric vehicles, ensuring equitable and ethical practices. Such
irectives could encompass stipulations on data utilization, model transparency, and accountability. Second, authorities might
ontemplate providing incentives or subsidies to encourage the integration of electric vehicles managed by large language models,
hereby expediting the shift towards more sustainable transportation alternatives. These strategies have the potential to hasten the
ransition towards cleaner transportation options. Moreover, to enable seamless communication and coordination between different
ystems and devices involved in electric vehicle management, policymakers may need to establish interoperability standards. This
ould ensure that data exchange and integration are smooth and to facilitate seamless communication and synchronization among
arious systems and devices involved in electric vehicle management, policymakers may need to establish interoperability standards,
hich would guarantee the smooth and efficient exchange and integration of data. Finally, policymakers may also need to allocate

esources for research and development to bolster the capabilities of large language models for electric vehicle management.
inancial support could foster innovation in key areas such as predictive maintenance, autonomous charging, and vehicle-to-grid
echnologies.

6. Conclusion

In this work, we highlighted a novel paradigm of exploring LLMs as EV charging occupancy predictors. On the one hand,
by reformulating the prediction task into a text-to-text format, ChatEV provided an effective data fusion method to make full
se of various information from different sources, such as weather conditions, coordinates, and time of day. On the other hand,
hatEV adopted a meta-learning-based alignment tuning method for knowledge adaptation, thus facilitating our LLM-empowered
V charging occupancy prediction. Through comprehensive experiments on 247 urban areas, we demonstrated that ChatEV can
chieve state-of-the-art performance on charging demand prediction, while also exhibiting the capacity of being generalizable to
nseen areas with limited data. Finally, we also engaged in a discussion regarding the potential implications of this research on
V charging planning and management in the era of LLMs. Moving forward, to further enhance the predictive capabilities of our
pproach and extend its applicability, future research could focus on the following aspects.

(1) To utilize larger models: Expanding the scale of language models, which involves utilizing the latest advancements in
model architecture and training methodologies, to leverage their full potentials will enable more accurate predictions. The
state-of-the-art models, e.g., the Llama (Touvron et al., 2023), GPT-4 (Achiam et al., 2023), etc., can be adopted.

(2) To integrate diverse tasks: In addition to predicting EV charging demands, ChatEV are expected to encompass other
fundamental tasks associated with EV charging, such as data imputation and dynamic charging price estimation. This enhances
its capacity to serve as an assistant for EV charging, offering comprehensive advice and services from multiple perspectives.

(3) To optimize model structure: Advanced external modules can be introduced, such as a Mix-of-Expert (Shazeer et al., 2017)
layers for scalable content awareness and Adapter (Song et al., 2024) blocks for parameter-efficient tuning, so as to enhance
the performance of our LLM-empowered predictor.

(4) To improve the interpretability of our model. Providing explanations for ChatEV’s predictions is crucial for the LLM-
based predictor to establish trustworthiness among policymakers. To achieve this, we will integrate advanced frameworks
and metrics (Tang et al., 2023; Yuan et al., 2024) into our fine-tuning process, necessitate ChatEV to generate relevant
explanations. Besides, it is a promising strategy to incorporate the Chain-of-Thought technique to instruct LLMs in sequential
thinking (Liang et al., 2024a), bolstering their capacity for reasoning and handling complex EV-related tasks.
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