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Abstract The aim of the study was to evaluate spa-
tial connectivity and socioeconomic status of African 
cities using street network datasets and geospatial 
methods. The drivable street network was collected 
from OpenStreetMap, and spatial connectivity has 
developed at the cityscape level and central busi-
ness districts (CBD). At the cityscape level, almost 
all studied cities have minimum spatial connectivity 
as illustrated by metrics like betweenness centrality, 
average node average and intersection density met-
rics where maximum values were 0.11, 6.28 and 359 
nodes/km2 respectively. The spatial connectivity of 
CBD was higher compared cityscape level, which 
indicated the availability unbalanced growth of driv-
able street network in the sample cities. Moreover, the 
study has also founded relationship between spatial 
connectivity and socioeconomic status of cities which 
in turn have implications to the sustainability of urban 
areas.
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Introduction

Cities are composed of complex network systems 
including streets, social network, and other service 
networks (Batty et al., 2012). For instance, social net-
works refer the intangible interconnectedness between 
individuals, specialized groups, or communities 
where nodes are people and edges indicate the level 
of interpersonal relationships (Shen & Karimi, 2016). 
Street network on the other hand, refer spatial infra-
structures over which human mobility and transpor-
tation of goods and services are accomplished. Gen-
erally, urban street network encompasses drivable, 
walkable and cycling network (Marshall et al., 2018; 
Strano et  al., 2013). These networks are composed 
of arrays of nodes and edges where node represent 
stops including: origin, intersection, and destination; 
whereas edges are road segments which interconnect 
several nodes (Barthélemy, 2011; D’Acci & Batty, 
2019). Urban street network can be a planner or non-
planner graphs; the first represents 2-dimensions with 
edges intersecting only at nodes, whereas the latter 
contains differently graded expressways, overpasses, 
bridges and tunnels in the graph (Barthélemy, 2011; 
Strano et al., 2013). Though both graphs are used for 
developing street networks for better representation 
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of spatial properties i.e., length, width and shape; the 
prior is usually used in transportation studies (Bar-
thélemy, 2011; Marshall et al., 2018). Street network 
are useful to understand urban space and human inter-
actions (Masucci et al., 2009). Specifically, user gen-
erated big OSM data are a pragmatic way to uncover 
the status of spatial infrastructures development and 
support urban planning and management endeavors. 
Some areas of use in urban science include: mod-
elling traffic and trip (Pun et  al., 2019), analyzing 
city patterns (Boeing, 2019a), and inferring urban 
designs and histories (D’Acci & Batty, 2019; Fusco 
et al., 2015; He et al., 2019). User-friendly data min-
ing, processing and analytical framework are highly 
demanded to generate empirical planning metrics for 
sustainable urban growth.

Spatial networks are used in several aspects of 
urban planning and design arenas. The complex spa-
tial structure of systems and specific functional pur-
poses of streets i.e., drivable, walkable, or biking; pin 
the interest of urban analytics, geographers, and phys-
icists. In urban planning and design, street networks 
are used for the analysis of urban morphology, trans-
portation patterns, economic agglomerations, infra-
structural development, social equity and urban liv-
ability and sustainability (Crucitti et al., 2006; Payre, 
2010; Sudhira et  al., 2004; Wagner, 2008; Zhong 
et  al., 2014). Specifically, network metrics such as 
centrality measures, data mining, and machine learn-
ing algorithms are used to analyze the city’s func-
tional centres; land uses patterns, complexity and 
size of urban areas, and street networks (Toole et al., 
2012; Zhong et al., 2014).

Spatial connectivity of cities has impacts on 
urban socioeconomic growth and resilience (Yu 
& Gayah, 2020). For instance, the topology of 
streets are useful to compute morpho aesthetic and 
network-variety of cities (Acci, 2019) and the con-
centration of major nodes are applied to evaluate 
accessibility (Cheng et al., 2013) where a high con-
centration urban areas enjoy better economic advan-
tages and vice versa (Barrington-leigh & Millard-
ball, 2020). Degree distribution and connectivity 
characteristics like centrality, betweenness are used 
to quantify traffic flows and economic efficiency of 
cities (Zhang et  al., 2017). Moreover, urban street 
network have impacts on urban morphology, land 
use/cover change, energy uses and air pollution 
and environmental degradation (Barrington-leigh 

& Millard-ball, 2020; Van de Voorde et al., 2011). 
Available studies on urban connectivity and acces-
sibility were focused on car-centric streets that 
is merely main roads and limited to highly devel-
oped urban agglomerates of Asia, Europe, and USA 
where developing urban centers in rapidly urbaniz-
ing areas were rarely investigated.

The current study has evaluated the spatial con-
nectivity of rapidly urbanizing cities of Africa to 
answer the research question of “how is the status of 
spatial connectivity of African cities both at urban 
scale and functional neighborhoods i.e., residential, 
and commercial areas?”. This study used urban data 
science tools and OpenStreetMap (OSM) to evalu-
ate the spatial connectivity.

Urban street network metrics

Several theoretically reached street network meas-
ures are available in urban science, design, and 
planning. For instance, descriptive network metrics 
like count of nodes, intersection nodes, streets per 
node average, total street length, and street segment 
counts are widely used to examine the complex-
ity of the spatial network of cities (Boeing, 2017a, 
2017b; Pflieger & Rozenblat, 2010). Moreover, 
urban street network metrics like average degree of 
the neighborhood to each node, degree of central-
ity, clustering coefficient (weighted and average), 
page rank (maximum and minimum node and page 
rank), circularity, and centrality (betweenness and 
closeness) are developed to evaluate the connectiv-
ity and centrality status of a city or specific area in 
the urban space (Barthélemy, 2011; Boeing, 2017a, 
2017b; Pflieger & Rozenblat, 2010; Zhang et  al., 
2017).

Street network measures are mathematically 
computed based on graphic and spatial elements. 
For instance, the average degree connectivity, also 
called the average nearest neighbor degree of nodes, 
is computed using a weighted degree of nodes (si), 
the weight of edge which links i and j (wij) and 
neighbors of node i; N(i) (Vespignani et al., 2004).

(1)Kw
nn,i

=
1

si
⋅

∑

j∈N(i)

wijkj
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The normalized weight of connected edges is derived

and ud to determine the local weighted average of 
connectivity of nodes where  Kw

nn, i is above  Knn, i 
when high weighted edges are connected to defined 
neighbors. The degree of centrality is calculated 
using counts of nodes (n) involved in the street net-
work and interconnectedness counts to neighbor-
ing nodes. Where nodes connected to many adjacent 
nodes have higher centrality values than less con-
nected ones. Nodes with maximum centrality value 
have highest impact on spatial connectivity and vice 
versa. The degree of centrality of a node (k) in a net-
work is calculated using (Abbasi et al., 2012; Vespig-
nani et al., 2004).

where n is the number of nodes in the network and 
�(i, k) = 1 if node i and k are connected or 0; oth-
erwise, moreover clustering coefficient, weighted 
clustering coefficient, PageRank are used to quan-
tify directed or undirected street network (D’Acci & 

(2)
wij

si

(3)
n
∑

i=1

�(i, k)

Batty, 2019; Khonji et  al., 2013; Vespignani et  al., 
2004).

The global properties of networks and descrip-
tive metrics including nodes, edges, degree of each 
node, weighted degree, clustering, and closeness 
centrality are used to drive accessibility and inter-
connectedness between locations and estimate the 
intensity of travel or trip volumes in urban areas. 
Street connectivity measures are crucial for ana-
lyzing how much areas are cohesive and how fast 
the spread of information, goods, and people in a 
city or between cities (Abbasi et al., 2012; Michael 
Batty, 2013; Gündoğdu et  al., 2019; Jiang & Liu, 
2009; Pun et  al., 2019; Sudhira et  al., 2004; Wag-
ner, 2008; Zhang & Kukadia, 2005). Moreover, 
metrics like betweenness centrality and PageRank, 
are useful to investigate hubs or central business 
districts in cities and analyze accessibility in both 
directed and undirected street networks (Abbasi 
et al., 2012; Boeing, 2019a; Zhong et al., 2014). A 
summary of spatial connectivity measures is pro-
vided in Table 1.

Table 1  Street network metrics and definition Sources: (Barrington-leigh & Millard-ball, 2020; Boeing, 2017a, 2017b; Frank et al., 
2010; Pflieger & Rozenblat, 2010)

Street network metrics Definition

Nodes (n) Count of nodes in the street network
Count of edges (e) Count of edges in the street network
Average node average (k-avg) Mean number of inbound and outbound edges
Intersection nodes (I) Count of nodes which connects edges
Street per node average (sna) Number of streets from each node in the network (intersection and dead ends)
Total street length (km) (tsl) Sum of edge lengths in an undirected network
Street length average (sla) Mean of edges length in an undirected network
Circularity average (ca) The ratio of total edges length to the sum of great circle distances between nodes
Average neighbor degree (and) Mean degree of nodes about each node
Degree of centrality (dc) The ratio of nodes is each node connected to
Clustering coefficient (cca) The extent to which a node’s neighborhood forms a complete graph
PageRank Maximum (prmax) Ranking of nodes based on the structure of incoming edges
Street Density The ratio of total street length to urban area
Intersection nodes density The ratio of total counts of intersection nodes to urban area
Betweenness centrality (bc) Frequency of nodes used as a bridge between two or more points
Closeness centrality (cc) Average farness or inverse distance of a node to other nodes in the network
Average block sizes (abs) Mean parcels sizes in the urban fabrics
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Methodology

Data and study areas

This study has used geospatial datasets including 
spatial and non-spatial data from open data reposi-
tories. High resolution streets, population of cities 
and Gross Domestic Product value were used (GDP). 
Urban street network data was collected from OSM 
database bypassing python-based data analytics codes 
(Boeing, 2017a, 2017b) and raster population data of 
cities were freely gathered from the NASA socioeco-
nomic data and application center (SADAC). Moreo-
ver, nation level GDP data were collected from World 
Bank database.

To extract urban street network data of sample 
cities the study has followed four steps. In the first 
stage required study settings such as a high-speed 
computer, anaconda3x and spatial tools used for pro-
cessing, analysis, and visualization were arranged. 
At second stage, pre-processing namely selection, 
simplification and error removal were applied on the 
desired datasets. Selection of location briefly sample 
cities and subdistricts and street types was applied 
using data selection queries. Accordingly, the spa-
tial extent of desired cities was acquired using offi-
cial city names and based on predefined bounding 
box from latitude and longitude. In addition, only 
‘drive’ network of eleven cities were extracted while 
cycling and walkable streets were excluded from this 
study to minimize the data into workable unit. After 
selection of desired data, this study applied simpli-
fication and error reduction processes which aims at 
increasing the quality of the street network datasets. 
For instance, unnecessary nodes like non-intersection 
nodes arbitrarily distributed on the curved roads were 
removed except the pragmatic junction and self-loop 
nodes using OSM data processing modules (Boeing, 
2017a, 2017b; Pflieger & Rozenblat, 2010). In the 
third stage, spatial connectivity of drivable streets was 
computed using useful spatial packages/tools namely 
NetworkX, geopandas, matplotlib and OSMx (Cheng 
et al., 2013; Strano et al., 2013; Zhang et al., 2017). 
Street network measures computed in this study are 
shown Table 1.

This study evaluated the spatial connectivity of 
major urban agglomerates of Africa. Rapidly growing 
cities were purposively selected from the northern, 
western, eastern, central, and southern subregions of 

Africa. Briefly, the northern subregion of Africa is 
one of the highly urbanized portions in which most 
well-developed cities of Africa are located along the 
Mediterranean Sea coastlines and Nile River Basin. 
Due to social and political upheavals the has faced 
several urban problems like lack of affordable hous-
ing, unemployment, and vulnerability to climate 
change impacts. Compared to other subregions cities 
in this area has lower slum housing proportions and 
urban areas have played a pivotal role in the economy 
by tapping tourism revenues (Obeng-Odoom, 2016). 
Western and Eastern subregions are the least urban-
ized areas the content. Fast urbanization increases in 
urban density and interconnectedness are the major 
spatial features in this subregion while deficits in 
logistics and transportation, and massive informal set-
tlements negatively affect the sustainable growth of 
cities. Similarly, central Africa is less urbanized, even 
not reach a region-wide larger urban population than 
rural until 2030. The most urbanized part is the south-
ern Africa and have reached the urban majority since 
2011. Generally, urban sprawls, slums, informal set-
tlement, poverty, inequality and lack of urban infra-
structure including roads and access to utility services 
are the roadblocks of African cities to achieve sus-
tainable urban development (Obeng-Odoom, 2016; 
Peter Griffiths, 2018; Lall et al., 2017).

Spatial connectivity analysis

Beyond the limited car-centric commercial roads, 
this study was based on high-resolution street net-
work datasets. Urban data science tools: python3x, 
ArcGIS Pro. and OSM network analyst (OSMNX). 
Descriptive network measures like count of nodes, 
intersection nodes, total street length and average 
length of street are computed using OSMNX mod-
ules. In addition, this study has adapted urban driv-
able street network to evaluate African cities spatial 
connectivity. Urban street network metrics compris-
ing PageRank, closeness, betweenness, intersec-
tion node density etc. were computed at cityscape 
level. In addition, sample commercial and residen-
tial districts were investigated across selected cities 
to understand the availability of disparities between 
these main urban functional areas. The relation-
ship between spatial connectivity indicators and 
socioeconomic attributes like walkability, GDP, and 
population density of studied cities were analyzed. 
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Eleven big cities comprising Abidjan, Accra, Addis 
Ababa, Brazzaville, Cairo, Casablanca, Khartoum, 
Luanda, Lagos, Nairobi, and Johannesburg were 

purposively selected as sample of the study (Figs. 1, 
2).

Fig. 1  Map of sample cit-
ies. List of cities from 1 to 
11 are Abidjan, Casablanca, 
Cairo, Khartoum, Addis 
Ababa, Nairobi, Johannes-
burg, Luanda, Brazzaville, 
Lagos, and Accra respec-
tively

Fig. 2  Flow of the method-
ology approach
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Results

Drivable street network measures

Urban drivable street network measures were com-
puted in 11 cities of Africa. The drivable street net-
work of cities was depicted in Fig.  3. Node counts 
of sample has ranging between 14,540 and 214,974 
where Luanda city has minimum nodes (14,540), 
whereas Johnsburg of Gauteng Metropolitan Munici-
pality is founded as the most complex drivable street 
network. This indicates the total number of accessible 
areas or locations in cities that are directly connected 
is maximum in most urbanized parts of South Africa .

A metropolitan area which has a higher possibility 
of travel between places as nuanced by the increased 
number of edges and nodes in the drivable street net-
works. Moreover, based on the intersection nodes, 
which infers the spatial connectivity in the network, 
Gauteng has maximum intersections with 184,440 
nodes followed by Cairo (113,040), Khartoum 
(103,564) and Casablanca (78,894). The intersection 
nodes density is also computed to zealously depicts 
the spatial connectivity. Accordingly, Casablanca, 
Brazzaville and Addis Ababa have a higher density 
of intersection nodes per unit of an urbanized area 

with respective values of 359,229 and 93 nodes per 
kilometre square. This means the city of Casablanca 
is the most spatially connected metropolitan drivable 
street network, followed by Brazzaville and Addis 
Ababa. In contrast, the capital of Khartoum has mini-
mal intersection nodes per unit of the urbanized area.

The degree of centrality prescribes the poten-
tial importance of nodes and edges in the street net-
work’s topological structure. The larger the number 
of neighbours, the higher the vertex rank and degree 
of centrality. Based on this, if a node in the network 
has much direct connection to adjoining nodes, it is 
more central. It positively influences the overall con-
nectivity in the network regardless of the location of 
nodes. The drivable street network metrics of cities 
indicate that the aggregated averaged degree of cen-
trality is homogeneous and low in values, with rela-
tively higher values in Luanda, Abidjan, and Nairobi. 
As a result, the rapidly growing cities in Africa fol-
low monocentric urban morphology, which upheaval 
transportation connectivity issues and causes traffic 
congestion in cities. The clustering coefficient aver-
age derived from the ratio of neighbour links and the 
maximum number of links that could exist in the net-
work are also used to quantify how the network nodes 
are concentrated. Based on these metrics, the studied 

Fig. 3  Driveable street 
network of Luanda, Johan-
nesburg, Brazzaville and 
Casablanca (a–d). Urban 
drivable street network of 
studied cities were provided 
in Table 2
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cities also have almost homogenous clustering coef-
ficients and PageRank, which ranges from the most 
relatively clustered Gauteng driving network, 0.0682 
(maximum), to 0.01399 Khartoum (minimum). These 
values affirm that cities are growing in less clustered 
patterns weighted with a low degree of centrality or 
connectivity and coarser street densities (Table 3).

The driving street network metrics of African cit-
ies are dynamic across locations. Basic network sta-
tistics and extended network measures computed 
in distances series of buffer distances of 0.8, 2 and 
4 km are used from most functional locations of cit-
ies (i.e., central business districts) to understand local 
connectivity patterns and morphology. For instance, 
city-level (overall) measurement of the average neigh-
bor degree in most studied cities registered maximum 
values and gradually declined with increases in dis-
tance from CBD areas. Cairo has a higher average 
neighbor in central areas than the city’s general site, 
indicating the decrease of compactness from the CBD 
to outer neighborhoods. In contrast, Johannesburg has 
a higher average neighbor degree at 4 km buffer areas 
than others may suggest the polycentricity or exist-
ence of other CBD areas.

Similarly, the average clustering coefficient and 
PageRank of the drivable street network have high 
values in Johannesburg, Casablanca, Lagos, and 
Cairo, explaining the availability of high-density 
drivable networks beyond the walkable distance 
from the CBD. Spatial centrality measures such as 
closeness and betweenness centrality are depicted as 
almost homogeneous patterns across selected clus-
ter distances with higher values in walkable distance 
and declines with increases in distance from CBD 
(Fig. 4).

Socioeconomic attributes and spatial measures 
of street networks

Cities are spatial units in which the agglomeration 
of economies and high population densities are 
placed. The development of urban areas has been 
assessed using different indicators. Infrastructural 
development and improvement in socioeconomic 
attributes such as social amenities and GDP are 
associated with urbanization. Such development 
in socioeconomic conditions and the availabil-
ity of job opportunities in cities have contributed 

to the spatial expansion of urban areas (urbaniza-
tion) and the growth of physical infrastructures 
such as roads. Fast urbanization and GDP growth 
have been observed in Africa for the last 20 years. 
From five subregions of the continent, the Eastern 
and Western African countries are passing through 
rapid urbanization. Specifically, Angola, Ethiopia, 
Nigeria, and Kenya have registered 4.78%, 4.42%, 
4.39%, and 4.13% annual urban population growth 
for the last two decades. Likewise, economic 
growth has also been rising, with an average yearly 
growth rate of 14.2%, 11.9%, 10.69%, and 9.59% in 
Angola, Ethiopia, Ghana, and Kenya.

In terms of walkability ratio (i.e., indicator of sta-
tus of walking road infrastructure compared with resi-
dents) Johannesburg, Cairo, and Casablanca whereas 
Khartoum, Addis Ababa and Abidjan are least walk-
able capitals. In addition, mean annual climatic vari-
ables including temperature, precipitation and visibil-
ity (i.e., distance viewed in nicked eye) are illustrated 
(Tables 3, 4, Fig. 5).

The spatial expansion of urban drivable street net-
works and the global properties of these infrastruc-
tures is highly related to cities’ socioeconomic attrib-
utes. That is, cities that have more complex drivable 
networks support socioeconomic activities. Highly 
populated areas are also associated with the availabil-
ity and accessibility of agglomeration economies (i.e., 
demand and supply). Hence, the global network prop-
erties are computed to understand correspondences 
between cities’ physical properties, like the complex-
ity of the drivable street network and socioeconomic 
status. The number of nodes, edges, and total street 
length of cities has a strong positive correlation with 
socioeconomic metrics’ growth. Similarly, the num-
ber of driving network nodes and edges in cities has 
a maximum correlation coefficient of  R2 (0.9827) and 
correlation (0.991). Furthermore, intersection node 
density and street density also strongly correlate, as 
population density and intersection density have high 
correspondences (Fig. 6).

Cities’ socioeconomic attributes, such as walkabil-
ity ratio, block sizes, and GDP, positively correlated 
with drivable centrality metrics (betweenness and 
closeness). This suggests changes in urban drivable 
street network connectivity have positive implications 
for the city’s growth or that improving the spatial 
connectivity and morphology of critical urban infra-
structures (roads) contributes to urban sustainability.
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Discussion and conclusions

In general this study found minimum and almost 
homogenous spatial connectivity of street network 
at cityscape level. Size of drivable street infrastruc-
ture in cities were minimum compared to developed 
metropolitan areas of Europe, North America and 
China as manifested in the metrics like the total street 
length, node and intersection node density (Table 2). 
For instance, the mean and maximum intersection 
node count and total street length of every towns and 
cities of North America had about 12,582(km), and 
307,848 (km) and 3480 (km) and 79, 046 (km) (Boe-
ing, 2018) are founded higher compared to most of 
the studied cities (Table  3). Moreover, the low and 
middle income countries (LMICS) in Latin America, 
East Asia and Pacific and South Asia has relatively 
better street connectivity compared to the Sub Sharan 
Africa (Barrington-leigh & Millard-ball, 2020).

Spatially, this study identified declining pattern 
of street connectivity (e.g. betweenness and close-
ness centrality) with increasing distance from central 
business districts (CBD) in studied cities. Such pat-
tern of spatial connectivity changes were observed in 
developed countries (e.g. United States) and in oth-
ers LMICS (Barrington-leigh & Millard-ball, 2020; 
Boeing, 2019b). Drivable street network metrics have 
implications on urban sprawl, private car ownership 
and transit oriented development (Barrington-leigh & 
Millard-ball, 2020). Between 1990 and 2014 in aver-
age African were expanded 5% annually which leads 
to low population density and sprawl through time 
(Xu et al., 2019).

Drivable network measures shown the spatial con-
nectivity of urban space using metrics like intersec-
tion density, street density, betweenness, and close-
ness centrality. From studied cities Casablanca was 
founded highly connected with intersection node 

Table 3  Drivable street 
network metrics

Network metrics Mean St-dev Minimum Median Maximum

n 81,304 55,369 14,540 71,430 214,974
e 220,751 149,918 38,593 211,013 576,361
k-avg 5.406 0.437 4.884 5.389 6.284
I 70,891 49,277 12,558 60,389 184,440
sna 2.8692 0.2034 2.4897 2.8919 3.2141
tsl 18,651 15,842 1860 14,897 51,370
asl 168.3 147.4 79.7 119.4 585.3
ca 1.0771 0.0548 1.0206 1.0566 1.2166
and 2.9278 0.1825 2.6129 2.8787 3.2375
awn 0.04822 0.01476 0.03350 0.04286 0.08614
dc 0.000107 0.000095 0.000025 0.000083 0.000365
cca 0.03585 0.01366 0.01399 0.03209 0.06820
ccw 0.000356 0.000345 0.000034 0.000324 0.001187
pgmax 0.000083 0.000080 0.000016 0.000062 0.000296
pgmin 0.000003 0.000003 0.000001 0.000002 0.000010
bc 0.042998 0.026649 0.0063 0.037 0.1139
cc 0.000859 0.000256 0.00039 0.001 0.00135
GDP per Capita ($) 2976.5 1918.035 714 2281 6653.9
wr 1.74 0.223 1.5 1.7 2.2
abs 3.63 1.28 1.7 3.9 5.3
Density (Persons/km2) 2740 2165 714 5165 6654
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density (228.8 nodes/km2) and highest metropolitan 
population density (15, 273 persons/km2), whereas 
Khartoum has minimum intersection, street densi-
ties, and urban population (3.4 nodes/km2 and 66 per-
sons/km2). Minimum street network connectivity but 

net increases of private cars in Africa and East Asia 
cities has contributed to traffic congestion which in 
turn leads air pollution (Barrington-leigh & Millard-
ball, 2020). Street network measures that describe 
urban form resilience, like the degree of centrality, 
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circularity average, clustering coefficient, and Pag-
eRank, are homogenous and low in most of the stud-
ied cities. Spatial connectivity indicators has rela-
tionship with the socioeconomic condition of cities. 
For instance, closeness and betweenness centrality 

measures have positive correlation with socioeco-
nomic attributes like walkability ratio, GDP and pop-
ulation density. Future studies would use open and 
worthful data and urban data science tools such as 
OSMnx to explore connectivity and accessibility to 
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Table 4  Socioeconomic and climatic attributes of cities

Cities Population (2022) Density (Per-
son/km2)

Mean annual 
income ($)

Walkability 
ratio

Temperature 
(cc)

Precipitation 
(mm)

Vis-
ibility 
(km)

Abidjan 5,516,000 1700 5081.4 1.6 29 8.6 9
Accra 2,605,000 1300 5017.3 1.7 18 36.1 22
Addis Ababa 5,228,000 5165 1920 1.6 17 95.3 19
Brazzaville 2,553,000 23,456 15,821.2 1.7 27 54.3 11
Cairo 10,100,166 8011 7032 1.8 15 0.3 9
Casablanca 3,840,000 14,200 11,339.2 1.8 14 20.1 7
Johannesburg 6,065,000 2900 24,319.4 2.2 20 58.9 15
Khartoum 6,160,000 5247 755.2 1.5 26 2.8 13
Lagos 15,946,000 6871 8848.9 1.7 29 51.7 9
Luanda 8,952,000 1372 7036.6 1.7 27 18.8 11
Nairobi 5,119,000 6317 11,382.4 1.7 21 7.8 18
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support sustainable development endeavors. Moreo-
ver, urban planners and spatial strategists could 
potentially deploy high-resolution streets to inves-
tigate optimal solutions and support the new para-
digm shift of deploying activity-based planning and 
management develop livable, smart, and sustainable 
cities.
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