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A B S T R A C T   

The utility-scale photovoltaic systems have been widely integrated for sustainable urban development. However, 
the varying photovoltaic conversion efficiency (PVCE) affected by dynamic urban thermal environment causes 
uncontrollable uncertainty in electricity generation, which challenges installed-capacity planning and load- 
balancing operations. To tackle this problem, this study develops a PVCE estimation model containing four hi-
erarchical modules. First, photovoltaic surface temperatures (PVSTs) are retrieved from satellite imagery, and 
meteorological features are collected to represent the dynamic thermal environment. Second, the contribution of 
each feature to the PVST estimation is evaluated, referring to the Mean Decrease in Impurity, Permutation 
Importance, and SHapley Addictive exPlanations. Third, machine learning models using Support Vector Ma-
chine, Random Forest, and XGBoost are developed to establish robust regressions between PVSTs and the 
selected features, enabling an accurate estimation of PVST spatio-temporal heterogeneity. Finally, the spatio- 
temporally corresponding PVCEs are calculated, resulting in a refined estimation of annual electricity genera-
tion. The investigation of four floating PV systems in Singapore found that their PVCEs vary insignificantly 
throughout the year, which is probably because of its stable climate and the cooling effect of water. The proposed 
model is simple and effective, demonstrating its impact on PV potential estimation when the urban thermal effect 
becomes significant.   

1. Introduction 

1.1. Background and motivation 

The International Energy Agency has suggested that solar photo-
voltaic (PV) will become the largest energy resource by 2027, with an 
increase of about 1000 Gigawatts between 2023 and 2027 (Bahar & 
Analyst, 2023). Accurately estimating the utility-scale or distributed PV 
potential is crucial for effective PV deployment planning and evaluating 
the electricity generation of installed PV systems (Zhang et al., 2019; 
Zhu et al., 2023a). Previous studies focused on extracting large-scale PV 
areas from satellite imagery (Li et al., 2021; Wang et al., 2018; Zhu et al., 
2023b), constructing three-dimensional building models with solar 
distribution information (Yan et al., 2023; Zhu et al., 2019), and 
exploring the technical routes for PV deployment in the transition to 
solar cities (Wong et al., 2016; Zhong et al., 2021), which has built a 

scientific foundation for PV potential estimation. It has also been sug-
gested that the thermal environment affects PV conversion efficiency 
(PVCE) significantly (Dubey et al., 2013). However, obtaining PVCE 
requires the measurement of the electrical characteristics and solar ra-
diation, which is impractical and costly when applied to large-scale PV 
systems. Due to this reason, dynamic PVCE has rarely been incorporated 
into the estimation models. Since the urban heat island effect creates an 
altered thermal environment characterized by higher land surface 
temperature and increased thermal mass (Ji et al., 2014; McCarthy et al., 
2010), it is imperative to estimate the effects of the dynamic thermal 
environment on the PVCE. 

To accurately quantify the PV electricity generation, a feasible 
approach is building regressions between thermal-related features (e.g., 
PV surface temperatures (PVSTs) ambient temperature, wind speed, and 
relative humidity) and the PVCE (Kim et al., 2019). However, it cannot 
be applied to the newly constructed PV farms due to the lack of historical 
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PVCE data. Previous studies assumed a constant PVCE to estimate PV 
potential (Morales Pedraza, 2022), which ignored the fact that the dy-
namic PVCE is influenced by the thermal environment (Skoplaki & 
Palyvos, 2009). Therefore, without considering the dynamic effect of the 
thermal environment on PVCE may cause a large deviation in PV po-
tential estimation compared to reality. Particularly, the estimated PV 
electricity production may be significantly smaller than expected based 
on a designated installed capacity, especially in cities where the tem-
peratures are constantly hot (e.g., Singapore) or where there are big 
changes in the thermal environment over time and space (e.g., Dubai). 
Consequently, inaccurate electricity production estimation leads to un-
satisfied operating income and incorrect environmental benefits pre-
diction such as greenhouse gas emission reduction for installed 
utility-scale PV systems. Although the dynamic thermal environment 
can be monitored by high-quality instruments and sensors in the floating 
PV testbed, few studies estimated the effects of the thermal environment 
on PVCE for installed utility-scale PV systems, which usually cover large 
areas. To tackle this challenge, this study aims to develop a simple and 
effective method to accurately estimate PV electricity generation under 
a dynamic thermal environment. 

1.2. PVST estimation models 

Over the past few decades, studies have proposed many methods to 
estimate the relationship between the thermal environment and PVST. 
The most widely used approach is to determine empirical correlations by 
remaining other thermal environment features as a constant under the 
design-specific and simplified conditions (Skoplaki & Palyvos, 2009). 
However, this method cannot be applied to the installed large-scale 
floating PV systems due to the complex interaction of the thermal 
environment. Some other studies focus on the electrical equivalent cir-
cuits. Since the PVST dependence of the electrical characteristics on 
short-circuit current and open-circuit voltage of specific PV modules can 
be obtained after experiments, the PVST can be derived by the corre-
sponding current and voltage under different thermal environments 
(Motahhir et al., 2018; Rashidi et al., 2021). However, this method is 
time and cost intensive, e.g., deploying sensors to obtain the current and 
voltage for PVST derivation. Another approach assumes that the PV 
module is a simplified multilayer model and estimates the PVST based 
on the energy balance model (Akhsassi et al., 2018). For instance, the 
finite element and finite difference methods simplify the heat transfer 
process between the PV modules and the ambient environment and 
between different layers of the PV modules (Aly et al., 2018a; 2018b), 
while the computational fluid dynamics method accounts for both the 
heat transfer and fluid flow to estimate the PVST (Kim & Nam, 2019). 
However, the simplified multilayer model is only suitable for the specific 
PV modules and this method cannot be generalized to other types of PV 
modules or different regions. 

Recently, some studies estimated PVSTs affected by the thermal 
environment by developing appropriate approximation models based on 
artificial intelligence techniques. A study utilized the neural network to 
estimate the PVST from the measured PVST and solar radiation with an 
accuracy of 96 % (Hegazy et al., 2019); however, the accuracy highly 
depends on the measured PVST, which takes a long time to acquire for 
installed large-scale floating PV systems. Another study used ambient 
temperature, solar radiation, relative humidity, wind speed, and elec-
tricity generation to build the PVST estimation models using the Support 
Vector Machine (SVM), Multilayer Perceptron (MLP), and Regression 
Tree Ensemble. While, the result showed that SVM has the smallest root 
mean square error of 3.2 ◦C in the testing dataset (May May Tzuc et al., 
2018), which highly influences the accuracy of the PV electricity gen-
eration estimation. Artificial neural network (ANN) has also been 
developed to estimate the PVST by using the meteorological records of 
wind speed, humidity, cloud cover, and the measured results of outdoor 
air temperature, solar radiation, and PVST as input parameters with the 
R2 of 0.97 (Jung et al., 2020). However, this method is not able to 

estimate continuously spatio-temporal distribution of PVSTs. Missing 
such capability makes it difficult to accurately identify heterogenous 
PVCE over time and space and hinders the planning of PV installation. 
To tackle the above problems, this study aims to determine significant 
influential factors of the utility-scale floating PVSTs and accurately es-
timate PVSTs by reliably input parameters. 

1.3. Estimation of PV electricity generation 

Previous studies proposed that (i) the PVCE of the crystalline silicon 
PV cells will reduce by 0.3 %− 0.45 % with a 1 ◦C increase in the PVST 
under a standard testing condition (25 ◦C) (Kaldellis et al., 2014); and 
(ii) unlike ground-mounted and rooftop PV systems, floating PV systems 
present competitiveness in improving PVCE, which benefits from the 
cooling effects of the ambient thermal environment (Dörenkämper et al., 
2021). Therefore, the estimation of PV electricity generation requires 
consideration of the impact of the dynamic thermal environment. 
Although some studies have attempted to develop the PV electricity 
generation estimation model utilizing continuous thermal-related fea-
tures based on long short-term memory-based machine learning (ML) 
methods, these models can only ensure the accuracy of very short-term 
estimation (e.g., ranging from the next 5 min to next 24 h) because they 
are highly dependant on the most recent meteorological data (Jung 
et al., 2020; Rana et al., 2016). However, the continuously frequent 
measurement is impractical to be applied the utility-installed PV farms. 
Currently, some studies estimated the PVCE from the thermal environ-
ment based on ML. A study proposed ANNs to estimate the PVCE by 
using ambient temperature, solar radiation, wind speed, and relative 
humidity as input parameters with the lowest root-mean-square error 
(RMSE) of 0.017 (Arslan, 2023). However, it is a data-driven method 
requiring sufficient data to guarantee the model’s accuracy. To accu-
rately estimate the PV electricity generation, we can estimate the dy-
namic PVCE due to the high correlation between the PVST and PVCE 
(Skoplaki & Palyvos, 2009). 

1.4. Land surface temperature retrieval method 

Unlike deploying many sensors, the land surface temperature (LST) 
retrieval method is an economical and effective alternative to observing 
the PVSTs. Easily accessible remote sensing images cover large areas, 
which can provide the observation of the entire utility-scale PV areas. 
We retrieved the LST on the PV surfaces as the training data in the 
estimation model. Previous studies developed many retrieval methods 
through one or more thermal bands of remote sensing images (Qin et al., 
2001; Yu et al., 2014). Some studies used only one thermal infrared band 
to retrieve the LST, such as single-channel and mono-window algo-
rithms; however, they rely on accurate upwelling atmospheric radiances 
(Sekertekin & Bonafoni, 2020) and near-surface air temperature (Qin 
et al., 2001), respectively. In contrast, some other studies utilize more 
than one TIR band, such as split window and multi-channel algorithms, 
to minimize the atmospheric effects (Becker & Li, 1990); however, they 
are limited by the quantity and quality of TIR bands (Majumder et al., 
2021; Yu et al., 2014). To accurately retrieve the LST, we utilized the 
radiative transfer equation (RTE) algorithm to eliminate the atmo-
spheric effects (Gillespie et al., 1998) in the Landsat series images, which 
currently have the highest spatial resolution available for free. 

1.5. Contribution 

This study is innovative in (i) developing machine learning-based 
methods to estimate the utility-scale floating PVST, (ii) unravelling the 
effects of dynamic thermal environment on PVST estimation, and (iii) 
improving the accuracy of the PV electricity generation estimation. 
Meanwhile, the raw PVST dataset was obtained from open-access sat-
ellite images, suggesting a favourable generalization capability to any 
other regions. 
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The following sections of this paper are organized as follows. Section 
2 develops a machine learning-based PVST estimation method and 
evaluates the effects of a dynamic thermal environment on the PVST. 
Section 3 introduces the PV electricity generation estimation. Section 4 
exhibits the empirical investigation based on four floating PV farms in 
Singapore. Section 5 compares the PV electricity generation by using 
assumed and estimated PVCE. Finally, Section 6 presents the discussion 
and draws a conclusion. 

2. Machine learning-based estimation of PVSTs 

This study utilizes the satellite images to retrieve the LSTs on floating 
PV surfaces as the ground truth as an economical and effective alter-
native to observing the PVSTs of the installed large-scale floating PV 
farms. Due to the constraints on temporal resolution and cloud cover of 
the satellite images, the remote sensing data alone cannot provide 
continuous LST observations. As a result, this study develops a machine 
learning-based estimation approach to model the relationship between 
observed LSTs and thermal-related features and then generates dense 
estimated PVSTs for further analysis. 

This study proposes a research framework to estimate PV electricity 
generation on large-scale floating PV systems under a dynamic thermal 
environment in the following steps (Fig. 1). First, the observed LSTs are 
used as the training data to estimate the PVST. To achieve this, LSTs on 
floating PV surfaces are retrieved from the thermal bands of remote 
sensing images. Second, the PVST estimation models are built based on 
the ML models to accurately estimate PVSTs under a dynamic thermal 
environment. The estimated PVSTs are validated by using a set of per-
formance evaluation metrics to identify the best estimation model. 
Third, the effects of the urban thermal environment on the PVST are 
evaluated based on the best estimation model, and the floating PV 
electricity generation is better estimated by adapting to the dynamic 
PVCE. 

2.1. Calculating the LSTs on floating PV surfaces 

To build the PVST estimation model, we first extract the floating PV 
areas from the remote sensing images using the Support Vector Machine 
(SVM) classification. Next, the LSTs on floating PV surfaces are 
computed by using the RTE (Sobrino et al., 2004). The normalized dif-
ference vegetable index (NDVI) is calculated in Eq. (1) as follows 

(Townshend & Justice, 1986): 

NDVI =
NIR − R
NIR + R

(1)  

where NIR and R represent the digital number of near-infrared and red 
bands, respectively. The proportion of vegetation coverage (Pv) can be 
described in Eq. (2) as follows, 

Pv =
NDVI − (NDVI)s

(NDVI)v − (NDVI)s
(2)  

where (NDVI)s and (NDVI)v determine whether a pixel represents 
vegetation or non-vegetation by setting a threshold, which are set as 
0.05 and 0.7, respectively. This study classified the land surfaces into 
three types including built-up land, natural surfaces, and waterbody to 
calculate the emissivity of each pixel Peng et al., 2020). The built-up 
land includes the infrastructure elements such as roads and buildings, 
while the natural surfaces encompass natural land surfaces, farmland, 
and woodland. The pixels with an NDVI value less than and equal to 
0 are designated as waterbody, while the ones with an NDVI value 
exceeding 0.7 represent natural surfaces. The in-between pixels, i.e., 
those with an NDVI value ranging between 0 and 0.7 are regarded as the 
built-up land. The emissivity of built-up land (εb), natural surfaces (εs) 
and waterbody (εw) can be calculated (Eqs. (3)–((5)) as follows, 

εb = 0.9589 + 0.086Pv − 0.0671P2
ν (3)  

εs = 0.9625 + 0.0614Pv − 0.0461P2
v (4)  

εw = 0.995 (5)  

B(LST) =
DNThe − Lu − t(1 − ε)Ld

tε (6) 

Eq. (6) describes the blackbody thermal radiance calculation, where 
Lu and Ld correspond to the effective bandpass upwelling and down-
welling radiance (W/(m2 sr μm)), respectively; t represents the band 
average atmospheric transmission; DNThe is the digital number in the 
atmospherically corrected thermal band. After that, LST can be calcu-
lated in Eq. (7) as follow, 

Fig. 1. Research framework built by three interconnected modules.  
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LST =
K2

ln
[ K1

B(LST)
+ 1

] − 273.15
(7)  

where K1 (W/(m2 sr μm)) and K2 (K) are the constant of the thermal 
band corresponding to the specific sensors, which can be found in the 
metadata file of satellite images. Finally, the observed LSTs on floating 
PV surfaces are extracted by the PV areas to build the PVST estimation 
models. 

2.2. Building the PVST estimation models 

2.2.1. Selecting appropriate urban thermal-related features 
The thermal environment is defined as the ambient thermal envi-

ronment on the floating PV areas consisting of several thermal-related 
features, as summarized in Table 1. Notably, some thermal-related 
features are obtained based on other features such as heat index tem-
perature and dew point temperature (Camuffo, 2019; National Oceanic 
& Atmospheric Administration, 2005), which might introduce noise 
resulting in accuracy reduction. To enhance the model’s interpretability, 
highly correlated features are first removed based on the correlation 
coefficient. Next, the remaining features are selected by using the pre-
dictive power score (PPS) and Boruta to drop unimportant features. PPS 
evaluates the estimated capacity of a single feature to the PVST esti-
mation using a decision tree-based model, ranging from 0 (no estimated 
capacity) to 1 (perfect estimation), which can capture the non-linear 
relationships compared with the correlation coefficient (Ferber, 1956). 
Boruta creates shadow features by randomly shuffling the real ones to 
introduce randomness and then uses a random forest classifier to remove 
the features less important than the best shadow feature after a series of 
trials, which follows a binominal distribution (Masrur Masrur Ahmed 
et al., 2021). 

2.2.2. Machine learning-based estimation models 
To estimate the continuous PVSTs, the supervised ML is utilized to 

build the PVST estimation models because of the constraints on the 
temporal resolution of Landsat images resulting in limited observed 
LSTs. SVM is widely used to estimate the PVSTs (May May Tzuc et al., 
2018), which aims to create a function to approximate the relationship 
between features and the target variable by reflecting the original fea-
tures in high-dimensional space (Fan et al., 2020) (Eq. (8)) and minimize 
the distance between the hyperplane and the nearest point from it (Eq. 
(9)). 

f (x) = wT xi + b (8)  

min
1
2

ws2 + C
∑n

i=1
βi

s.t. yi
(
wT xi + b

)
≥ 1 − βi, βi ≥ 0, i = 1, 2, 3, …, n

(9)  

where w and b represent the weight and bias, respectively; C refers to the 
penalty parameter controlling the degree of punishing the samples 

whose errors go beyond the given value; n and βi are the numbers of 
training samples and the slack variable controlling the insensitive zone 
used to fit the training dataset, respectively. The number of support 
vectors and computation complexity reduces with the increasing slack 
variable value. To map the points to higher dimensional space, we used 
the kernel of Gaussian radial basis function (RBF), because linear com-
binations of RBF can approximate almost any function (Anyanwu et al., 
2023). 

This study uses two widely used tree-based methods including 
Random Forest (RF) and XGBoost to estimate the PVSTs. Each decision 
tree in RF searches for the best feature out of a random subset of features 
to reduce the correlation between decision trees (Liaw & Wiener, 2002). 
The final RF estimated results are the average of the estimation from 
decision trees. The impurity score of mean square error (MSE) is 
calculated (Eq. (10)) to evaluate the decision trees as follows (Strobl 
et al., 2007): 

MSE =
(yi − ŷi)

2

n
(10)  

where yi and ŷi represent the true and estimated PVSTs, respectively, 
and n is the number of the training dataset. In addition, the bootstrap 
aggregating method is utilized to replace the random samples. The ob-
servations of a sample can be used as a validation dataset for the cor-
responding decision tree. On the other hand, XGBoost is a scalable end- 
to-end system for tree gradient boosting by simplifying the regularized 
learning objective and algorithm of the approximate framework for 
parallelization Chen & Guestrin, 2016). XGBoost can be described (Eqs. 
(11), ((12)) as follows: 

ŷi = Φ(xi) =
∑K

k=1
fk(xi), fk ∈ F (11)  

F =
{

f (x)=wq(x)
}
,
(
q : Rm→T,w ∈ RT) (12)  

where F, K and T represents the space of regression tree, the additive 
functions used for estimation, and the number of leaves in each 
regression tree, respectively; fk corresponds to a separate tree structure q 
and leaf weight w, while wi represents a continuous score on i-th leaf in 
each regression tree; m is the number of thermal-related features. The 
final estimation is the sum of the score w. The ŷ(t)

i is the estimated PVST 
of the i-th leaf at the t-th iteration, and the ft is an additive term to 
minimize the loss function, which can be approximated (Eq. (13)) as 
follows: 

L
(t)

≈
∑n

i=1

[

l
(
yi, ŷ(t− 1))

+ gift(xi) +
1
2
hif 2

t (xi)

]

+ Ω(ft) (13)  

where l evaluates the variation between the target yi and the sum of the 
estimation at the (i − 1)-th iteration ŷ(t− 1) and the approximate value of 
ft in differentiable convex. The symbols gi and hi represent the first and 
second order gradient statistics on the loss function, respectively. The 
simplified objective can be obtained after eliminating the constant term 
in Eq. (14), while the penalty of model complexity Ω aims to prevent 
overfitting by smoothening the weight w, which can be obtained (Eq. 
(15)) as follows: 

L̃
(t)

=
∑n

i=1

[

gift(xi) +
1
2
hif 2

t (xi)

]

+ Ω(ft) (14)  

Ω(f ) = γT +
1
2

λw2 (15)  

where γ and λ are the L1 and L2 regularization terms, respectively, which 
are used to avoid overfitting. 

To improve the estimation accuracy, grid search combined with 
cross-validation searches through the specific parameter grid for each 

Table 1 
Abbreviations of the thermal-related features.  

No. Abbreviation Features 

1 AT Air temperature in degrees Celsius 
2 H Relative humidity in percentage 
3 WS Wind speed in kilometres per hour 
4 V Visibility in kilometres 
5 P Atmospheric pressure in millibars 
6 CC Cloud cover amount in percentage 
7 UVI Ultraviolet Index 
8 R Precipitation in millimetres 
9 HIT Heat index temperature in degrees Celsius 
10 DPT Dew point temperature in degrees Celsius  
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model in the independent validation dataset to achieve the best hyper-
parameter combination. Apart from the testing dataset taking account of 
20 %, the remaining data is the training and validation dataset, which 
are utilized in the 5-fold cross-validation for hyperparameter tuning and 
model selection. 

2.2.3. Evaluation metrics for validation 
The best PVST estimation model is selected by the comparison of the 

evaluation metrics, including the coefficient of determination (R2), 
mean absolute error (MAE), and RMSE between the observed LSTs and 
estimated PVSTs, which are calculated Eqs. (16)–((18)) to measure the 
accuracy of the estimation as follows (Akhsassi et al., 2018): 

R2 = 1 −

∑n

i=1
(LST − PVSTest)

2

∑n

i=1
(LST − PVSTest)

2 (16)  

MAE =

∑n

i=1
|PVSTest − LST|

n
(17)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(PVSTest − LST)2

n

√

(18) 

Where LST, PVSTest, and LST represent the observed LST, estimated 
PVST, and average observed LST ( ◦C), respectively; n is the observation 
number in the testing dataset. 

2.3. The effects of the thermal environment on PVST 

In this study, the contributions of different features to the PVST 
estimation are evaluated by feature importance (FI) scores, including 
three indices. First, the Mean Decrease in Impurity (MDI) observes the 
MSE reduction to quantify the contribution of each feature, which can be 
obtained inherently during the model training without additional 
computation. It is noticeable that MDI might overestimate the features 
with higher cardinality and is only effective within ensemble tree-based 
algorithms (Strobl et al., 2007). Second, the Permutation Importance 
(PI) determines the FI by evaluating the estimation variation by 
randomly shuffling a single feature at a time. Significant variation in the 
PVST estimation indicates high FI; however, PI might overstate the 
importance of correlated features (Gregorutti et al., 2017). Third, the 
SHapley Addictive exPlanations (SHAP) method averages the marginal 
contribution of each feature to the estimation over all possible feature 
combinations, which, however, is computationally intensive for 
high-dimensional datasets (Lundberg & Lee, 2017). Therefore, 
comprehensively using the three indices can unravel the effects of the 
dynamic thermal environment on PVST. 

3. Estimation of the PV electricity generation 

To accurately quantify the dynamic PVCE associated with specific 
time and location, PVST needs to be taken into account, as it determined 
the PV performance variation compared to the temperature in standard 
test conditions (Tstc, 25 ◦C). Thus, the dynamic estimated PVCE 
(η(PVST)) can be obtained based on the PVST generated through the 
machine learning-based estimation model under dynamic thermal en-
vironments in Eq. (19) as follows (Dubey et al., 2013): 

η(PVST) = η(Tstc)[1 + βstc(PVST − Tstc)] (19)  

where the Tstc, η(Tstc) and βstc represent the nominal temperature, PVCE 
and temperature coefficient at maximum power point at standard test 
conditions, respectively. They can be obtained from the nominal data 
from the manufacturer. Meanwhile, Eq. (19) is assumed effective when 
|PVST − Tstc| ≤ 20 ◦C. 

In this study, the dynamically estimated PVCE can be obtained by the 
estimated PVSTs, while the static PVCE is assumed to be 20 % for 

comparison. Therefore, the monthly average estimated PV electricity 
generation, Epv (kWh) can be estimated in Eq. (20) as follows (Skoplaki 
& Palyvos, 2009): 

Epv = A × SR × η × PR (20)  

where the A, SR, and η represent the floating PV areas (m2), monthly 
solar radiation (kWh/m2/month), and monthly average PVCE ( %), 
respectively. PR is the performance ratio of a solar PV system with a 
typical value of 80 %, which considers the system losses such as inverter 
losses, cable losses, and dust effects (Berwal et al., 2017). 

4. Empirical investigation 

4.1. Study area 

Singapore with only 5.6 million population (Koh, 2022) has 
consumed more than 53.5 terawatt-hours (TWh) electricity in 2021 
(Energy Market Authority, 2022). Since Singapore has high annual 
average solar irradiance of 1663 kWh/m2 (Doshi et al., 2013), the Sin-
gaporean government has established an initiative to increase solar PV 
deployment to 2 gigawatt-peak (GWp) by 2030 to facilitate the sus-
tainable goals of the Green Plan 2030 and Net Zero Emissions by 2050 
(Dörenkämper et al., 2021). Due to the limited land at 734.3 km2 

(Singapore Land Authority, 2023), the utility-scale PV systems are 
mainly deployed on the reservoirs and offshores. In this study, we 
investigated four floating PV farms including three ones on the reservoir 
and one offshore with a total installed capacity of 68 MWp, which have 
been operated since 2021 (Bi & Law, 2023; Liang et al., 2022). Fig. 2 
shows the details of them including distribution, installed capacity, and 
covering area. 

4.2. Data collection 

For the urban thermal datasets of Singapore, ten thermal-related 
features from 2009 to 2022 are collected from Meteorological Service 
Singapore (National Environment Agency, 2023) and World Weather 
Online (2023), which are presented in Table 2. The distribution of the 
meteorological stations observing AT, H, and WS is shown in the 
Appendix A. The Landsat images with no cloud cover or as little cloud as 
possible were collected from earth explorer (United States Geological 
Survey, 2023), including Landsat 7, 8, and 9, because of their highest 
spatial resolution of 30 metres available for free at present. Each satellite 
passes over Singapore at around 11:16 AM local time every 16 days; 
however, the imaging time of Landsat 7 has been advanced by around 
1.5 h from April 2022 due to the orbit variation. The scale of four 
floating PV farms is varying as shown in Fig. 2. Thus, the number of 
sampling points of floating PV farms at the Tengeh Reservoir, Strait of 
Johor, Bedok Reservoir, and Lower Seletar Reservoir is 446, 51, 22, and 
16, respectively. Table 3 demonstrates the details of the collected 
Landsat images of each floating PV farm. Meanwhile, the atmospheric 
correction parameters were collected to compute the LST from the Na-
tional Aeronautics and Space Administration (Kafer et al., 2020). The 
solar radiation in Singapore is obtained from the Annual Climatological 
Report in Singapore (2014–2018) at one-day intervals (Meteorological 
Sevice Singapore, 2022) and National Solar Radiation Database 
(2016–2020) at one-hour intervals (National Solar Radiation Database, 
2020) for the PV electricity generation estimation. 

4.3. Data preprocessing 

Since the atmospheric effects lead to huge bias to the LST retrieval, 
original Landsat images require radiometric calibration and atmo-
spheric correction, which aim to convert the raw digital numbers in the 
images to top-of-atmosphere (TOA) reflectance values (Chander et al., 
2009) and remove or minimize the influence of atmospheric effects by 
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Fast Line-of-Sight Atmospheric Analysis of Hypercubes (Katkovsky 
et al., 2018), respectively. To reduce the computational time, two op-
erations were made sequentially. First, the subsets of the radiometrically 
calibrated satellite images were implemented in the ENVI software 
before executing the atmospheric correction, which cover the PV and 
surrounding ground to compute the LST at and near the PV panels. 
Second, only the urban thermal-related data during the day was kept, 
while the remaining data were verified to drop the rows with missing or 
null values and wrong time sequences. After that, the thermal-related 
data were linearly interpolated using data corresponding to the inter-
val before and after the Landsat imaging time. Meanwhile, the air 
temperature, relative humidity, and wind speed corresponding to the 
floating PV locations are computed by using the simple Kriging inter-
polation as an example shown in Fig. 3 for the date of 20 Feb. 2022 at the 
Tengeh Reservoir, 23 Oct. 2021 at the Straits of Johor, 15 Oct. 2021 at 
the Bedok Reservoir, and 15 Aug. 2022 at the Lower Seletar Reservoir, 
respectively. An accuracy assessment based on RMSE was performed to 
compare the performance of different variogram models including the 
Gaussian, Linear, Spherical, Power, Exponential, and Hole-effect, which 
aims to assign weights to the known points in the vicinity of unsampled 
points, while the remaining thermal-related features including V, P, CC, 
UVI, R, HIT, and DPT, are considered to have the same values in the 
whole of Singapore at the imaging time. Overall, the interpolation re-
sults indicate that the RMSEs of air temperature, relative humidity, and 
wind speed range from 0.41 ◦C to 1.43 ◦C, from 3.31 % to 11.87 %, and 
from 0.75 m/s to 2.96 m/s, respectively (Appendix B). 

4.4. Feature selection for PVST estimation model 

As described in Section 2.2.1, Pearson and Spearman’s rank corre-
lation coefficient measure the linear and monotonic relationships be-
tween pairs of thermal-related features and PVST for feature selection 
(Fig. 4(a, b)). The coefficients in the first column on the left exhibit the 
effects of each feature on the PVST estimation, which indicates that HIT, 
DPT, and CC are the top 3 linear correlated features to PVST. Since 
almost all the p-values are smaller than 0.05, it indicates that the co-
efficients between the thermal environment and PVST are statistically 
significant (Fig. 4(c, d)). However, highly correlated features may result 
in a low model’s interpretability as described in Section 2.3. Therefore, 
HIT and DPT will not be used for building the PVST estimation models 
due to their dependence on AT, H, and WS (Camuffo, 2019; National 

Fig. 2. The investigated four floating PV farms in Singapore.  

Table 2 
Collected urban thermal-related features in Singapore (2009–2022) (National 
Environment Agency, 2023; World Weather Online, 2023).  

Source Spatial 
resolution 

Urban thermal- 
related feature 

Temporal 
resolution 

Meteorological 
Service Singapore 

At weather- 
station level 

Air temperature One-minute 
interval Relative humidity 

Wind speed 
Precipitation 
Ultraviolet index 
(daytime) 

One-hour 
interval 

World Weather Online At Singapore’s 
level 

Cloud cover 
amount 

One-hour 
interval 

Atmospheric 
pressure 
Visibility 
Heat index 
temperature 
Dew point 
temperature  

Table 3 
The captured time and the number of collected satellite images from each 
Landsat mission (United States Geological Survey, 2023).  

Location of 
floating PV farms 

Number of 
collected images 

Captured time (dd/mm/yyyy) 

Tengeh Reservoir 7 12/02/2022, 20/02/2022, 16/03/2022, 
24/03/2022, 01/04/2022, 16/09/2022, 
02/08/2023 

Strait of Johor 5 03/07/2021, 23/10/2021, 20/02/2022, 
08/03/2022, 15/06/2023 

Bedok Reservoir 13 17/06/2021, 03/07/2021, 15/10/2021, 
08/03/2022, 24/03/2022, 17/04/2022, 
04/06/2022, 30/07/2022, 01/09/2022, 
30/04/2023, 14/05/2023, 22/05/2023, 
30/05/2023 

Lower Seletar 
Reservoir 

13 25/06/2021, 03/07/2021, 15/10/2021, 
23/10/2021, 20/02/2022, 01/04/2022, 
17/04/2022, 04/06/2022, 15/08/2022, 
22/10/2022, 12/04/2023, 30/04/2023, 
14/05/2023  
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Oceanic & Atmospheric Administration, 2005). This means that eight 
features are maintained based on PPS and Boruta. Although CC is highly 
correlated to H and PVST and has a relatively high PPS to estimate the 
PVST, Boruta suggests that CC had a lower feature importance than the 
best shadow feature in each of the 20 trials as well as V, UVI, and R, 
which indicates they are unimportant. Meanwhile, the PPS heatmap 
shows a low estimation capacity of V and UVI (Fig. 4(e)). This suggests 
that the four features will not be considered either. As a result, AT, H, 
WS, and P were selected to build the PVST estimation models. 

4.5. The estimated PVSTs 

The observed LSTs on four floating PVs were merged to train the 
estimation model because (i) the scale of the floating PVs varies greatly, 
and (ii) a single floating PV cannot provide sufficient samples. The 
observed 3871 records were divided into three sub-datasets for training, 
validation, and testing. The testing dataset accounts for 20 %, while the 
remaining is utilized 5-fold cross-validation to avoid the estimation 
models overfitting in the small dataset. Fig. 5(a) shows the observed 
LSTs on floating PV surfaces retrieved from the Landsat imagery for the 
dates of 16 Sept. 2022 at the Tengeh Reservoir, 23 Oct. 2021 at the 
Straits of Johor, 17 June 2021 at the Bedok Reservoir, and 20 Feb. 2022 
at the Lower Seletar Reservoir, respectively. Fig. 5(b–d) present the 
estimated PVSTs based on the RF, SVM, and XGBoost, respectively, 
which are close to the observed LSTs with the largest difference less than 
1 ◦C. The three PVST estimation methods also capture the characteristic 

of higher PVSTs in the central PV area from the observation results, 
while the edge of floating PV surfaces has lower PVSTs benefiting from 
the cooling effects of ambient thermal environments. 

4.6. Evaluation metrics 

In this study, the RF estimation model exhibits the best performance 
during the 5-fold cross-validation with the R2 of 0.929, the MAE of 
0.648, and the RMSE of 0.873. The yellow and red bars in Fig. 6(a–c) 
show the evaluation metrics of R2, MAE, and RMSE for the training and 
testing datasets, respectively. The three estimation models show similar 
evaluation results with insignificant variation between these two data-
sets indicating that they are not overfitting. The R2 of the testing dataset 
of three models indicates that their estimated PVSTs perfectly explains 
the observed LSTs on floating PV surfaces. The MAE of the three models 
has a range from 0.725 to 0.751 in the testing dataset, while the RMSE is 
from 0.961 to 0.975 (Fig. 6(d–f)). Although the R2 of the RF is a little 
lower than that of the XGBoost, the difference between them is too little 
to affect the PVST estimation. Overall, the PVST estimation model based 
on the RF has a better performance with a lower MAE and a lower RMSE 
in the testing dataset. Therefore, RF will be used for evaluating the ef-
fects of the dynamic thermal environment on the PVST estimation 
because it exhibits the best performance in the training, validation, and 
testing datasets. 

Fig. 3. Simple Kriging interpolation results. (a) AT. (b) H. (c) WS.  
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4.7. Effects of urban thermal environment on PVST estimation 

Comprehensively considering the pros and cons of the feature- 
importance methods, this study depicts the feature importance of 
PVST estimation based on MDI, PI, and SHAP values (Fig. 7). The results 
suggest that AT and H are the most important two features to estimate 
the PVST. Specifically, their contribution accounts for 63.6 %, 70.8 %, 
and 68.7 % regarding MDI, PI, and SHAP, respectively. As described in 
Section 2.3, MDI may overestimate the feature with higher cardinality 
(Strobl et al., 2007), while PI may overstate the FI of highly correlated 
features (Gregorutti et al., 2017). Thus, P has the highest cardinality 
followed by WS, resulting in higher contributions of them in MDI 
compared to the other two methods. Pearson correlation coefficient of 
AT and WS is 0.47, while that of AT and P is 0.44 (Fig. 4(a)). Therefore, 
the FI of AT in PI is higher than the other two methods. 

Fig. 8 displays the distribution of SHAP values of each instance for 
the four urban thermal-related features. Overall, PVST was observed to 
be positively correlated with AT, whereas PVST was negatively corre-
lated with P and WS, respectively. The SHAP values distribution of H is 
complicated, and an extremely high or low value of H generally shows a 
positive correlation with PVST, while the effect of intermediate feature 
values is indeterminate. Despite the inherent strengths and weaknesses 
of each feature importance method, Fig. 7 basically demonstrates a 
consistency in the contribution of each feature, thereby indicating the 
reliability of the results. Overall, the contribution to the PVST estimation 
is ordered by AT, H, P, and WS with approximate values of 35.1 %, 33.6 
%, 18.4 %, and 12.9 % based on the SHAP values (Fig. 7(c)), respec-
tively, in this study. 

Fig. 4. Feature selection heatmaps. (a) Pearson correlation coefficients. (b) Spearman’s rank correlation coefficients. (c) P-value corresponding to Pearson corre-
lation coefficients. (d) P-value corresponding to Spearman’s rank correlation coefficients. (e) PPS scores of the remaining eight variables and PVST. 
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5. Estimation of the floating PV electricity generation 

Fig. 9 depicts the estimated monthly PVCE ranging from 20.82 % to 
20.94 % in Singapore based on the estimated monthly PVST. The 
thermal-related features of average monthly AT, H, P, and WS deter-
mined by the meteorological statistics from 2009 to 2022 (National 
Environment Agency, 2023; World Weather Online, 2023) were used as 
input thermal-related features to obtain the monthly PVSTs from the RF 
estimation model. Due to the cooling effects of the floating PV, the 
estimated PVCE was close to the nominal PVCE at the standard test 
conditions (21.4 %) (Trinasolar, 2022). The PVCE has little change due 
to the steady variation of the thermal-related conditions in different 
months of the year in Singapore (National Environment Agency, 2023; 
World Weather Online, 2023). Also, the dynamically estimated PVCE is 
consistently larger than the static PVCE of 20 % due to the cooling effects 

of the floating PV surface (Dörenkämper et al., 2021), which improves 
the estimation of PV electricity generation. It is found that the estimated 
monthly PVCEs have relatively high values (≥ 20.9 %) in January, 
February, November, and December. Meanwhile, the difference be-
tween the estimated PVSTs of each month ranges between 34.0 ◦C and 
36.1 ◦C, while the average monthly AT has a range from 28.2 ◦C to 
30.5 ◦C. Although the PVCE had little change throughout the year in this 
study, the estimated PV electricity generation can be a drastic difference 
if the total PV area is large enough, such as the utility-scale floating PVs, 
or the floating PVs deployed in high-latitude locations. 

Finally, without modelling the effects of the thermal environment by 
simply assuming that the PVCE is 20 % and the performance ratio is 80 
%, the statically estimated monthly electricity generation ranges from 
9567 to 13,286 megawatt-hours (MWh), as the yellow bars shown in 
Fig. 10. In comparison, by incorporating the effects of the thermal 

Fig. 5. Observed LSTs versus estimated PVSTs from the Landsat imagery for the dates of 16 Sept. 2022 at the Tengeh Reservoir, 23 Oct. 2021 at the Straits of Johor, 
17 June 2021 at the Bedok Reservoir, and 20 Feb. 2022 at the Lower Seletar Reservoir, respectively. (a) Observed LSTs. (b) Estimated PVSTs using RF. (c) Estimated 
PVSTs using SVM. (d) Estimated PVSTs using XGBoost. 
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environment on the PVCE, the dynamically estimated monthly elec-
tricity generation ranges from 10,000 to 13,877 MWh as the red bars 
shown in Fig. 10. Specifically, the dynamically estimated electricity 

generation is higher than the statically estimated one in each month 
(Table 4). It is found that the monthly average electricity generation has 
a peak in March because of relatively high estimated PVCE and solar 

Fig. 6. The evaluation metrics and estimation error for PVST of three estimation models. (a) R2. (b) MAE. (c) RMSE. (d) The estimation error of RF for the testing 
dataset. (e) The estimation error of SVM for the testing dataset. (f) The estimation error of XGBoost for the testing dataset. 

Fig. 7. Feature importance on PVST estimation in RF. (a) MDI. (b) PI. (c) SHAP values.  
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radiation as the dot on the green line corresponding to March shown in 
Fig. 9 and Fig. 10, respectively. Overall, the dynamically estimated 
annual electricity generation is 5888 MWh higher than the statically 
estimated annual electricity generation. 

6. Discussion and conclusion 

This study proposed a novel estimation approach for unravelling the 
relationship between observed LSTs on floating PV surfaces from remote 

Fig. 8. The distribution of SHAP values for PVST.  

Fig. 9. Estimated monthly PVCE based on the estimated PVST in Singapore.  

Fig. 10. The electricity generation estimation of four floating PV farms in Singapore (static versus dynamic PVCE).  
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sensing images and thermal-related features to provide continuous 
PVSTs for large geographical scale floating PV systems, which does not 
require consideration of indoor lab conditions. It is useful for the ac-
curate estimation of PV electricity generation. Three estimation models 
for estimating the PVSTs (with a lower RMSE between 0.96 ◦C and 
0.97 ◦C in the testing dataset) show similar results, which improves the 
estimation to achieve a highly accurate PVCE and PV electricity gener-
ation. Based on the RF estimation model, the air temperature has the 
highest estimated capacity of 35.1 % to the PVST estimation in 
Singapore, while relative humidity, atmospheric pressure, and wind 
speed account for 33.6 %, 18.4 %, and 12.9 %, respectively. Also, the 
dynamically estimated PVCE consistently exceeds 20 % due to the 
cooling effects of floating PV surface, which enables the dynamically 
estimated annual PV electricity generation to be 5888 MWh higher than 
the statically estimated one. 

This study is vital in three aspects. First, we developed a machine 
learning-based approach to accurately estimating the PVST under dy-
namic thermal environments and proposing various evaluation metrics 
for validation, which successfully generate PVSTs from thermal-related 
features. Second, this study provides a comprehensive and in-depth 
understanding of the contribution of each thermal-related feature on 
the PVST estimation under real and dynamic geographical conditions. 
The results are particularly useful for the accurate estimation of PV 
electricity generation due to the correlation between the PVST and 
PVCE, which proposes an alternative approach to evaluate the effects of 
the urban thermal environment on PV electricity generation. Third, this 
study achieves reliable dynamic PVCEs by considering the PVST varia-
tion, which is significant to estimate the utility-scale PV electricity 
generation. In this regard, our approach provides accessible and accu-
rate PV electricity generation of large-scale installed PV farms for 
different stakeholders such as the owner, operator, and manufacturer. 
Thus, our approach is important to plan PV installation considering life- 
cycle economic feasibility (long-term impact) and to operate dynamic 
grid-load balancing (short-term impact). Meanwhile, it can provide a 
benchmark to reveal potential PV system failures with the PV electricity 
generation estimation. 

The repeat cycle of satellite image acquisition restricts the retrieval 
of continuous PVSTs. Although Landsat 8 and 9 operating on the same 
orbit can be regarded as halving the repeat cycle, it is difficult to obtain 
appropriate satellite images with no cloud or as little cloud as possible. 
Meanwhile, the similar satellite imaging time leads to the lack of daily 
variations. Nevertheless, the available images from June 2021 to August 
2023 can provide sufficient observed LSTs on floating PV surfaces at the 
air temperatures between 28.2 ◦C and 30.5 ◦C that covered the annual 
air temperature range in Singapore, which makes the built model 
capable to estimate PVCE in different thermal-related conditions. In 
addition, the thermal-related features have little variation in Singapore 
during the daytime. For example, the range of air temperature corre-
sponding to the imaging time covers both the average air temperature 
for each two-hour interval from 8:00 to 18:00 every day and the monthly 
average air temperature from 2009 to 2022. Therefore, it is possible to 
build a reliable machine learning-based model under the constraints of 
remote sensing data, which can improve the PVST estimation accuracy. 

Notably, the Landsat image is widely available and transferable to 
other regions with the advantages of free access and easy retrieval, 
which brings good generalization capacity to the PVST estimation 
model. For estimations with finer spatial resolution, future work can 
collect the commercial satellite imagery from the thermal sensors with a 
higher resolution, such as the Orbita hyperspectral satellites with a 
spatial resolution of 10 metres and a revisit period of one day, to achieve 
more observed LSTs on floating PV surfaces for training, testing, and 
validation to build the PVST estimation model. This study used the 
empirical formula to estimate the PVCE based on PVST and the nominal 
parameters at the standard test conditions, which is only valid when the 
PVST is less than 45 ◦C. To estimate more accurate PV electricity gen-
eration, we plan to develop PVCE estimation models in the future based 
on the PV configuration information and the real PVCE as well as PV 
electricity generation data. 

In conclusion, this study is innovative in proposing a model that 
accurately and easily estimates the PVST from the dynamic thermal 
environments and estimates the PV electricity generation on installed 
large-scale PV systems. This study should be the first one to quantify the 
effects of the thermal environment on PVST in a dynamic geographical 
environment and longtime duration. This study is significant to obtain 
dynamic and more accurate PVCE. The proposed methodology is inde-
pendent and can be generalized and transported to other places; this is 
particularly useful for various applications related to floating PV 
deployment. 
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Appendix A. The distribution of weather stations in Singapore 

Fig. A.1, Table B.1, Table B.2, Table B.3 

Table 4 
The statically and dynamically estimated electricity generation and their 
difference.  

Month Statically 
estimated 
electricity 
generation (MWh) 

Dynamically 
estimated electricity 
generation (MWh) 

Difference (dynamically 
-statically estimated 
electricity generation) 
(MWh) 

Jan. 11,033 11,546 513 
Feb. 11,749 12,303 554 
Mar. 13,286 13,877 591 
Apr. 11,308 11,780 472 
May 10,725 11,166 441 
June 9867 10,303 436 
July 11,091 11,585 494 
Aug. 11,528 12,031 503 
Sept. 11,078 11,572 494 
Oct. 10,988 11,472 484 
Nov. 9567 10,000 433 
Dec. 10,039 10,510 471  
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Fig. A.1. The distribution of weather stations in Singapore.  

Appendix B. The Simple Kriging interpolation results  

Table B.1 
The hyperparameters and RMSE evaluation of simple kriging interpolation of air temperature. Overall, the RMSE of the air temperature in the best 
hyperparameter combinations is lower than 1 ◦C.  

Date Number of closest points Number of lags Variogram model RMSE ( ◦C) 

2021 - 06 - 17 12 3 Gaussian 0.68 
2021 - 06 - 25 13 4 Gaussian 0.77 
2021 - 07 - 03 3 7 Gaussian 0.94 
2021 - 10 - 15 11 4 Gaussian 0.48 
2021 - 10 - 23 4 5 Spherical 0.99 
2022 - 02 - 12 8 16 Hole-effect 0.41 
2022 - 02 - 20 2 7 Gaussian 0.58 
2022 - 03 - 08 7 5 Gaussian 0.93 
2022 - 03 - 24 11 3 Gaussian 0.67 
2022 - 04 - 01 9 12 Hole-effect 0.55 
2022 - 04 - 17 3 4 Gaussian 1.43 
2022 - 06 - 04 13 10 Gaussian 0.51 
2022 - 07 - 30 2 7 Hole-effect 0.66 
2022 - 08 - 15 4 4 Gaussian 0.53 
2022 - 09 - 01 2 5 Spherical 0.80 
2022 - 09 - 16 4 4 Gaussian 0.47 
2022 - 10 - 22 6 14 Power 0.58 
2023 - 04 - 12 3 14 Gaussian 0.47 
2023 - 04 - 30 2 3 Gaussian 0.65 
2023 - 05 - 14 3 7 Gaussian 0.81 
2023 - 05 - 22 3 4 Gaussian 0.72 
2023 - 05 - 30 6 12 Hole-effect 0.75 
2023 - 06 - 15 9 6 Spherical 0.75 
2023 - 06 - 23 4 13 Hole-effect 0.77 
2023 - 08 - 02 3 5 Gaussian 0.59   

Table B.2 
The hyperparameters and RMSE evaluation of simple kriging interpolation of relative humidity. In general, the RMSE of the relative humidity in the best 
hyperparameter combinations ranges from 3.4 % to 11.9 %. Most of them are concentrated in the interval from 3 % to 7 %.  

Date Number of closest points Number of lags Variogram model RMSE (%) 

2021 - 06 - 17 13 4 Gaussian 3.35 
2021 - 06 - 25 7 4 Gaussian 6.66 
2021 - 07 - 03 4 4 Gaussian 5.99 

(continued on next page) 

Z. Huang et al.                                                                                                                                                                                                                                  



Sustainable Cities and Society 99 (2023) 104964

14

Table B.2 (continued ) 

Date Number of closest points Number of lags Variogram model RMSE (%) 

2021 - 10 - 15 8 10 Spherical 5.73 
2021 - 10 - 23 4 5 Gaussian 6.89 
2022 - 02 - 12 3 8 Power 3.31 
2022 - 02 - 20 8 8 Gaussian 4.15 
2022 - 03 - 08 6 7 Gaussian 4.59 
2022 - 03 - 24 12 12 Gaussian 10.12 
2022 - 04 - 01 12 8 Power 10.14 
2022 - 04 - 17 13 6 Gaussian 11.87 
2022 - 06 - 04 5 5 Gaussian 5.47 
2022 - 07 - 30 5 5 Gaussian 5.45 
2022 - 08 - 15 4 6 Spherical 6.99 
2022 - 09 - 01 7 4 Gaussian 8.12 
2022 - 09 - 16 5 4 Gaussian 5.16 
2022 - 10 - 22 5 3 Spherical 5.19 
2023 - 04 - 12 5 10 Hole-effect 2.16 
2023 - 04 - 30 6 14 Hole-effect 5.89 
2023 - 05 - 14 4 6 Gaussian 5.28 
2023 - 05 - 22 4 7 Gaussian 3.66 
2023 - 05 - 30 4 13 Power 6.40 
2023 - 06 - 15 6 14 Gaussian 3.94 
2023 - 06 - 23 4 3 Gaussian 4.09 
2023 - 08 - 02 4 5 Gaussian 4.37   

Table B.3 
The hyperparameters and RMSE evaluation of simple kriging interpolation of wind speed. The RMSE of the wind speed ranges from 0.75 m/s to 2.96 m/s, 
and most of them are concentrated in the interval from 1 to 2 m/s.  

Date Number of closest points Number of lags Variogram model RMSE (m/s) 

2021 - 06 - 17 2 11 Hole-effect 1.76 
2021 - 06 - 25 6 5 Power 1.18 
2021 - 07 - 03 3 12 Gaussian 1.67 
2021 - 10 - 15 4 13 Hole-effect 1.70 
2021 - 10 - 23 2 5 Spherical 1.90 
2022 - 02 - 12 5 3 Gaussian 1.15 
2022 - 02 - 20 3 9 Hole-effect 1.61 
2022 - 03 - 08 3 6 Spherical 0.75 
2022 - 03 - 24 6 10 Hole-effect 1.03 
2022 - 04 - 01 3 6 Hole-effect 2.96 
2022 - 04 - 17 2 14 Linear 1.96 
2022 - 06 - 04 4 3 Gaussian 1.37 
2022 - 07 - 30 3 4 Gaussian 1.44 
2022 - 08 - 15 9 5 Gaussian 2.44 
2022 - 09 - 01 8 9 Hole-effect 1.65 
2022 - 09 - 16 6 11 Hole-effect 1.62 
2022 - 10 - 22 9 8 Hole-effect 1.67 
2023 - 04 - 12 2 12 Gaussian 1.54 
2023 - 04 - 30 5 8 Gaussian 2.53 
2023 - 05 - 14 7 4 Linear 1.42 
2023 - 05 - 22 4 11 Hole-effect 1.75 
2023 - 05 - 30 2 3 Spherical 1.22 
2023 - 06 - 15 4 3 Gaussian 1.28 
2023 - 06 - 23 4 5 Gaussian 1.60 
2023 - 08 - 02 4 7 Hole-effect 1.84  
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