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A B S T R A C T   

Building-integrated photovoltaics (BIPV) can produce power while occupying little urban space. Photovoltaic- 
integrated shading devices (PVSDs) are a key component of BIPV that can generate electricity while blocking 
excess daylight. However, previous studies have lacked a systematic design of PVSDs that accurately estimates 
the trade-offs between indoor sunshade duration and electricity generation. This study proposes a multi-objective 
optimization framework for maximizing PV potential, minimizing PV area, and enabling proper sunshade 
duration in complex urban surfaces. A GIS-based spatiotemporal analysis and optimization approach was applied 
to three PVSD planning scenarios: (i) parallel to the horizontal land surface, (ii) inclined at an angle equal to the 
local latitude, and (iii) rotated in real-time to keep the PV surface perpendicular to the solar radiation. Different 
PV widths are determined under different scenarios considering power generation and solar shading duration. In 
the real-time rotating scenario, the optimized 0.7-m-wide PVSDs can generate 0.861 GWh of electricity annually, 
with a competitive average power generation efficiency of 0.811 kWh/m2/day and a solar shading duration of 
6.61 h/day. Flexible installation scenarios are suggested to account for shading from other upper PVSDs and 
surrounding buildings. This study can facilitate solar farming in global cities and contribute to renewable energy 
penetration.   

1. Introduction 

Global cities generated approximately 75% CO2 emissions, causing 
frequent heat waves and global warming [1]. To mitigate global 
warming, reduce air pollution, and achieve the United Nation’s Sus-
tainable Development Goals [2,3], the global community facilitates the 
use of renewable energy for sustainable development [4,5]. Since solar 

energy is credited as a free, clean, unlimited, and eco-friendly renewable 
energy source [6], people have witnessed a growing interest in capturing 
solar energy locally to reduce its dependence on traditional electric 
utilities in recent years [7]. 

It is reasonable to install building-integrated photovoltaics (BIPV) at 
locations having abundant solar energy to generate a large amount of 
electricity without taking up precious land in cities. BIPV products can 
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be grouped into four macro-categories [8]: PV-façades [9,10], PV-roofs 
[11–13], PV-windows and overhead glazing [14–16], and PV-sunshades 
[17–20]. The evaluation of these approaches was traditionally based on 
simulation software packages or Computer Aided Design (CAD) models, 
such as EnergyPlus [21–23] and PVsyst [24–26]. For example, an early 
research modeled a BIPV south-orientated tilted roof at 20 different 
locations ranging from 0◦N to 85◦N latitude and demonstrated the 
correlation between the optimal tilt angle for a fixed BIPV system and 
the location of the system deployment, i.e. the latitude [27]. According 
to a study that assessed the technical and economic viability of using a 
thin-film Cadmium telluride BIPV system in six Brazilian cities, it was 
suggested that BIPVs integrated on rooftops and façades could meet 
building’s annual energy consumption [28]. High-rise buildings have a 
high potential for installing BIPV on façades, but they may also cause 
significant shading on neighboring buildings throughout the year. Be-
sides, L-shaped and U-shaped buildings are typically less efficient for 
BIPV deployment, primarily due to the shading from solar inter-building 
reflections and surrounding buildings [29]. To address the concern 
about BIPV’s economic suitability, previous studies quantified its soci-
etal and environmental impacts and conducted economic analyses such 
as lifecycle cost analysis [30,31]. 

Photovoltaic-integrated shading devices (PVSDs), a type of BIPV 
product, are defined as the components of building shading devices that 
are substituted by or coated with PV elements in this study, especially 
panels, overhangs, and awnings. This technology enables to convert 
excessive incident solar radiation into power in situ as well as balance 
the thermal and lighting environment of the building [8], which has 
attracted more attention recently. The integration of PV with Brise–Soleil 
systems (i.e., PVSD) has been proven to be more technically efficient 
than other BIPV products like PV-façades and PV-roofs, and its efficiency 
is comparable to that of roof-mounted standalone PV systems [32,33]. 
According to the study [34], PVSDs that are designed and positioned at 
the optimal orientation and tilt can effectively prevent undesired direct 
sunlight and irradiation, and act against overheating and glare, while 
ensuring a favorable electrical yield. 

So far, most PVSDs have been applied to static scenarios, especially 
for office buildings [35]. One study performed a PVSD simulation on a 
single-family detached house in Famagusta, Cyprus, and found that the 
strategic use of PVSDs for openings facing east, west, and south can 
reduce its energy consumption by about 50% in three peak months of the 
year [36]. It was discovered that PVSDs face to the south with a 30◦ tilt 
angle could maximize the electricity generation in a series of simulations 
for office space in Hong Kong [19]. A previous study has compared 
different scenarios among 15 cases and concluded that passive building 
design with shading devices is the most effective and balanced solution, 
which can achieve substantial potential energy savings while maxi-
mizing thermal and visual comfort [37]. Despite the achievement, the 
viability of assessing the potential of PVSDs in fine-scale urban areas is 
typically neglected, and existing studies have not yet gone beyond the 
building level. To bridge the gap, it is essential to develop accurate 
methods for estimating the solar potential distribution over larger areas, 
which can provide valuable insights into the placement and configura-
tion of PVSDs in the broader context of urban environments. Further-
more, appropriate and scientific planning of PVSDs with different usage 
preferences is needed, which considers factors such as the tilt angle of 
the PV modules, as well as the energy needs of the building and the 
comfort level of the occupants. 

Due to the spatial and temporal complexity of real-world urban en-
vironments, expanding the solar PV simulation to the three-dimensional 
(3D) urban scale is a key challenge. Geographic information system 
(GIS) techniques have been explored to address the fine-scale PV plan-
ning challenges. The web-based PV estimation platform PVGIS was 
designed to evaluate large-scale PV potential in the early years [38,39]. 
Afterward, a combined vector-voxel approach was used to calculate 
solar radiation in 3D city models [40]. An algorithm called SOL was 
developed to calculate global solar irradiance for a set of points located 

on urban surfaces using Light Detection And Ranging (LiDAR) data with 
solar astronomical models [41]. One research went a step further to 
incorporate the 3D City Geography Markup Language (CityGML) model 
into the SOL algorism [42]. An integration of CAD-related 3D solutions 
and GIS-related regional solutions is introduced to fulfill the re-
quirements of multiscale solar potential evaluation [43]. These ap-
proaches fully utilize the GIS’s large-scale spatial analysis capabilities, 
but limited thought has been given to integrating BIPV modeling with 
GIS technology in urban structures, especially building façades. 

One state-of-the-art methodology developed the 3D intersection 
method in PostgreSQL to model the solar capacity of a city as 3D point 
clouds (i.e. a discrete set of 3D points in space) covering the whole urban 
surface [44,45], which takes real-world atmospheric conditions and 
shadow effect made by nearby buildings into account and allows fast 
computation of large amounts of buildings. This physically sound model 
has been applied to investigating urban PV planning issues, such as 
estimating solar PV potential on urban noise barriers [46], charging 
shared electric scooters [47], and typical urban architecture [48]. 
Overall, these previous studies have generated valuable scientific in-
sights into understanding the solar PV potential of cities. 

However, a perspective that considers the heterogeneity of local- 
scale spatial and temporal PV potential in the planning of PVSDs is 
currently lacking. Evaluating the solar PV potential of PVSDs in urban 
areas is crucial for designing and implementing sustainable building 
policies. Ideally, such an evaluation should be performed in a multi- 
objective optimization framework, balancing competing building per-
formance factors influenced by PVSDs, over a large geographical extent 
to reveal urban solar potential distribution characteristics under intri-
cate shading events, and considering a high temporal resolution to un-
derstand the dynamic variation of solar irradiation and match real 
power demands. This has rarely been accomplished in previous studies. 
Therefore, our study aims to implement this evaluation and precisely 
demonstrate the spatiotemporal PV potential distribution of PVSDs in an 
urban area. In this way, we can answer questions of “where to build”, 
“when to profit”, and “how to improve”. 

In this study, we have collected cloud cover data and three- 
dimensional building footprint data to estimate the solar PV potential 
of PVSDs on the extracted windows in the study area, demonstrating the 
huge potential of local renewable energy systems. The novelties of this 
study are elaborated as follows: (i) proposing a multi-objective optimi-
zation approach to maximize distributed solar farming (i.e., achieve the 
highest possible deployment and utilization of solar energy through 
distributed PV systems) and effective shading duration (which considers 
the varying shading requirements in different seasons) on the PVSDs; (ii) 
analyzing and comparing three PVSD deployment scenarios to deter-
mine optimal modeling parameters, and discussing the differences in 
their energy and shading performances; and (iii) revealing the spatio-
temporal solar PV heterogeneity of PVSDs in an urban environment to 
guide the strategic placement. Our findings can promote energy transi-
tion in urban areas and contribute to the realization of the nearly zero 
energy buildings (nZEB) concept. 

The rest paper is structured as follows. Section 2 proposes the 
methodology to perform multi-objective optimization for PVSD instal-
lation. Section 3 introduces the case study to empirically evaluate the 
developed methodology. Section 4 presents the modeling results and 
investigated the differences between different scenarios. Section 5 pre-
sents the discussion and Section 6 draws the conclusion. 

2. Methodology 

This study proposed a multi-objective optimization framework for 
PVSD planning, balancing the trade-off between maximizing solar 
farming and providing proper sunshade duration. The framework con-
tains three major stages (Fig. 1): first, accurately modeling spatiotem-
poral distribution of solar potential on 3D urban surfaces throughout the 
year based on the statistically significant weather data and building 
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footprint data enriched with the height attribute; second, extracting the 
window areas from street-view images and estimating the solar PV po-
tential on the PVSD surfaces based on the three proposed scenarios; 
third, planning the optimal installation locations for PVSDs by consid-
ering the merits of each scenario. The abbreviations used in this study 
are listed in Table 1. 

2.1. Computation of land surface solar irradiation 

To accurately assess the potential of solar irradiation on land sur-
faces, it is crucial to account for the impact of cloud cover under various 
weather conditions. This study calculated the monthly average atmo-
spheric transmittivity and diffuse proportion based on cloud cover data 
according to a straightforward yet effective method [49]. Transmittivity 
(T) represents the amount of light passing through a material, such as a 
window or solar panel, while diffuse proportion (D) measures of how 
much of the light is scattered or diffused rather than traveling in a 
straight line. By incorporating T and D, we can calculate the direct and 
diffuse solar irradiation on land surface, which will be used to determine 
the real-world spatiotemporal solar potential. The formulae are pre-
sented in Equations (1) and (2): 

T = 0.7 × Pclear + 0.5 × Ppartial− cloudy + 0.3 × Pcloudy# (1)  

D = 0.2 × Pclear + 0.45 × Ppartial− cloudy + 0.7 × Pcloudy# (2)  

where T is the fortnightly average atmospheric transmittivity, D is the 
fortnightly average diffuse proportion, Pclear is the percentage of clear 
days per two weeks, Ppartial− cloudy is the percentage of partly cloudy days 
and Pcloudy is the percentage of cloudy days. 

2.2. Estimation of spatiotemporal solar distribution on 3D urban surfaces 

This study utilizes a well-established model to estimate solar distri-
bution on 3D urban surfaces [44], which has been suggested to be ac-
curate and reliable in many studies [45–48,50]. In the model, urban 

surfaces (i.e., rooftops, façades, and ground) are represented by 3D point 
clouds, where each point records the quantified solar irradiations on a 
unit area. The urban surfaces are denoted by G and consist of building 
footprints associated with the height attribute, which can be decom-
posed into rooftops, façades, and ground. Each element g ∈ G is dis-
cretized into a set of homogeneous grids with a constant resolution that 
are spatially contiguous with each other. Centroids denoted by P are 
extracted from the grids to present 3D point clouds of the urban surfaces. 
Each point p ∈ P is represented by a unique ID, a 3D coordinate, and a 
building index number. After that, a full set of parallel solar radiation 
vectors passing through the atmosphere and arriving at the point clouds 
P are determined and denoted by R = {r}. 

A solar radiation vector r can be expressed as a tuple 〈e, β, t, l, u0〉, 
which means that r comes from the atmosphere at an elevation e and an 
azimuth β with qualified irradiation u0 and arrives on an urban surface 
located at a 3D coordinate l at time t. The 3D intersection between urban 
surfaces G and radiations R is furthermore carried out to produce a set 
of 3D shadow surfaces denoted by S . Several modifications have been 
made and recorded by S

′ to make the initial shadows S physically 
correct, including removing solar-facing or low-rise coincident facades 
and reshaping shadow surfaces by nearby buildings and concave roof-
tops. Finally, for each point p ∈ P , the solar irradiation u is set to 0 if it is 
below the shadow surface S ′, else u is expressed as f(u0). 

2.3. Estimation of the power potential of the PVSD 

The estimation of the power potential of the PVSD is made by 
physical modeling, consisting of an accurate estimation of shadow dis-
tribution and solar potential redistribution on PVSDs. It shows that the 
sunlight is obstructed by the PVSDs that are installed perpendicularly to 
the wall, creating a grey shadow area on the blue window (Fig. 2a). The 
width and length of the PVSDs are denoted by w and l, respectively. The 
distance from the top of the window to the PVSD is represented by d, and 
the height of the window is h. The interval between two adjacent PVSDs 
is indicated by v, the angle between the PVSD and the wall by θ, the solar 

Fig. 1. A flowchart of modeling the PVSDs.  
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elevation angle by e, and the height of the shadow on the façade made by 
the PVSD by Hs. The estimation considers three different situations: (i) 
Hs < h, part of the window is shadowed, (ii) h < Hs < v, the entire 
window is shadowed, and other PVSDs below will not be affected, and 
(iii) Hs > v, the shadow created by PVSDs can cover the entire window 
and partially or fully cover the PVSDs or windows below, which is 
considered as overshadow. 

Fig. 2b draws the side view of the model, where the upper inclined 

PVSD with an area of A creates full shading for the window and simul-
taneously blocks part of the lower PVSD with a shadowed area of A′. The 
shadowed area A′ is computed in Equation (3). Considering the differ-
ence between the solar irradiation azimuth and the façade azimuth, the 
height of shadow Hs is calculated in Equation (4). Fig. 2c depicts a top 
view of the model, where the clockwise arrows make up an exterior ring 
of the building footprint. The azimuth of each footprint polyline is 
denoted by α, the solar azimuth is represented by β, and the absolute 
difference between α and β is denoted by γ. On this basis, solar irradi-
ation on the PVSD is expressed as u′ and calculated in Equation (5). 

A′ =
(Hs − v) • sin(90 − e) • l

sin(90 + e − θ)
# (3)  

Hs =
w⋅sin θ

sin(α − β)
tan e + w⋅cos θ# (4)  

u′ = u •
cos(θ − e)

cos(e)
• (w • l − A′)# (5)  

2.4. Scenario-based priority optimizations 

Since several PVSD usage preferences may result in significantly 
different optimization results, this study refines three preferences cor-
responding to different priorities to facilitate the optimizations: (i) sight 
view first with PVSD horizontally installed, (ii) shading and sight view 
compatible with PVSD inclinedly installed, and (iii) electricity genera-
tion first with PVSD always perpendicular to the varying solar irradia-
tion. They are more formally represented by: (i) static horizontal 
scenario (SHS), where all PVSDs are installed parallel to the horizontal 
ground, which is the most common solution (Fig. 3a); (ii) static inclined 
scenario (SIS), where all PVSDs are tilted at an angle equal to the lati-
tude of the location, which allows for maximum electricity output by 
facing approximately between the sunlight’s highest and lowest points 
in summer and winter (Fig. 3b); (iii) real-time rotation scenario (ROS), 
where the angle of all PVSDs varies in real-time to match the current 
solar elevation angle (Fig. 3c). In Fig. 1, the shaded area is represented in 
grey, the window is indicated in blue, and the area where 3D solar 
vectors arrive on the PVSD is presented in orange. The yellow circle 
represents the sun. 

2.5. Multi-objective optimizations 

PVSDs can serve multiple purposes such as electricity generation, 
indoor cooling, and architectural aesthetics [8]. However, some of these 
purposes may conflict with each other when it comes to PVSD planning. 

Table 1 
Abbreviations used in this study.  

No. Abbre. Nomenclature 

1 T Transmittivity 
2 D Diffuse proportion 
3 Pclear The percentage of clear days per two weeks 
4 Ppartial− cloudy The percentage of partly clear days per two weeks 
5 Pcloudy The percentage of cloudy days per two weeks 
6 G Urban surfaces 
7 g Element of urban surface (i.e. building) 
8 P A set of all the point clouds 
9 p A point 
10 R A set of all the solar radiation vectors 
11 r A solar radiation vector 
12 e Solar elevation angle 
13 β Solar azimuth angle 
14 t Instant of time 
15 l Location 
16 u0 Qualified solar irradiation of a solar vector 
17 u solar irradiation of a point 
18 S A set of 3D shadow surfaces 
19 S

′ A set of the modified 3D shadow surfaces 
20 w Width of the PVSD 
21 l Length of the PVSD 
22 d Distance from top of window to PVSD 
23 h Height of the window 
24 v Interval between two adjacent PVSDs 
25 θ Tilt angle of the PVSD 
26 Hs Height of the shadow on the façade made by PVSD 
27 A Area of the PVSD 
28 A′ Shadowed area of the PVSD 
29 α Azimuth of footprint polyline 
30 γ The absolute difference between α and β 
31 u′ Solar irradiation on the PVSD 
32 Ey Annual electricity generation of the PVSD 
33 Ẽy Annual electricity generation of the PVSD per square meter 
34 Ẽd Electricity generation of the PVSD per square meter per day 
35 TH Threshold 
36 τ Effective sunshade duration 
37 F The objective function 
38 W A set of extracted 3D window points 
39 w A 3D window point  

Fig. 2. The PVSD power generation calculation model in 3D view. (a) Solar irradiation is obscured by PVSDs and generates shadows on the window surface. (b) A 
side view showing that solar irradiation causes overshadow on the lower PVSD. (c) A top-down view showing the relationship between solar azimuth and building 
polyline azimuth. 
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For example, maximizing solar farming with an optimal tilt angle may 
result in insufficient indoor daylighting, causing an increased energy 
consumption for artificial lighting. Therefore, it is important to consider 
the trade-offs to optimize the PVSD installation. That is to say, the PVSDs 
should not only generate electricity as much as possible, but also provide 
proper sunshades with sufficient daylight. 

The PVSD’s annual electricity generation Ey must exceed a threshold 
TH to guarantee an adequate amount of electricity generation in any 
independent PVSD planning scenario. The threshold TH is set at 60% of 
the maximum Ey in the specific scenario to adapt to the data range and 
improve the consistency of results across different scenarios, as well as 
to achieve a compromise between sensitivity and specificity. The 
adverse impact on power generation of surrounding buildings that cast 
shadows on PVSDs can be disregarded by setting TH. Windows that are 
frequently shaded by surrounding structures will inherently receive less 
solar radiation over a year than windows with unobstructed exposure, 
resulting in a lower solar PV potential. This conflict with our optimi-
zation goal of maximizing PV potential while minimizing PVSD area. 

The solar shading capability is measured by effective sunshade 
duration τ, which represents the average number of hours during which 
the PVSD provides proper shading. The term “proper shading” refers to 
providing the right amount of shading at the right time. Thus, the metric 
τ is designed to be time-dependent and adaptable to different seasons. It 
draws inspiration from previous relevant metrics, such as Window 
Sunlight Hours [51] (cumulative sunlight exposure duration of windows 
from 8 a.m. to 4 p.m. on January 21st) and Useful Daylight Illuminance 
[52] (the percentage of occupied hours when daylight levels on the 
horizontal working plane fall within certain ranges). In summer, PVSDs 
are required to block the majority of sunlight to reduce indoor heat as 
possible. In spring, the shading requirement for PVSDs can be slightly 
eased. While in winter, PVSDs should allow a moderate amount of 
sunlight to enter the room, providing warmth and natural light. Hence, 
upper and lower limits are set for winter to avoid non-sufficient and 
excessive sunlight. The effective sunshade duration τ is mathematically 
expressed in Equation (6): 

τ =
∑18

t=9
f (Hs, t)# (6) 

The indicator function f(Hs, t) is set to 1 when the conditions shown 
in Equation (7) are met; otherwise, it is set to 0. 
⎧
⎪⎪⎨

⎪⎪⎩

Hs ≥ 0.8 × h, if t in summer

0.4 × h ≤ Hs ≤ 0.7 × h, if t in winter

Hs ≥ 0.6 × h, if t in spring/autumn

# (7) 

The objective functions are to minimize the total PVSD area A 
(Equation (8)), while simultaneously maximizing the accumulated solar 
irradiation u (Equation (9)) and maximizing the effective sunshade 

duration τ (Equation (10)). The optimization approach followed a step- 
wise approach. The first optimization priority is to maximize the accu-
mulated solar irradiation, followed by the second priority of maximizing 
the effective sunshade duration. In each optimization scenario, if the 
determined PVSDs consistently meet the power generation requirements 
and provide proper shading throughout the year, it indicates a conver-
gence of the optimization process. Through pre-experiments, we have 
determined that setting the value of d to 0 is optimal for maximizing 
both PV generation and the effective sunshade duration in most seasons. 
During each simulation iteration, the urban surfaces G , 3D point clouds 
P , solar radiation R , and historical meteorological conditions remain 
unchanged, and the initial parameters, including the width w and tilt 
angle θ, are updated for all window points in different scenarios. The 
constraints of the parameters used in the optimization modeling are 
listed in Table 2. 

FA = min
(∑

A
)⃒
⃒
⃒
(
Ey ≥ TH

)
# (8)  

Fu = max
(∑

u
)⃒
⃒
⃒FA# (9)  

Fτ = max
(∑

τ
)⃒
⃒
⃒Fu# (10)  

3. Empirical evaluation 

3.1. Study area 

Hong Kong, a highly urbanized city with a population of over seven 
million, has a land area of barely 1114 km2 [53]. High-rise residential 
and commercial buildings consume a significant amount of energy in 
densely populated areas. In 2019, buildings in Hong Kong consumed 

Fig. 3. Three scenarios for installing PVSD on building facades. (a) The static horizontal scenario. (b) The static inclined scenario. (c) The real-time rotating scenario.  

Table 2 
Constraints of the parameters for the modeling analysis.  

Parameter Unit Range Explanation 

Width of the PVSD (w) [meter] 0.5–1 The width of the PVSD is 
iterated from 0.5m to 1m 
with a step size of 0.1m. 

Tilt angle of the PVSD 
(θ) 

[degree] 0–90 The angle between the 
PVSD and the wall should 
be no more than 90 ◦. 

Distance from top of 
the window to the 
PVSD (d) 

[meter] 0–0.2 The distance from the top 
of the window to the PVSD 
should be no more than 
0.2m to guarantee solar 
shading capacity. 

Threshold to guarantee 
an adequate amount 
of electricity 
generation (TH) 

[kWh] 0.6 • max (Ey) The threshold is set at 60% 
of the maximum Ey in the 
specific scenario to adapt 
to the data range.  
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197,730 TJ of energy, with 158,000 TJ (79.91%) being electricity [54]. 
Located at 22.3Nº latitude with a sub-tropical climate, Hong Kong has 
abundant solar energy resources, with an annual average global hori-
zontal solar irradiance of 1.29 MWh/m2 [55,56]. However, the high-rise 
and high-density nature of Hong Kong makes it challenging to develop 
large-scale solar facilities, and less than 0.01% of its electricity is 
currently produced from solar PV farming [54]. To achieve the grand 
goal of net-zero carbon emissions in electricity generation before 2050, 
the Hong Kong Government has introduced the Feed-in Tariff scheme in 
recent years, encouraging the community to develop distributed 
renewable energy. It is estimated that all approved solar energy gener-
ation systems can yield about 200 million kWh of electricity and reduce 
about 140, 000 tons of carbon emissions each year [57]. Therefore, there 
is a great opportunity to deploy distributed BIPV systems in Hong Kong. 
The study area is the campus of the Hong Kong Polytechnic University 
(Fig. 4), one of the densest urban areas containing 28 buildings in an 
area of 0.095 km2. 

3.2. Data collection 

The building footprint data was obtained from the Lands Department 
of the Government of the Hong Kong Special Administrative Region in 
ESRI Shapefile format. The data contains various attributes, such as 
identification number, building height, and area. It was used to extract 
building outlines and building pixels to calculate the solar potential of 
each building. The cloud cover percentage data in 2018 was obtained 
from World Weather Online [58], which was used to calculate T and D 
that conclusively determine land surface solar irradiation. Since the 
study area is relatively flat, the effects of terrain variation on solar 
irradiation distribution were not considered. Besides, we assume that all 
rooftops in the study are flat, since sloped rooftops have an insignificant 
impact on the distribution of solar energy on façades. 

3.3. Data pre-processing 

For easy computation and statistics, this study defined the con-
structed 3D point clouds at 1-m resolution, which means that each point 
represents 1 m2 area, resulting in a total of 1.37 million 3D point clouds 
covering the entire area. This resolution is feasible for accurately rep-
resenting the actual window positions. First, we marked the window 
areas based on the 3D imagery from Google Earth and extracted the 
central points of window areas based on the spatial scale between the 
images and the collected 3D building footprints. For a few tall windows 
that required two adjacent points to represent in the vertical direction, 
such as French windows or glass curtains, only the upper point was 
maintained to avoid modeling the PVSD twice on the same window in 
subsequent procedures. Minor adjustments were then made based on 
site investigation and visual inspection. It shows a satisfactory matching 
between window areas (Fig. 5a–d) and point clouds (Fig. 5e–h) in the 3D 
scene. 

Hourly solar irradiation data were computed for an entire day with 
an equal interval of 14 days throughout the year, resulting in a 
computation of 26 days for the whole year. Each data represents the 
mean solar distribution over the corresponding 14-day period, which is a 
suitable trade-off between big-data computation and high temporal 
resolution. This study developed a Python program to perform the 
following tasks: (i) aggregating the hourly solar irradiation data by day 
and thus by month for demonstration purposes; (ii) filtering out the non- 
building points to avoid unnecessary computation; and (iii) matching 
the extracted window points denoted by W to their corresponding po-
sitions in the 3D point clouds P . Each window point w ∈ W is repre-
sented by a unique ID , a 3D coordinate, a building polyline azimuth α, 
and an interval v denoting the distance between its upper adjacent 
window. 

3.4. Computation 

The solar irradiation estimation model was implemented as a set of 
hierarchical SQL functions in the database management system Post-
greSQL 11 with the support of PostGIS 2.5. Python 3.10 with the support 
of GeoPandas 0.10.2 were used for the data pre-processing described in 
Section 3.3, as well as for PVSD modeling and optimization described in 
Section 2. To cope with the big-data computation, we designed a parallel 
computational architecture that utilizes six CPU cores to get annual solar 
distribution through hourly accumulation and run the optimization 
models. 

4. Results 

4.1. Spatio-temporal solar potential distribution 

The installation of PV modules is preferred in areas where solar 
irradiation is both numerically high and spatially concentrated. There-
fore, it is important to consider the effects of spatio-temporal variations 
of solar potential distribution over the whole year. In this study, we 
estimated biweekly solar distribution to represent the mean distribution 
over the two weeks because seasonal variation is insignificant for this 
short period in Hong Kong. This allows us to make biweekly solar irra-
diation accumulation throughout the year based on the spatial index of 
3D point clouds. For visual inspection, the equal-interval classification 
method was used in ArcGIS Pro to create 32 classes based on the same 
numeric scale and color scheme. 

Fig. 6 illustrates the monthly spatial distributions of solar radiation 
on 3D urban surfaces. The distribution patterns of rooftops and ground 
are generally similar, with higher irradiation values than building fa-
çades. However, shading from surrounding buildings can cause long- 
term shadowing in some ground areas and lower rooftops and façades, 
which limits their PV potential. Specifically, the southeast-facing 
building façades receive more solar irradiation than those facing 

Fig. 4. The overview map of the study area. The red arrows indicate the 
viewing orientation of the study area examples shown in Fig. 10. 
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southwest, especially during the summer (Fig. 6e–h), when e is very 
large and β is between [145◦, 180◦]. On the other hand, the difference of 
irradiations between southeast- and southwest-facing façades is small 
during winter (Fig. 6a, k-l). Notably, the weather in Hong Kong was 
mostly cloudy or partly cloudy in August that created small diffuse 
proportions, which led to smaller solar potentials compared to July. 

4.2. Distribution patterns of solar PV potential 

Assuming a conservative and constant system performance ratio of 
16.5%, which is the product of a 22% PV module conversion efficiency 
and a 75% PV system efficiency [48], we derived the PV potential of the 
PVSD directly from the solar irradiation on the building surfaces. To 
reveal the temporal variation of power generation for PVSDs on all 
extracted windows in the three scenarios, the hourly power generation 
distribution over the twelve months with a 0.5-m-wide PVSD is pre-
sented in Fig. 7. The power generation is mainly concentrated between 
10:00–12:00 from May to August in SHS (Fig. 7a), and an increased 
power generation in the morning is observed in SIS, peaking around 
10:00–11:00 (Fig. 7b). In contrast, ROS has the highest power genera-
tion from 9:00–13:00 in almost all months, and its peak time is around 
9:00 from March to September (Fig. 7c). Despite they had different 
temporal patterns in the morning, all of them experienced a large 
decrease in power generation since 15:00 all over the year, leading to an 
inefficient performance in the late afternoon. This is closely related to 
the varying associations between solar characteristics (i.e., azimuth and 
elevation angle) and building layouts (i.e., building height, footprint 
shapes, and orientations). The revealed patterns are essential to opti-
mize PVSDs installations and useful to assess the techno-economic 
benefits. 

However, not all windows are suitable for PVSD installation, and 
different PV widths may introduce different performances. Therefore, a 
comparison of the solar PV potential of different scenarios and PV 
widths with and without threshold is performed and shown in Fig. 8. The 
threshold TH is set to 60% of the maximum annual electricity generation 
Ey. Fig. 8a and b illustrate the distribution of Ey before and after applying 
the threshold, respectively. The boxes represent the lower and upper 
quartiles, the middle lines represent the median, the whiskers represent 
1.5 interquartile range values, the crosses represent the mean, and the 
dots represent outliers. It is obvious that Ey rises with PV width in-
creases, with ROS producing the most, followed by SIS and SHS. The 
maximum Ey of a 1-m-long PV module using the ROS reached 354.36 
kWh/year, which is 17.53% higher than that using the SIS (301.50 kWh/ 

year), and 57.40% higher than that using the SHS (225.13 kWh/year), 
reflecting that PVSDs with smaller tilt angle and flexible configuration 
scenario have vast potential in power generation. Before applying the 
threshold, the mean Ey of a 1-m-wide PVSD based on the SHS, SIS, and 
ROS is 73.82 kWh, 95.49 kWh, and 108.45 kWh, respectively, which is 
77.25%, 76.31%, and 77.30% higher than PVSDs with the width of 0.5 
m, indicating an approximately rising trend of 15% per 0.1-m in all three 
scenarios. The lower limits for all groups are considerably increased 
after applying the threshold, and the median values are greater than the 
mean values. 

The mean and median normalized power generation Ẽy with and 
without threshold are calculated for a fairer comparison (Fig. 8c and d). 
Prior to applying the threshold, the power generation of PVSD per unit 
area decreases with the PV width increases, and the downward trends 
are similar among different scenarios. From 0.5m to 1m, the ̃Ey in ROS is 
declined from 122.38 kWh to 104.61 kWh. It is mainly because the 
wider the PVSD, the more shading from upper PVSDs prevents the lower 
ones from harvesting sunlight. After applying the threshold, a more 
moderate downward trend is observed, and the absolute gap between 
mean values of different scenarios widens. When PV width is 0.5 m, the 
Ẽy based on the SHS, SIS, and ROS is 186.10 kWh, 255.29 kWh, and 
300.32 kWh, respectively. The results above confirm the benefits of 
using thresholds to maximize distributed solar farming. 

4.3. Optimization of PVSD installation 

After identifying areas with high solar potential, the next step is to 
address the effect of shading. A comparison of effective shading duration 
τ with threshold is shown in Fig. 9. Given that the Ey alone is not suf-
ficient to determine the optimal PV width, the average effective shading 
duration throughout the year is used to determine the most appropriate 
width for each scenario, which will be discussed in details in the 
following subsections. 

4.3.1. SHS-based optimization 
From a PV width of 0.5m–0.7m, both the mean and lower bound of τ 

show a noticeable increase throughout the year under SHS. This implies 
a significant improvement in the overall shading capacity as the PV 
width increases. However, the marginal benefit diminishes significantly 
once the PV width reaches 0.8m and beyond, indicating that increasing 
the PV width beyond 0.7m has less impact on further enhancing the 
general shading capacity (Fig. 9a). Hence, the PV width is determined to 

Fig. 5. Visualization of the window areas and the extracted point clouds. (a)–(d) The red rectangles represent the marked window areas. (e)–(h) The yellow points 
represent the corresponding extracted window points. 
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be 0.7m in the SHS. Under this configuration, the SHS yields a total of 
4737 eligible PVSDs, resulting in a combined Ey of 0.607 GWh. The 
optimized mean ̃Ed per unit area per day is 0.501 kWh, and the mean τ is 

5.1 h per day, which are 2.3 times and 0.85 times of the unoptimized 
ones, respectively. As the PV module can only receive a component of 
solar radiation, the power generation capability of the SHS is the lowest, 

Fig. 6. Daily average solar irradiation on urban surfaces from January (a) to December (l) in 2018.  

Fig. 7. The electricity generation for all potential 0.5-m-wide PVSDs in the study area under three scenarios varies by month and hour. The white grids represent 
no data. 
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with a maximum of about 0.617 kWh/m2/day. The SHS also has the 
shortest solar shading duration in summer (Fig. 9b) but has better 
shading performance in winter (Fig. 9c). Overall, the SHS scenario is 
only competitive in terms of solar shading in specific seasons in Hong 
Kong, and can hardly handle year-round power and shading needs. 

4.3.2. SIS-based optimization 
The SIS strikes a balance between SHS and ROS in terms of power 

generation and solar shading duration. From a PV width of 0.5m–0.9m, 
the increment of τ is kept for around 0.48 h. However, from 0.9m to 
1.0m, the marginal benefit drops to less than 0.13 h, suggesting that 
further increasing the PV width does not significantly contribute to 
additional shading hours. Thus, the PV width is set to 0.9m under the 
SIS. With this condition, only 18.2% of the PVSDs (4030 units) can yield 
46.54% of the total potential power generation (a combined Ey of 0.907 
GWh). The mean Ẽd is 0.685 kWh/m2/day, and the mean τ is 6.66 h per 
day, which are 2.56 times and 0.98 times higher than the unoptimized 
ones, respectively. One possible limitation is that the effective shading 
time of some PVSDs may be less than 1 h during winter (Fig. 9c). 

4.3.3. ROS-based optimization 
The ROS has an adaptive orientation towards solar angles, which has 

the most solar farming and the most shading of windows and sur-
rounding PVSDs. The box shift dramatically higher along the τ-axis From 
a PV width of 0.5m–0.7m. However, when going from a PV width of 
0.7m–0.8m, the marginal benefit dramatically decreases (Fig. 9a). As a 
result, the PV width is set to 0.7m in the ROS. In this width, the ROS 
yields a total of 4159 eligible PVSDs, producing a combined Ey of 0.861 
GWh. The mean Ẽd is 0.811 kWh/m2 per day, and the mean τ is 6.61 h 
per day, which are 2.54 times and 0.96 times than the initial values, 
respectively. In addition, a width of 0.7m can ensure at least 1 h of 
effective shading during winter (Fig. 9c) and approximately 7 h during 
summer (Fig. 9b), without unacceptable shortage in different seasons. 
This indicates that the ROS successfully provides a balance between 
shading requirements in various seasons while maximizing solar energy 
production. 

The spatial distribution of the optimized PVSDs is shown in Fig. 10, 
with a detailed color scheme presented in Table 3. It can be observed 
that power generation on building façades presents gradual changes, 
and continuous access to direct solar irradiation can greatly offset the 
adverse effect of overshadow on lower modules across all scenarios. The 
PVSDs facing southeast have the greatest potential for power generation 
(Fig. 10a,e,i). For certain south-facing PVSDs within a quadrangle, those 
with high power potential tend to be concentrated in the central regions 

Fig. 8. Comparison of solar PV potential of different scenarios and PV widths with and without threshold. (a) Distribution of Ey without threshold. (b) Distribution of 
Ey with threshold. (c) Trends of mean and median Ẽy without threshold. (d) Trends of mean and median Ẽy with threshold. 

Fig. 9. Comparison of effective shading duration with threshold. (a) The mean shading duration throughout the year. (b) The mean shading duration during summer. 
(c) The mean shading duration during winter. 
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(Fig. 10b,f,j). While a few PVSDs can be installed on the top floors on the 
southwestern side under SHS (Fig. 10c), the shaded areas on the same 
side provide almost no suitable spaces for PVSD installation under SIS 
and ROS (Fig. 10g,k). The PVSDs in the building shown in View D 
present a large variation in power potential, with certain areas on the 
top floor being particularly well-suited for installation (Fig. 10d,h,l). 

In summary, given the spatially heterogeneous distribution of solar 
PV potential, it is essential to consider the economics of PV module 
deployment. The amount of generated electricity, shading duration, and 
construction cost all increase as the width of the PVSD increases. It is 
suggested to concentrate on installing PVSDs on the unobstructed 
southeastern side and selectively install them on the upper floors of U- 
shaped buildings that are heavily shaded by neighboring structures. 
Installing PVSDs every two floors can be considered to minimize the 
adverse effects of overshadow. As for the shady side of the study area, 
installing PVSDs on the top floor, which is always perpendicular to the 
wall, might be an appropriate choice. 

5. Discussion 

Installing PVSDs with a smaller tilt angle can generate more elec-
tricity and provide more shade for the indoor environment. Although 
PVSDs can reduce the need for cooling by regulating the sunlight, there 
is no need to provide excessive shade indoors. When natural daylight 
cannot provide the required indoor illuminance, artificial lighting will 
be switched on, wasting energy. The trade-off between increased elec-
tricity production and the potential waste of unnecessary artificial 
lighting should be carefully considered when designing static inclined 
shading systems. 

PVSDs are cost-effective and can be promoted in urban areas because 
they not only capture solar energy without taking up additional urban 
space but also have a positive impact on a sustainable environment by 
reducing energy consumption for indoor cooling. We suggest that 
installing PVSDs on building façades only can partially offset the elec-
tricity demand of buildings, and systematically integrating rooftop and 
façade PVs in suitable locations may be a wise solution. In addition, 
adopting flexible installation scenarios in Hong Kong can help to address 
the mismatch between supply and actual demand over time and space. 
For cities around the world with different climates and urban mor-
phologies, it is recommended to choose the installation strategy by 
comprehensively considering landscape design, installation feasibility, 
and actual power demand. 

The results contain three limitations. Firstly, each point represents an 
area of 1 × 1 m2, and such size may not properly capture the size of 
certain windows. This means that a few extracted window points may 
deviate from their actual spatial positions. Thus, the spatial resolution of 
the 3D point clouds and building footprint can be further improved. 
Secondly, reflective radiation has not been incorporated into the 3D 
solar irradiation estimation. This indicates that certain solar accumu-
lative areas created by high albedo surfaces may not have been captured 
in this study. Nevertheless, this effect should be insignificant as it rarely 
occurs on façades. Thirdly, using a fixed system performance ratio of 
16.5% is a conservative approach. However, it disregards the impact of 
various factors, including PV module type, tilt angle, temperature, and 
other environmental conditions. These factors play a crucial role in the 
real-world power generation process and have the potential to introduce 
inaccuracy. 

Deep learning-based approaches can help resolve some of these is-
sues. For example, using semantic segmentation networks to identify 
and segment window areas from street view images can provide a cost- 
effective and consistent method for large-scale data preparation. In 
addition, utilizing street view images to adaptively classify façades and 
thus determine their albedos can provide a more comprehensive and 
accurate estimate for global solar irradiation at the city scale [59]. In 
future large-scale studies, it is also encouraged to carry out actual in-
stallations of planned BIPV facilities and compare their performance 
with the model’s estimates. Incorporating error metrics is advantageous 
for validating the accuracy of the model and identifying potential sys-
tematic errors. This approach will contribute to the realization of a more 
reliable and comprehensive sustainable city. 

Fig. 10. Spatial distribution of the optimized PVSDs. Panels (a)–(d), (e)–(h), (i)–(l) correspond to SHS, SIS, and ROS, respectively. The characters above each column 
represent corresponding camera positions shown in Fig. 4, and a detailed color scheme is listed in Table 3. 

Table 3 
The detailed color scheme for Fig. 10 under different scenarios.  

Symbol Percentile of 
Ey 

Ey (kWh) 

SHS (Width: 
0.7m) 

SIS (Width: 
0.9m) 

ROS (Width: 
0.7m) 

[0%, 60%] [0, 93] [0, 161] [0, 147] 
(60%, 68%] [94, 105] [162, 189] [148, 173] 
(68%, 76%] [106, 127] [190, 226] [174, 208] 
(76%, 84%] [128, 143] [227, 247] [209, 230] 
(84%, 92%] [144, 147] [248, 253] [231, 235] 
(92%, 100%] [148, 157] [254, 271] [236, 248]  
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The study presents a practical, efficient, and transferable solution 
that enables rapid assessment of the solar PV potential of building 
components. This approach can be applied to diverse locations charac-
terized by distinctive climates and urban morphologies. The adaptability 
of the analytical model to new meteorological and geometric datasets, 
which are readily available for numerous global cities, underscores its 
versatility. Consequently, this research makes a significant contribution 
to the development of sustainable cities, and the findings can inspire 
researchers, urban planners, and investors to promote the development 
of distributed PV systems in other cities. 

6. Conclusion 

This study proposes an optimization framework to maximize 
distributed solar farming and effective solar shading duration while 
minimizing PV area for PVSDs. A case study in Hong Kong demonstrated 
the spatiotemporal heterogeneity of solar potential distribution in an 
urban area, considering real-world weather conditions and shading 
caused by obstruction. The study modeled the urban surfaces as 3D point 
clouds, and estimated solar potential on PVSDs with the consideration of 
shadow effects. Three PVSD planning scenarios are proposed and 
compared to effectively maximize solar farming and minimize con-
struction costs. 

Taking power generation and effective shading duration into ac-
count, the PV widths are determined as 0.7m, 0.9m, and 0.7m for SHS, 
SIS, and ROS, respectively. Remarkably, the ROS outperforms the other 
two scenarios in terms of both power generation and shading duration. 
Under the flexible ROS scenario, the optimized 0.7-m-wide PVSDs can 
generate 0.861 GWh of electricity annually, with a competitive average 
power generation efficiency of 0.811 kWh/m2/day and a solar shading 
duration of 6.61 h/day. The well-suited installation areas for optimized 
PVSDs are identified from their spatial distribution, and it is suggested to 
install PVSDs on unobstructed southeast-facing windows and specific 
top floors. Overall, the estimated PV power generation and solar shading 
capacity are encouraging and inspiring, which motivates us to promote 
distributed solar farming using PVSDs. 

The precise determination of window positions and building surface 
reflectance remains a challenge in accurately modeling the power po-
tential of PVSDs within urban environments. Future research can 
incorporate deep learning-based approaches and conduct real-world 
installations to validate model estimates and improve the accuracy. 
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