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A B S T R A C T

Timely and accurate local climate zone (LCZ) classification maps are valuable for urban climate studies. The
integration of remote sensing and street-level images is promising to produce high-quality LCZ maps, since
the former can efficiently capture the information of landscapes on a large-scale while the latter include
ground-level details. However, due to their significant differences in spatial distributions and capture views,
as well as existing sampling issues of street-level images, how to fuse them effectively is challenging and
remains an uncharted research area. To address these issues and fill the gap, this study proposes an effective
method to integrate satellite and street-level images for LCZ mapping. Additionally, a simple yet effective
street-level image sampling method is proposed. Extensive experiments have been performed and the results
demonstrate the effectiveness of the proposed data fusion method and also confirm the usefulness of fusing
street-level images with satellite images in enhancing the performance of LCZ mapping. Moreover, the proposed
sampling method can increase data representativeness and avoid data redundancy, thus significantly reducing
the number of required images while retaining high classification accuracy. To the best of our knowledge, this
study is the first attempt to integrate cross-view satellite and street-level images for LCZ mapping. The study
and proposed methods can contribute to the development of multi-source data fusion for LCZ map production
and further benefit urban climatic research.
1. Introduction

Urbanization and climate change are the most important topics in
the 21st century, which are critical for sustainable development and
are parts of the United Nations’ sustainable development goals (SDGs),
i.e., SDG 11 (sustainable cities and communities) and SDG 13 (climate
action) (United Nations, 2015). With rapid urbanization, more than
half of the world’s population now lives in cities and the proportion
is expected to increase to 68% by 2050 (United Nations, 2018). Urban
areas therefore become particularly exposed and vulnerable to the
potential risks and disasters caused by climate change (Wamsler et al.,
2013).

The local climate zones (LCZ) is a classification scheme initially
proposed for urban heat island research, which characterizes the land-
scape of urban morphology and function as well as land cover based
mainly on properties of surface structure and surface cover (Stewart
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and Oke, 2012). There are 17 LCZ types, including 10 built types (type
1–10) and 7 land cover types (type A–G), as illustrated in Fig. 1. As
demonstrated by many climatic studies, the LCZ classification scheme
is effective for climatic modeling and can serve as a universal standard
for communication among the climatic research community (Xue et al.,
2020). Rapid urbanization significantly changes the urban landscapes
in a short period of time, and it is significantly important to keep
the data up to date for more accurate climatic modeling in tackling
degenerating climate change. Thus, timely and accurate LCZ mapping
becomes a critical prerequisite towards high-quality weather and cli-
matic modeling, which is essential for scientific climate change research
and climatic-responsive design.

There are mainly three kinds of methods for LCZ mapping, i.e., in-
situ measurement (Thomas et al., 2014), GIS-based methods (Wang
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Fig. 1. Local climate zone classification scheme, including 10 built types (1–10) and 7 land cover types (A–G) (Stewart and Oke, 2012).
et al., 2018a; Zheng et al., 2018), and remote sensing-based meth-
ods (Bechtel et al., 2015; Yoo et al., 2019; Liu and Shi, 2020; Zhu
et al., 2020). The in-situ measurement-based and GIS-based methods
can directly calculate the key indicators of LCZ classification stan-
dards, such as sky view factor, building height/width aspect ratio,
building surface fraction, etc., and then categorize those zones into
different LCZ types with rules associated with LCZ type definitions.
However, in-situ measurement methods are usually labor-intensive and
time-consuming and thus unscalable; while GIS-based methods are
data-intensive and require complete and accurate urban GIS data,
which however are usually not complete or available to the public,
especially for developing and undeveloped countries and regions. Due
to the wide availability of remote sensing images, e.g., Landsat and
Sentinel satellite images, remote sensing-based methods have attracted
increasing attention (Bechtel et al., 2015; Yoo et al., 2019; Liu and Shi,
2020; Zhu et al., 2020).

However, remote sensing images lack ground-level details such as
three-dimensional building structures which are critical for effective
LCZ type recognition (Ren et al., 2019). Street-level images have shown
to be useful in providing such information, with growing accessibility
and spatial coverage, they have been widely exploited for various
applications (Kang et al., 2020; Biljecki and Ito, 2021). Pioneer research
has also shown that street view images (SVI) alone are useful for LCZ
classification in image-level by providing more ground-level details of
urban environment (Xu et al., 2019; Ignatius et al., 2022). It is thus
promising to exploit street-level images to enhance LCZ classification.

Both satellite images and street-level images have their advantages
and limitations. It is thus promising to integrate them to complement
each other to help enhance the LCZ mapping results. However, there
are still challenges in fusing them for LCZ mapping. Firstly, satellite
images and street-level images have very different spatial distribu-
tions; street-level images have limited coverage over space, which
are sparsely distributed along roads, while the LCZ mapping needs
continuous coverage of the space (satellite images can well suit the
2

need). Secondly, the two kinds of image data are collected from very
different perspectives, with satellite images captured from nadir view
and street-level images captured from horizontal view, it is thus non-
trivial to integrate them effectively. Thirdly, due to the data source
provider and special distribution pattern, the availability of street-
level images is limited, how to effectively sample street-level images to
increase data representativeness and avoid data redundancy as well as
reduce collection cost is rarely explored but crucial for practical usage.
Due to the aforementioned challenges, fusing satellite and street-level
images for LCZ mapping still remains an uncharted area of research.

To address these challenges, in this paper, we propose an effective
cross-view image fusion method for LCZ mapping and an effective street
view images sampling method to avoid data redundancy. To evaluate
the proposed methods, extensive experiments have been performed in
Hong Kong, a representative high-density city with complex and diverse
landscapes where street-level images can provide additional details
that satellite images lack. The major contributions of this article are
summarized as follows:

• To the best of our knowledge, this study is the first attempt
to integrate cross-view satellite and street-level images for LCZ
mapping. We propose an effective method and framework to
integrate the cross-view images with different capture views and
spatial distributions, for LCZ mapping, which outperforms the
results of using either data source alone.

• To address the large collection cost and data redundancy of street-
level images and meanwhile retain classification performance, we
propose an effective method to sample street view images along
road networks under the hexagonal constraint, which ensures
sufficient spatial coverage and representativeness as well as classi-
fication performance, significantly reducing the required number
of street-level images as input and simultaneously achieving high

classification accuracy.
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• Extensive experiments have been conducted to evaluate the ef-
fectiveness of the proposed cross-view image fusion method for
LCZ mapping, which demonstrates the usefulness of using street-
level images to augment LCZ mapping performance. Additionally,
experiments have also been performed to validate the efficacy of
the proposed sampling method.

The rest of the paper is organized as follows. We review the related
orks of LCZ mapping and remote sensing and street view image fusion

n Section 2. Section 3 introduces the study area and data. Section 4
laborates the proposed method and framework of cross-view image
usion for LCZ mapping, and the effective street-level image sampling
ethod. Furthermore, extensive experiments are conducted to examine

he effectiveness of the proposed methods in Section 5. In Section 6, we
iscuss some important issues. Finally, Section 7 concludes the paper.

. Related work

.1. Local climate zone mapping

Currently, the LCZ mapping methods can be mainly categorized
nto three types according to the data used, i.e., in-situ measurement-
ased methods, GIS-based methods, and remote sensing-based methods.
n-situ measurement-based methods rely on professional instruments
o collect LCZ-related parameters (such as sky view factor, build-
ng height-to-width aspect ratio, building surface fraction, impervious
urface fraction, etc.) in the field, which are then used to classify
CZ types (Thomas et al., 2014). These methods are usually labor-
ntensive and time-consuming, and thus are not easily scalable for
arge-area LCZ mapping. GIS-based methods can directly calculate the
ey indicators of LCZ classification scheme based on GIS data of urban
orphology and building information, and then categorize those zones

nto different LCZ types with rules associated with LCZ type defini-
ions (Wang et al., 2018a; Zheng et al., 2018). These methods can
sually achieve high classification accuracy; however, they are data-
ntensive and require complete and accurate urban GIS data that are
sually not complete or available to the general public, especially for
eveloping and undeveloped countries and regions.

Benefiting from the advances in geospatial technologies, growing
ccessibility to remote sensing data equips us with abundant data in
ensing our urban environment, which provides us with high-quality
ata sources for automated LCZ mapping, such as Landsat and Sen-
inel satellite images. Therefore, remote sensing-based methods have
ttracted increasing attention and are widely used (Bechtel et al., 2015;
oo et al., 2019; Liu and Shi, 2020; Zhu et al., 2020). The World
rban Database and Access Portal Tools (WUDAPT) initiative (Bechtel
t al., 2015) proposes a standard workflow for LCZ mapping using
pen-access Landsat imagery, which first resamples Landsat imagery
o 100 m spatial resolution, and then train Random Forests (RF) model
rom collected imagery and reference data for LCZ mapping. The
ethod is widely used, however, it ignores the context of surrounding

nvironment. To address this issue, scene-based image classification is
sed (Liu and Shi, 2020; Zhu et al., 2020), which divides the study area
nto grids and then classifies the image patches enclosed by grids in-
tead of image pixels. This method can include more information from
urrounding environment which is critical for LCZ-related information
cquisition.

Although the expansion of study unit can include more information,
ue to the inherent limitation of capturing view, remote sensing im-
ges fall short in providing ground-level details such as 3D building
nformation which is important for accurate LCZ type recognition (Ren
t al., 2019). Street-level images, however, have shown to be able
o offer such information (Biljecki and Ito, 2021; Yan and Huang,
022). Previous work has shown that street view images are useful
or LCZ classification by providing more ground-level details of urban
3

nvironment (Xu et al., 2019). However, this research is conducted in
image-level and the classification results are presented as sparse points
in space, which is not sufficient for practical use. To take full advantage
of both remote sensing and street view images for practical use, we
propose an effective machine learning-based method to fuse them for
grid-based LCZ mapping, which can take into account of the ground-
level details by fusing street view images and produce a more accurate
and practical LCZ map for downstream applications such as climate
modeling.

2.2. Integration of remote sensing and street view images

Remote sensing data has the advantage of large-scale coverage and
are increasingly accessible. However, due to inherent limitations, they
usually can only capture the physical attributes from the top view (Cao
et al., 2018, 2020; Chen et al., 2022b). On the other hand, street
view images are captured in the horizontal view and can capture more
ground-level details such as 3D urban structure, building facade, and
tree volume. With their growing accessibility, street view images are
widely used for various applications (Biljecki and Ito, 2021; Zhou et al.,
2021). However, street-level images also have their limitations, with
limited spatial and temporal coverage and resolution.

Due to the complementary characteristics of remote sensing and
street view images, it is promising to fuse them and related research
has attracted increasing attentions. According to the study object,
related works can be categorized into two types of tasks. The first
type focuses on specific spatial object, the most studied are buildings.
Remote sensing images can capture the information of building roofs
from top view, while the street view images can capture the information
of building facades from horizontal view. Integrating remote sensing
and street view images can provide multiple viewpoints of buildings
and thus include more complete information for many applications,
such as building type classification (Hoffmann et al., 2019), building
vulnerability assessment (Xing et al., 2023), and building damage eval-
uation (Khajwal et al., 2023). In this type of task, deep learning models
are usually used and the number of street view images corresponded
to a remote sensing image is fixed, which is suitable for end-to-end
classification approaches.

Another type of task focuses on the land, in the research, satellite
or aerial images are integrated with street view images to estimate
the characteristics of the land, including land use classification (Cao
et al., 2018; Cao and Qiu, 2018), urban village detection (Chen et al.,
2022a), urban forestry assessment (Barbierato et al., 2020), commercial
activeness evaluation (Wang et al., 2018b), etc. In these studies, both
traditional machine learning models and deep learning methods are
used. For example, Cao et al. (2018) and Chen et al. (2022a) use
end-to-end deep neural networks to fuse aerial and street view images
which can achieve high accuracy, however, they do not consider the
problem of variable numbers of street view points within one land
parcel. Besides, deep neural networks are computing-intensive, Chen
et al. (2022a) only randomly samples one street view point in each
parcel to relieve computational burden. While other studies that use
traditional machine learning methods show the good balance between
achieved accuracy and computational cost in fusing remote sensing and
street-level images and can be easily extended to large areas (Wang
et al., 2018b; Barbierato et al., 2020). We can see that previous studies
usually ignore the issues of variable numbers of street view images
across space as well as the sampling strategy, and deep learning-
based methods require a high computational costs. These issues limit
the practical use. To address these issues, in this study, we leverage
computational efficient machine learning-based methods and efficient
SVI sampling strategies to provide an efficient and effective solution to
LCZ mapping for practical use.
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Fig. 2. Study area of Hong Kong, with 18 districts surrounded by large marine water area (indicated by the light gray area).
3. Study area and data

Hong Kong is chosen as the study area, as shown in Fig. 2. Located
on the southeast coast of China, Hong Kong has 18 districts, with a total
land area of about 1104 km2 and over 7.5 million population, which
is one of the most densely populated cities in the world. Hong Kong is
hilly and mountainous, within which about three-quarters of the land
is a mountainous area and is reserved as country parks. Only less than
25% of the land is allowed for urban development. Due to the limited
land, over 90% of Hong Kong residents live in highrise buildings. The
limited developed land and high population density shape the urban
morphology of Hong Kong’s downtown areas. The complex landscape
and high-density built-up areas make it challenging for effective LCZ
mapping.

3.1. Remote sensing imagery (RSI)

Cloud-free Sentinel-2 L2A satellite imagery captured in 2020 of
the study area is preprocessed and downloaded from Google Earth
Engine (Gorelick et al., 2017). Specifically, the imagery with cloud
coverage less than 3% is selected and the clouds are masked out. Firstly,
we filtered the Google Earth Engine Sentinel-2 L2A datasets based on
the date range of the year 2020 and cloud pixel percentage of less than
3% to obtain cloud-free images of 2020. Next, we reduced the obtained
image collection to a single multispectral imagery by calculating the
median value of each pixel in each band. Finally, the imagery was
clipped according to Hong Kong’s administrative boundaries. Follow-
ing Zhu et al. (2020), 10 bands (B2, B3, B4, B5, B6, B7, B8, B8A, B11,
B12) are used, with R-G-B-NIR bands of 10 m spatial resolution and
Red Edge 1,2,3,4 bands and SWIR 1,2 bands of 20 m resolution.

3.2. Street view images (SVI)

The street view images are downloaded from Google Street View
API. Using the proposed sampling methods introduced in Section 4,
69,957 sampling points along road networks were obtained. After the
4

query process, only 32,622 sampling points are available via the Street
View Image request API,1 with the following key parameters:

• size: size specifies the output size of the image in pixels. We set it
to ‘640×640’ pixels, which is the maximum resolution provided
by the API.

• heading : heading indicates the compass heading of the camera.
Since we want to utilize the comprehensive 360◦ view of the
panorama, we request 4 images for each location with headings
of 0, 90, 180, and 270 degrees, respectively.

• fov: fov determines the horizontal field-of-view of the image, we
use the default 90 degrees.

Examples of Google SVIs of different LCZ types are shown in Fig. 3.

3.3. Support GIS datasets

To define the boundary of the study area, the Hong Kong adminis-
trative boundary data is downloaded from the government’s open data
portal. In addition, since the street view images are usually captured
by cars while driving, to generate the sampling points for acquir-
ing SVIs, we downloaded the road networks of Hong Kong from the
OpenStreetMap (OSM) via the Python package OSMnx (Boeing, 2017).

3.4. Reference dataset

WUDAPT (Bechtel et al., 2015) is a global initiative of tools to create
LCZ maps for cities using a standard methodology and workflow. Based
on this platform, crowd-sourcing data have been collected and formed a
rich LCZ database. Our reference data of Hong Kong are organized from
the contributing datasets from WUDAPT with high accuracy, which are
shown in Fig. 4, containing polygons with different LCZ labels. We can
see that the labels are not uniformly sampled, including polygons of
different types with noticeable difference in area. For example, class

1 https://developers.google.com/maps/documentation/streetview/request-
streetview

https://developers.google.com/maps/documentation/streetview/request-streetview
https://developers.google.com/maps/documentation/streetview/request-streetview
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Fig. 3. Spatial distribution of Google Street View images in Hong Kong, with examples of different LCZ types. The map on the bottom-right shows the density of SVIs as well as
the locations of corresponding SVIs presented.
Fig. 4. Reference data of different LCZ types in Hong Kong.

G (water) type accounts for large areas since they are more easily
recognized. This results in imbalanced labeled samples in the following
experiments.

4. Methodology

To integrate RSI and SVI for LCZ mapping, we propose a four-step
method, as illustrated in Fig. 5. First, we divide the study area into
uniform grids, which can cover the whole study area and serve as basic
mapping units for LCZ mapping. Second, we segment the RSIs into
image patches to fit in with the mapping units and extract features from
them. Third, we sample SVIs along road networks, extract features from
SVIs, and further map SVIs to land. Finally, based on the mapping units,
5

we combine the extracted features from RSI and SVI together for LCZ
classification and mapping. The details of each step are elaborated in
the following subsections.

4.1. Mapping units generation

The local climate zones are regarded as uniform units with similar
climatic characteristics and are normally larger than 100m2. Thus,
we divide the study area into 320×320 m2 spatial grids across the
Hong Kong administrative boundary. The size of 320×320 m2 is widely
adopted in literature (Zheng et al., 2018; Liu and Shi, 2020; Zhu et al.,
2020) due to the appropriate size for LCZ definition and also suit
satellite image resolution in extracting sufficient information.

4.2. RSI feature extraction

For each mapping unit, we can generate a 10-band multispectral im-
age patch with the size of 32×32 pixels based on the grid-level mapping
units generated. Spectral features are extracted by computing the mean,
variance, maximum, minimum, skewness, and kurtosis of the digital
numbers of all the pixels of each band for the image patches, which
results in 60-dimensional feature vector for each grid. In addition, we
use the deep neural network model ResNet-50 trained on the So2Sat
LCZ42 dataset (Zhu et al., 2020) to extract the semantic features from
the image patches, which results in 2048-dimensional feature vector
for each mapping unit. The dataset consists of about half a million
co-registered Sentinel-1 and Sentinel-2 remote sensing image patches,
as well as the corresponding LCZ labels annotated by domain experts
following a rigorous labeling workflow and evaluation process. We then
concatenate the spectral and semantic features to represent RSI image
patches.
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Fig. 5. Overview of the proposed method to fuse remote sensing imagery (RSI) and street view images (SVI) for LCZ mapping, including four steps: (1) mapping units generation,
(2) RSI feature extraction, (3) SVI sampling and feature extraction, (4) LCZ classification and mapping fusing RSI and SVI.
F
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4.3. SVI sampling and feature extraction

4.3.1. SVI sampling
The street view images are downloaded from the Google Street View

API, which has a limitation on data download in terms of both time and
economical cost. To take full advantage of the SVIs without incurring
unnecessary costs, we propose an effective way to sample street view
images along road networks under the constraints of hexagon units,
which can ensure efficiency as well as coverage. The workflow of
the sampling method is shown in Fig. 6, which includes three major
steps. Firstly, we generate dense sampling points along the OSM road
networks with an interval of 10 m (road ends are also included).
Secondly, we generate the tessellated grid of hexagons (with a radius
of 50 m) across the study area to cover all the mapping units. Finally,
based on the generated sampling points and hexagons, we compare the
two kinds of objects and ensure that each hexagon only contains one
sampling point to reduce the required numbers of SVIs. If there are
multiple points within a hexagon, only one will be left which is the
closest to the center of the hexagon. It should also be noted that, as
can be seen in Fig. 6, each mapping unit (uniform grid) covers multiple
hexagons, which means that each mapping unit can contain multiple
sampling points.

The proposed method is based on the assumption that the SVIs at
a location can capture the horizontal landscape of nearby 50 m. This
setting is also in line with the function setting in Google Street View
API, in which the default radius to search for the nearest SVI is 50 m,
centered on the given geographical location.

4.3.2. SVI feature extraction
To take full advantage of the SVIs, semantic features are extracted

through two approaches. The first kind of features are extracted by
transfer learning from pretrained deep convolutional neural network
model. Specifically, semantic features of SVIs are extracted by Places-
CNN, a convolutional neural network used for ground-level scene
recognition, and the model is trained on the Places365 dataset (Zhou
et al., 2018) which is a large scene-centric image dataset with more
6

(

than 10 million images of indoor and outdoor scenes labeled with
diverse scene semantic categories, including both urban and nature
scenes. The features extracted from this model can be distinctive to
distinguish street-level images of over 300 categories.

The second kind of features are the statistical features of seman-
tic categories after recognizing the objects presented in street view
images. Specifically, the state-of-the-art semantic segmentation deep
neural network DeepLab-v3+ (Chen et al., 2018) trained on Cityscapes
dataset (Cordts et al., 2016), which focuses on the semantic under-
standing of urban street scenes, has been exploited to recognize the
categories of all the pixels of the SVIs. The model can classify the pixels
of SVIs into 19 classes, including road, sidewalk, building, wall, fence,
pole, traffic light, traffic sign, vegetation, terrain, sky, person, rider,
car, truck, bus, train, motorcycle, bicycle. Then, we can compute the
number of pixels of different categories and use the distribution of
categorical pixel numbers as feature to represent SVIs.

Since each sampled location has four images facing different direc-
tions (i.e., 0, 90, 180, 270 degrees), the extracted features from the
four images are concatenated together to represent the location. We
also empirically validated that the combination of all the four images
outperform using single image in Section 6.

4.4. LCZ classification and mapping fusing RSI and SVI

To exploit both satellite and street view images, we propose two
strategies to fuse the two kinds of data, one is in the feature level, and
the other is in the decision level.

4.4.1. Feature-level fusion
For feature-level fusion, we concatenate the features extracted from

RSI and SVI together, which are denoted as 𝐹𝑟 and 𝐹𝑠, respectively.
or each mapping unit, the SVI features are firstly aggregated into a
ixed feature vector by applying the permutation-invariant aggregation
unction aggregate(⋅), such as mean, max pooling, or bag-of-features
BoF). For those mapping units without SVIs, we use features with the
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Fig. 6. Workflow of the proposed SVI sampling method, including: (1) generate dense sampling points along road networks with an interval of 10 m, (2) generate tessellated grid
of hexagons across the study area to cover all the mapping units, (3) intersect the generated sampling points and hexagons to preserve only the points closest to the hexagon
centers.
same size filled with the mean of all the SVI features. The obtained
feature vector 𝐹𝑢 of a mapping unit 𝑢 can be formulated as follows:

𝐹𝑢 = concat
(

𝐹𝑟, aggregate
(

{𝐹 𝑖
𝑠}

𝑛
𝑖=1

))

(1)

where 𝐹𝑟 is the corresponding RSI feature of the mapping unit 𝑢, 𝑛
denotes the number of SVI points within 𝑢, and 𝐹 𝑖

𝑠 is the feature of
one of the SVI points 𝑖. Then, based on the concatenated features {𝐹𝑢}
and reference dataset, we use classification models (such as XGBoost)
to train classifiers and perform classification for final LCZ mapping. To
illustrate this process, the details of feature-level data fusion for LCZ
mapping are presented in Algorithm 1.

4.4.2. Decision-level fusion
For decision-level fusion, we first use two separate classification

models (e.g., XGBoost) to classify all the RSIs and SVIs based on the fea-
tures extracted from RSI and SVI respectively, obtaining the predicted
probability distributions of all the classes �̂�𝑟 and �̂�𝑖𝑠, respectively. Then,
for those mapping units with both RSI and SVI, we will firstly obtain the
mean of all the predicted probability from SVI, and then normalize it to
make it a unit vector; then we will calculate the sum of the probability
distributions and make the prediction as the class 𝑡 with the largest
7

probability:

𝑡 = arg max
𝑡

(

�̂�𝑟 + normalize

(

∑𝑛
𝑖=1 �̂�

𝑖
𝑠

𝑛

))

𝑡

, 𝑡 = 1, 2,… , 17 (2)

where �̂�𝑟 is the predicted probability distribution of LCZ classes ob-
tained from RSI in the mapping unit, 𝑛 denotes the number of SVI points
within the mapping unit, and �̂�𝑖𝑠 is the predicted probability distribution
of LCZ classes obtained from SVI point 𝑖. While for those units with
only RSIs, the predicted classes will solely base on RSIs. To illustrate
this process, the details of decision-level data fusion for LCZ mapping
are presented in Algorithm 2.

5. Experiments and results

5.1. Experimental setup

5.1.1. Evaluation metrics
In the experiments, following previous research (Bechtel et al.,

2017, 2020; Zhu et al., 2020), the overall accuracy (OA), average ac-
curacy (AA), weighted accuracy (WA), Kappa coefficient, and F1 scores
are used as evaluation metrics for performance assessment. Besides, the
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Algorithm 1 Feature-level cross-view image fusion for LCZ classifica-
tion
Input: RSI feature set 𝑟 = {𝐹 𝑖

𝑟}
𝑁
𝑖=1, SVI feature set 𝑠 = {𝐹 𝑖

𝑠}
𝑀
𝑖=1,

mapping unit set  = {𝑢𝑖, 𝑡𝑖|𝑡𝑖 ∈  ∪ {𝑣𝑜𝑖𝑑}}𝑁𝑖=1 ( = {𝐿𝐶𝑍𝑗}17𝑗=1)
nput: Classification model 𝑓𝛩 (𝛩 denotes learnable parameters)
utput: Predicted classes of mapping units {𝑢𝑖, 𝑡𝑖}𝑁𝑖=1
for 𝑢𝑖 ∈  do ⊳ Feature-level data fusion

𝑛𝑖 = GetNumOfSVI
(

𝑢𝑖
)

if 𝑛𝑖 > 0 then
𝐹 𝑖
𝑢 = concat

(

𝐹 𝑖
𝑟 , aggregate

(

{𝐹 𝑗
𝑠 }

𝑛𝑖
𝑗=1

))

(as in Eq. (1))
else

𝐹 𝑖
𝑢 = concat

(

𝐹 𝑖
𝑟 ,

∑𝑀
𝑗=1 𝐹

𝑗
𝑠

𝑀

)

end if
end for
𝑡𝑟𝑎𝑖𝑛 = {𝐹 𝑖

𝑢 , 𝑡𝑖|(𝑢𝑖, 𝑡𝑖) ∈  ∧ 𝑡𝑖 ∈ } ⊳ Model training
𝑓�̂� = argmin𝛩

(

CrossValidation(𝑡𝑟𝑎𝑖𝑛, 𝑓𝛩)
)

for 𝑢𝑖 ∈  do ⊳ Model evaluation for LCZ mapping
𝑡𝑖 = 𝑓�̂�(𝐹

𝑖
𝑢)

end for

Algorithm 2 Decision-level cross-view image fusion for LCZ classifica-
tion
Input: RSI feature set 𝑟 = {𝐹 𝑖

𝑟}
𝑁
𝑖=1, SVI feature set 𝑠 = {𝐹 𝑖

𝑠}
𝑀
𝑖=1,

mapping unit set  = {𝑢𝑖, 𝑡𝑖|𝑡𝑖 ∈  ∪ {𝑣𝑜𝑖𝑑}}𝑁𝑖=1 ( = {𝐿𝐶𝑍𝑗}17𝑗=1)
nput: Classification model 𝑓 𝑟

𝛩, 𝑓 𝑠
𝛩 (𝛩 denotes learnable parameters)

utput: Predicted classes of mapping units {𝑢𝑖, 𝑡𝑖}𝑁𝑖=1
𝑟

𝑡𝑟𝑎𝑖𝑛 = {𝐹 𝑖
𝑟 , 𝑡

𝑖
𝑟|(𝑢𝑖, 𝑡

𝑖
𝑟) ∈  ∧ 𝑡𝑖𝑟 ∈ } ⊳ Model training

𝑓 𝑟
�̂�
= argmin𝛩

(

CrossValidation(𝑟
𝑡𝑟𝑎𝑖𝑛, 𝑓

𝑟
𝛩)
)

𝑠
𝑡𝑟𝑎𝑖𝑛 = {𝐹 𝑖

𝑠 , 𝑡
𝑖
𝑠|(𝑢𝑖, 𝑡

𝑖
𝑠) ∈  ∧ 𝑡𝑖𝑠 ∈ } ⊳ Model training

𝑓 𝑠
�̂�
= argmin𝛩

(

CrossValidation(𝑠
𝑡𝑟𝑎𝑖𝑛, 𝑓

𝑠
𝛩)
)

for 𝑢𝑖 ∈  do ⊳ Decision-level data fusion for LCZ mapping
�̂�𝑖𝑟 = 𝑓 𝑟

�̂�
(𝐹 𝑖

𝑟 )
𝑛𝑖 = GetNumOfSVI

(

𝑢𝑖
)

if 𝑛𝑖 > 0 then
for 𝑗 ≤ 𝑛𝑖 do

�̂�𝑗𝑠 = 𝑓 𝑠
�̂�
(𝐹 𝑗

𝑠 )
end for
𝑡𝑖 = argmax𝑡

(

�̂�𝑖𝑟 + normalize
(

∑𝑛𝑖
𝑗=1 �̂�

𝑗
𝑠

𝑛𝑖

))

𝑡
, 𝑡 ∈  (as in Eq. (2))

else
𝑡𝑖 = argmax𝑡

(

�̂�𝑖𝑟
)

𝑡 , 𝑡 ∈ 
end if

end for

overall accuracy of urban types (OA𝑢𝑟𝑏) (type 1–10), and overall accu-
racy of natural types (OA𝑛𝑎𝑡) (type A–G), are also leveraged to measure
the performances between built-up and non-built-up regions (Yoo et al.,
2019; Qiu et al., 2020). The average values of 5-fold cross-validation
results of the evaluation metrics are reported.

5.1.2. Dataset settings
The WUDAPT (Bechtel et al., 2015) reference data are originally

polygons with labels of 17 LCZ types, as shown in Fig. 4. The generated
mapping units (as described in Section 4) are labeled as the LCZ types
based on the rasterized polygonal labels. Satellite image patches within
the labeled units are assigned with the same labels. SVIs are represented
as points in space, and thus the ones within labeled polygons will be
assigned with the same labels as the polygons where they locate.

Then, for RSIs, a dataset consisting of 2555 labeled grids are ob-
tained, each grid is represented by a feature vector and has a counter-
part label. Then, we split this whole dataset into training and testing
sets with a 5-fold cross-validation using the stratified sampling method.
8

Table 1
Overall classification results using different data sources. The best results are high-
lighted in bold. (Note that SVI has smaller numbers of training and testing samples
due to limited spatial coverage.)

Method OA WA AA Kappa Avg F1

SVI 0.6274 0.8978 0.4550 0.5817 0.4436

RSI 0.7926 0.9424 0.4510 0.7032 0.4476
Feature-level Fusion 0.8129 0.9527 0.5054 0.7319 0.5025
Decision-level Fusion 0.8157 0.9513 0.5013 0.7363 0.4973

For SVIs, due to limited spatial coverage, we get a whole dataset
consisting of 1888 labeled sample points with 4 images per location.
The labeled points fall into less than 600 grids, which means that each
grid contains variable number of sampling points, ranging from 0 to
15. The data split follows RSIs in space.

5.1.3. Model settings
For the feature extracting ResNet-50 model of RSIs, we load the

model weights from the pretrained ResNet-50 model of So2Sat LCZ42
dataset (Zhu et al., 2020). Then we freeze the model parameters,
modify the output dimension of the fully-connected layer to 2048-
d and initialize the weights and bias of the fully-connected layer to
an identity matrix and zero respectively. For the feature extracting
PlacesCNN (with ResNet-50 as backbone) model of SVIs, we load
the model weights from the pretrained ResNet-50 model of Place365
dataset (Zhou et al., 2018). Then we freeze the model parameters,
modify the output dimension of the fully-connected layer to 2048-d
and initialize the weights and bias of the fully-connected layer to an
identity matrix and zero respectively.

For the classification task, we use the Random Forests and Support
Vector Machine (SVM) of the scikit-learn package with the default
hyperparameters. We also set the class weight as balanced which will
adjust the learning objective taking into account the number of samples
in each category. For XGBoost, we use the xgboost package with default
settings and also set class balanced settings.

5.2. LCZ classification and mapping results

5.2.1. Overall classification results
The overall classification results of using different data sources

are presented in Table 1. It can be seen that the SVIs can achieve
a relatively good performance with OA over 62%. In contrast, RSI
can achieve an accuracy of more than 79%. The fusion of RSI and
SVI can significantly improve the classification performance in terms
of all the evaluation metrics. The improvement is particularly no-
ticeable on class-wise metrics including AA and Average F1 score,
with about 4%–5% increase for decision-level and feature-level fusion
respectively, which indicates that the addition of SVIs can help improve
the classification of some difficult-to-recognize categories.

5.2.2. Comparison between urban and natural types
The classification results of built-up and non-built-up LCZ types are

presented in Table 2. We can find that OA values lie in the middle of the
OA𝑢𝑟𝑏 and OA𝑛𝑎𝑡. The classification results of natural types (type A–G)
are significantly higher than that of the urban types (type 1–10), which
implies that urban built-up landscapes are more complex than the
natural ones and thus are more difficult to recognize. SVI has relatively
much more accurate recognition accuracy on urban categories than that
of RSI, and thus their fusion with RSI can further boost the performance

in OA𝑢𝑟𝑏 significantly.
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Fig. 7. Bar chart of per-class F1 scores using different data sources.
Table 2
Classification results of urban (built-up) and natural (non-built-
up) categories. The best results are highlighted in bold. (Note that
SVI has smaller numbers of training and testing samples due to
limited spatial coverage.)

Method OA OA𝑢𝑟𝑏 OA𝑛𝑎𝑡

SVI 0.6274 0.5800 0.6842

RSI 0.7926 0.4083 0.8669
Feature-level Fusion 0.8129 0.4880 0.8758
Decision-level Fusion 0.8157 0.5267 0.8716

5.2.3. Per-class classification results
To further investigate into class-wise classification performance, the

per-class F1 scores are presented in Fig. 7. As can be seen, most classes
witness performance boost in fusing both RSIs and SVIs compared with
using RSIs alone. We can see that the performance of class G (water)
early all over 0.9, with RSI and data fusion over 0.98, significantly
utperforms all the other classes. Besides, all the methods also achieve
igh F1 scores (all over 0.79) on class A (dense trees). Urban types of
lass 1 (compact highrise), class 3 (compact lowrise), class 4 (open highrise)
nd class 10 (heavy industry) can achieve relatively good performance
ith F1 scores of about 0.5 for all the methods; while natural types of

lass C (bush, scrub) and class E (bare rock or paved) can also achieve
good performance with F1 scores all over 62% for all the methods.
For class 7 (lightweight lowrise), only feature-level fusion can recognize
hem. This shows the difficulty of distinguishing this category because
he classes are relatively rare in Hong Kong, which is in line with
revious research in Hong Kong using official GIS-based method (Wang
t al., 2018a). In addition, class 8 (large lowrise), class 9 (sparsely built),

class B (scattered trees), and class F (bare soil or sand) are also relatively
difficult to distinguish with significantly lower F1 scores. It is also of
note that SVIs perform significantly better than RSIs on urban types
of class 1 (compact highrise), class 2 (compact midrise), class 3 (compact
lowrise), class 4 (open highrise), class 5 (open midrise), and natural types
of class C (bush, scrub) and class D (low plants), which implies that
street-level images can provide more information about built-up regions
and ground-level details.

In order to figure out the classification relationships between differ-
ent categories. The normalized confusion matrices of the classification
results using different data sources are presented in Fig. 8. As can be
seen, in general, SVI and RSI based results differs due to different data
sources. While for RSI, and the fusion of RSI and SVI, the results are
9

basically consistent, and the additional SVI data can help further boost
the performance for most classes.

5.2.4. LCZ mapping results
The LCZ mapping results are presented in Fig. 9. As can be seen

from Fig. 9(b), the mapping results of SVIs do not cover the study area
completely, since SVIs are sparsely distributed along road networks.
We can also notice the density of road networks in Hong Kong from
the results. For the mapping results of RSIs (Fig. 9(c)) and fusing RSI
and SVI (Fig. 9(d)), the results are visually similar, and are basically in
line with the mapping results from previous research results of Hong
Kong (Wang et al., 2018a; Zheng et al., 2018; Liu and Shi, 2020). In
addition, the fusion of RSI and SVI (Fig. 9(d)) can help improve some
details compared with using RSI alone (Fig. 9(c)), such as small islands
and the airport. These demonstrate the reliability of our results and
superiority of fusing SVI data.

5.3. Evaluation on SVI sampling strategy

Most previous research on SVI adopts the equidistant sampling strat-
egy along roads with a fixed interval (Zhang et al., 2019). However,
this is costing in terms of time and money for large scale (such as city-
scale or even region-scale) SVI research, and there are possible data
redundancy. To address these issues, we propose an effective SVI sam-
pling strategy to accommodate coverage, efficiency, and performance
simultaneously.

5.3.1. Evaluation on sampling efficiency
The requested numbers of SVI points and images of using different

sampling methods are presented in Table 3. In our study area, Hong
Kong, the OSM road networks contain a total number of 326,182 road
segments. With the strategy of equidistant sampling along the roads
with an interval of 10 m, 2,799,079 SVI points are generated (which
means there will be over 8 points generated for each road segment on
average), resulting in over 11 million images to request for download
via Google Street View API. This is quite inefficient and time- and
money-costing.

With the proposed sampling method, we reduce the candidate SVI
points into 69,957 points, the number of which is only 2.5% of the num-
ber of candidate points using the naive equidistant sampling method
(2,799,079). Finally, we request for 69,957 SVI points via Google API,

and only retrieve 32,622 points with valid Google SVIs. The sampling
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Fig. 8. Normalized confusion matrices of the classification using different data sources: (a) SVI only, (b) RSI only, (c) fusing RSI and SVI in feature level, and (d) fusing RSI and
SVI in decision level.
Table 3
SVI sampling results using different strategies (Equid: equidis-
tant sampling, hex: hexagonal constraint). The best results are
highlighted in bold.

Method #Point #Image

Equid-10 m 2799079 11196316
Equid-20 m 1651832 6607328
Equid-30 m 1275272 5101088
Equid-50 m 982074 3928296
Equid-10 m + hex (Ours) 69957 279828

result in the Yau Tsim Mong district is presented in Fig. 10. The district
is one of the busiest downtown areas in Hong Kong, with highly dense
road networks. We can see that our proposed sampling method can
significantly reduce the number of sampled SVI points while remain
sufficient coverage and representativeness of all the mapping units.

5.3.2. Evaluation on classification and mapping performance
To further evaluate the impact of the proposed sampling method on

LCZ classification performance, we conduct experiments on using SVIs
sampled by different methods, the number of sampled SVI points, num-
ber of SVIs, and corresponding classification performance are shown in
Table 4.

It can be seen that the proposed sampling method only results in
1888 SVI points and 7552 images in the labeled regions, which are
less than 1∕18 that of naive equidistant sampling (34,477 points and
137,908 images). This is a huge reduction in requested SVI numbers
and can significantly reduce the cost for SVI data collection and pro-
cessing. While for the classification performance, although the results
10
of using SVI data alone decrease to a reasonable degree, the final
performances after fusing RSI and SVI present consistent trends using
different sampling methods, and our proposed method can achieve very
competitive performances over naive equidistant sampling, with OA
and Kappa coefficient improved over 2%–3% and AA and average F1
improved over 5% compared to only using RSI. This also implies that
there are redundancy in SVI and RSI data and good sampling strategy
can help alleviate the redundancy while retain competitive classifi-
cation performance. The results demonstrate the effectiveness of the
proposal SVI sampling strategy in remaining competitive classification
performance with much less cost for SVI requirement.

To further evaluate the impact of the proposed sampling method on
LCZ mapping performance, five representative districts in the down-
town of Hong Kong with highly dense road networks are selected,
i.e., Yau Tsim Mong, Kowloon City, Central and Western, Wan Chai,
and Eastern (refer to Fig. 2). For fair comparison, for each sampling
method, the training and testing samples are collected based on the
same sampling strategy. The final mapping results are shown in Fig. 11.
We can see that the SVI-based mapping using equidistant sampling
results in relatively more smooth and cluttered mapping results, with
large areas of the same LCZ types compared with our proposed method.
This may be caused by the cluttered sampled SVIs near the boundaries
of mapping units, and thus capturing the information of nearby units.
For the mapping results fusing RSI and SVI, we can see that the results
are relatively consistent and are visually similar to the result of using
RSI alone. The results further demonstrate the effectiveness of the
proposed SVI sampling method in retaining reliable and consistent LCZ
mapping results.
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Fig. 9. LCZ mapping results in the study area using different data sources. (a) Sentinel-2 satellite imagery (RGB composite); mapping results based on (b) SVI only, (c) RSI only,
(d) fusing RSI and SVI in feature level.

Fig. 10. Spatial distribution of SVI sampling points using different sampling methods. (a) Equidistant sampling with 10 m interval, (b) Equidistant sampling with 10 m interval
and the proposed hexagonal constraint.



International Journal of Applied Earth Observation and Geoinformation 119 (2023) 103323R. Cao et al.
Table 4
Classification results using different SVI sampling strategies (Equid: equidistant sampling, hex: hexagonal constraint).
The best results are highlighted in bold.

Sampling Method OA WA AA Kappa Avg F1

RSI 0.7926 0.9424 0.4510 0.7032 0.4476

Equid-10m SVI 0.7332 0.9238 0.5626 0.7022 0.5532

#Point: 34477 Feature-level fusion 0.8231 0.9551 0.5217 0.7466 0.5226
#Image: 137908 Decision-level fusion 0.8247 0.9543 0.5283 0.7492 0.5245

Equid-10 m + hex SVI 0.6274 0.8978 0.4550 0.5817 0.4436

#Point: 1888 Feature-level fusion 0.8129 0.9527 0.5054 0.7319 0.5025
#Image: 7552 Decision-level fusion 0.8157 0.9513 0.5013 0.7363 0.4973
Fig. 11. LCZ mapping results in the selected five districts using different sampling methods. (a) Sentinel-2 satellite imagery (RGB composite); mapping results based on (b) RSI
only, (c) SVI only (equidistant sampling), (d) fusing RSI and SVI in feature level (equidistant sampling), (e) SVI only (equidistant sampling + hexagonal constraint), (f) fusing RSI
and SVI in feature level (equidistant sampling + hexagonal constrain).
12
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Table 5
Classification results of SVI with different heading directions. The best results are
highlighted in bold.

Heading OA WA AA Kappa Avg F1

0◦ 0.5747 0.8734 0.4127 0.5168 0.4197
90◦ 0.5826 0.8747 0.4254 0.5265 0.4282
180◦ 0.5948 0.8832 0.4386 0.5408 0.4420
270◦ 0.5821 0.8812 0.4168 0.5261 0.4193
All 0.6472 0.9054 0.4918 0.6003 0.5008

6. Discussion

6.1. Evaluation on SVI classification

Accurate image-level SVI classification results are the basis for
following LCZ mapping in space. To evaluate the varying effects on SVI
classification performance, we have examined the effects of SVI head-
ing directions and different data split settings and evaluation methods
in assessing LCZ classification results in the following subsections.

6.1.1. Evaluation on the effect of heading directions
SVIs with different heading directions will capture different views.

To evaluate the effect of including different directions for LCZ classi-
fication, we have examined the results of using single-heading SVIs,
i.e., 0, 90, 180, and 270 degrees, respectively; and combining SVIs with
all the headings together. The results are presented in Table 5.

We can see that the overall classification results of SVIs captured
from different heading directions are relatively similar for all the evalu-
ation metrics. The combination of all the images from different heading
directions can significantly boost the results on all the evaluation
metrics. Therefore, all the images are exploited in our experiments.

6.1.2. Evaluation on different data splits and evaluation levels
SVIs are represented as sparse points in space. To derive LCZ maps,

the sparse points need to be aggregated into land parcels. There are
different data split approaches to separate training and testing data for
SVIs. The first approach is to use stratified sampling at image level,
and the second approach is to follow the split settings as the mapping
units, which will take into consideration of the spatial distribution of
SVIs. There are also different perspectives to evaluate SVI-based classi-
fication, including image level and parcel level. Image-level evaluation
regards street view images as individuals, while parcel-level evaluation
firstly aggregates the information of images into land parcels and then
evaluate the measures on the mapping units.

To evaluate the effects of different data splits and evaluation levels,
we compare the results of different settings, as shown in Table 6. As
can be seen, for stratified sampling, the overall classification perfor-
mances of image-level and parcel-level evaluations are similar, and the
aggregation of SVI points into land parcels does not result in significant
changes. While when following the data split of mapping units, the
performances between image and parcel levels vary significantly, with
OAs differ in over 2% and AAs and average F1 scores differ in 3%.
Moreover, when comparing at the same level of evaluation, the results
of using stratified sampling outperform that of following mapping units
noticeably. These results implies the importance of both data splits and
evaluation levels.

6.2. Evaluation on different features

There are different ways to extract features from SVIs and RSIs, such
as the methods introduced in Section 4. To investigate the effectiveness
of different features, we conduct ablation studies on using different
features of SVI and RSI, the results are presented in Tables 7 and 8,
respectively. We can see that the results of using different features
vary noticeably. For SVI features, the semantic features extracted by
PlacesCNN obtain the best results, significantly outperforming the fea-
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tures using semantic segmentation network DeepLab-v3. The fusion of
the features from PlacesCNN and DeepLab does not improve the results.
While for RSI, the spectral features beat the deep features extracted by
ResNet50, and the combination of spectral features and deep features
does not improve the results. Therefore, in our experiments, we use the
PlacesCNN features to represent SVIs while use the spectral features to
represent RSI patches.

6.3. Evaluation on different aggregation methods for fusion

When fusing RSI and SVI, a key step is to aggregate the information
provided by variable numbers of SVIs within mapping units. There are
different aggregation methods, including average, max pooling, BoF,
etc. To investigate the effectiveness of different aggregation methods,
we conduct experiments on the above three methods, and the results
are presented in Table 9. It can be seen that the three different methods
achieve relatively consistent results, with the average method achieving
the best performance. Therefore, we adopt the average aggregation
method in our feature-level fusion experiments in this study.

6.4. Evaluation on different classifiers

To demonstrate the generalization of the improvement of fusing
SVIs with RSIs for LCZ mapping, besides XGBoost, we experiment on
other widely used classification models, including Random Forests and
Support Vector Machine. The results of using different classifiers are
shown in Table 10.

As can be seen, in general, compared with using only RSI, the
classification performances have been enhanced noticeably when fusing
SVI with RSI in all the evaluation metrics. This demonstrates the
usefulness of SVIs in help improve the LCZ classification performance.
Furthermore, we can find that XGBoost model can outperform the RF
model noticeably in most metrics and the SVM model generally has
lower performance than the other tree-based classification models.

6.5. Practical applications and limitations

Street-level images contain useful ground-level information which
remote sensing images lack and thus it is promising to integrate them
for LCZ mapping as well as more general urban thermal environ-
ment and urban climate studies. The major contributions of SVIs in
LCZ-related studies can be summarized as follows.

Firstly, due to the inherent limitation of remote sensing images, the
accuracy of LCZ classification using remote sensing imagery alone may
be limited, especially when it comes to the LCZ categories with building
information (e.g. LCZ types 1–3), resulting in LCZ classification results
that are not practically applicable. These problems are particularly
evident in the study of urban LCZs in China, and building height infor-
mation is significant in improving the accuracy of the identification of
these categories (Ren et al., 2019). Usually, DSM data and 3D building
data contain the above information, but these data are often not avail-
able in many areas. Street-level images, on the other hand, is currently
available in a wide range of areas and can be collected efficiently
when necessary, making it more efficient than traditional field work.
Therefore, street view image data can provide easily accessible ground
details, and the fusion of remote sensing and street view images can sig-
nificantly improve LCZ classification accuracy (as demonstrated by the
experimental results in our study), while high accuracy LCZ data can
support more accurate decision making. In addition, interpretability is
also an important factor in decision making, and street view images
can provide more intuitive and easy-to-understand data support during
case study.

Secondly, LCZ is mainly used for studies related to urban thermal
environment and urban climate, such as urban heat island effect (Stew-
art and Oke, 2012; Zhu et al., 2022); in practical studies, street view
images can obtain relevant information that is difficult to obtain from
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Table 6
Classification results of SVI with different training/testing data splits and different evaluation levels.

Data split Evaluation level OA WA AA Kappa Avg F1

Stratified sampling Image-level 0.6472 0.9054 0.4918 0.6003 0.5008
Parcel-level 0.6459 0.9074 0.4961 0.6018 0.5042

Follow mapping units Image-level 0.6026 0.8905 0.4250 0.5492 0.4161
Parcel-level 0.6274 0.8978 0.4550 0.5817 0.4436
Table 7
Classification results of SVI using different features. The best results are highlighted in
bold.

Method OA WA AA Kappa Avg F1

PlacesCNN 0.6274 0.8978 0.4550 0.5817 0.4436
DeepLab 0.5340 0.8754 0.3598 0.4762 0.3414
PlacesCNN+DeepLab 0.6236 0.8962 0.4542 0.5784 0.4320

Table 8
Classification results of RSI using different features. The best results are highlighted in
bold.

Method OA WA AA Kappa Avg F1

Spectral 0.7926 0.9424 0.4510 0.7032 0.4476
ResNet50 0.7800 0.9418 0.4314 0.6849 0.4267
Spectral+ResNet50 0.7863 0.9441 0.4502 0.6938 0.4465

Table 9
Classification results using different SVI aggregation methods for feature-level data
fusion. The best results are highlighted in bold.

Method OA WA AA Kappa Avg F1

Average 0.8129 0.9527 0.5054 0.7319 0.5025
Max pooling 0.8027 0.9459 0.4899 0.7172 0.4913
BoF 0.7992 0.9456 0.4731 0.7124 0.4752

remote sensing images, including: 3D building information (e.g., build-
ing height and vertical spatial layout); building facade texture and
material; height and volume of trees and vegetation; uneven road
and terrain information; etc. These kinds of information is crucial for
modeling the urban climate and thermal environment. Future research
can extract the relevant information from street-level images in a more
refined and targeted manner to serve research related to the urban
thermal environment and urban climate, as well as derived research
topics such as urban energy and solar cities (Zhu et al., 2023).

Although street-level image data has many advantages and can
provide a wealth of information, and the integration of remote sensing
and street-level imagery is promising to combine useful information
to solve more problems; there are still some limitations in the street
view image data and in this study. Firstly, at the data level, there
are inherent limitations in the street view image data, with limited
spatial and temporal coverage and resolution. Street view images are
sparsely distributed along roads thus limiting its spatial coverage and
resolution. In addition, the update of SVIs is difficult to control which is
determined by the street view service providers. The street scenes may
change as time goes by and the update frequency is highly uncertain
across different regions. All these limitations on spatial and temporal
coverage have significantly limited the availability of SVIs. Studies
on how to make full use of limited SVIs are worth of further efforts.
Secondly, the main study area of this study is in Hong Kong, and the
study area can be extended in the future to further figure out whether
the method of fusing remote sensing and street view image data is
equally effective for other areas and what differences exist. In addition,
this study mainly adopts the traditional machine learning method to
14

achieve a balance between accuracy and cost, which may limit the
potential of street view images in terms of accuracy. In the future,
alternative data fusion methods can be explored on the basis of the
current method, such as using more advanced deep learning methods
and fusion strategies to further improve the accuracy of data fusion.

7. Conclusion

Timely and accurate LCZ classification maps are important for urban
climate research. While remote sensing images have shown to be useful
for LCZ mapping, it often falls short in providing crucial ground-level
details that are essential for accurate classification. Street-level images
offer an alternative perspective that can fill this gap. In this study,
we propose an effective method to integrate satellite and street-level
images for LCZ mapping, which can make full use of them to improve
the LCZ classification and mapping performance. In addition, we pro-
pose a simple yet effective sampling method to significantly reduce
the number of required street-level images while maintaining high LCZ
mapping performance. Extensive experiments have been carried out
and the results demonstrate the effectiveness of the proposed cross-
view data fusion method and the efficacy of the proposed street view
image sampling method. The study has illuminated the potential value
of integrating street-level images to enhance LCZ mapping and can
further benefit urban climatic studies.

In the future, there are several directions worth further investiga-
tion. Firstly, without considering computational cost, alternative data
fusion methods can be further explored to make full use of street
view images and further improve the LCZ mapping accuracy by using
state-of-the-art deep learning-based methods. Secondly, figuring out
how street-level images can help augment the LCZ mapping results
can help us better understand the contribution of SVIs and further
refine the strategies in exploiting the data. Finally, the current study
only focuses on one city, it is important to further investigate the LCZ
mapping results in more regions and compare the results to evaluate
the generalization performance of the proposed methods.
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Table 10
Classification results of using different classifiers. The best results are highlighted in bold.

Classifier Method OA WA AA Kappa Avg F1

XGBoost SVI 0.6274 0.8978 0.4550 0.5817 0.4436

RSI 0.7926 0.9424 0.4510 0.7032 0.4476
Feature-level Fusion 0.8129 0.9527 0.5054 0.7319 0.5025
Decision-level Fusion 0.8157 0.9513 0.5013 0.7363 0.4973

RF SVI 0.5440 0.8677 0.3275 0.4789 0.3032

RSI 0.7961 0.9431 0.4373 0.7072 0.4354
Feature-level Fusion 0.8020 0.9448 0.4375 0.7152 0.4243
Decision-level Fusion 0.8074 0.9482 0.4578 0.7235 0.4528

SVM SVI 0.5883 0.8937 0.4081 0.5368 0.3788

RSI 0.4180 0.7316 0.2323 0.2842 0.1913
Feature-level Fusion 0.4959 0.8321 0.3347 0.3653 0.3034
Decision-level Fusion 0.4830 0.7631 0.3212 0.3558 0.2722
Appendix. List of abbreviations

Abbreviation Explanation
AA average accuracy
BoF bag-of-features
LCZ local climate zone
OA overall accuracy
OA𝑛𝑎𝑡 overall accuracy of natural types
OA𝑢𝑟𝑏 overall accuracy of urban types
OSM OpenStreetMap
RF Random Forests
RSI remote sensing imagery
SDGs sustainable development goals
SVI street view image
SVM Support Vector Machine
WA weighted accuracy
WUDAPT World Urban Database and Access Portal Tools
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