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Sustainable development goals (SDGs) in the United Nations 2030 Agenda call for action by all nations to
promote economic prosperity while protecting the planet. Projection of future land-use change under
SDG scenarios is a new attempt to scientifically achieve the SDGs. Herein, we proposed four scenario
assumptions based on the SDGs, including the sustainable economy (ECO), sustainable grain (GRA), sus-
tainable environment (ENV), and reference (REF) scenarios. We forecasted land-use change along the Silk
Road (resolution: 300 m) and compared the impacts of urban expansion and forest conversion on terres-
trial carbon pools. There were significant differences in future land use change and carbon stocks, under
the four SDG scenarios, by 2030. In the ENV scenario, the trend of decreasing forest land was mitigated,
and forest carbon stocks in China increased by approximately 0.60% compared to 2020. In the GRA sce-
nario, the decreasing rate of cultivated land area has slowed down. Cultivated land area in South and
Southeast Asia only shows an increasing trend in the GRA scenario, while it shows a decreasing trend
in other SDG scenarios. The ECO scenario showed highest carbon losses associated with increased urban
expansion. The study enhances our understanding of how SDGs can contribute to mitigate future envi-
ronmental degradation via accurate simulations that can be applied on a global scale.

� 2023 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
1. Introduction

Food security, economic growth, sustainable urban develop-
ment, and environmentally friendly development, are essential
elements for achieving the United Nations Sustainable Develop-
ment Goals (SDGs) [1–4]. Land-use change has complex interac-
tions with the economy, society, and environment and plays an
important role in regulating climate, food security, and the carbon
cycle [2,5–9]. Terrestrial ecosystems are extensively influenced by
human land use and management [10]. Global urbanisation offsets
30% of climate-driven terrestrial net primary productivity growth,
and cities account for >70% of anthropogenic greenhouse gas emis-
sions [11,12]. Forest loss and afforestation have important implica-
tions for terrestrial carbon sinks and climate change mitigation [7].
Projections of future land-use change and their impact on terres-
trial ecosystem carbon pools under multiple SDG scenarios could
inform the pathways to sustainable development. Herein, we
present spatially explicit projections of global land-use change
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from 2020 to 2030, analyse land-use change in countries along the
Silk Road, and examine their impacts on terrestrial carbon pools
(Supplementary Note 1 and Fig. S1 online).

Projecting land-use patterns requires established scenarios that
represent possible future socio-economic and environmental con-
ditions [13]. Simulation is a meaningful way to enable us under-
standing the future better, and scenario-based simulations
support the analysis of potential land-use changes in uncertain
futures [14,15]. Several previous studies have formulated guiding
frameworks for the future use of land resources. Some scholars
have studied future land-use predictions under several representa-
tive concentration pathways (RCPs) [16], shared socio-economic
pathways (SSPs) [17,18], and SSP–RCP scenarios [19,20]. Some
studies have modelled a global urban map for 2030, based on the
United Nations population and economic projections [9]. The cli-
mate scenarios developed by the Intergovernmental Panel on Cli-
mate (IPCC) have also been used to simulate future land cover
changes globally [6,21,22]. The United Nations 2030 Agenda for
Sustainable Development (herein after referred to as the 2030
Agenda) set up a comprehensive and integrated framework of 17
goals, 169 targets, and 231 unique indicators [4], which are
designed to guide the progress of sustainable development until
2030. The 17 SDGs integrate the three dimensions of sustainabil-
ity: economy, society, and environment [4]. Using a system that
considers the interaction between SDGs and analyses the relation-
ship between the speed of their progress and land-use in different
regions is a topic of great interest in sustainable development
research [23,24]. Some scholars have constructed indicator sys-
tems and methods [25–30], proposed a framework for evaluating
the interaction between the SDG indicators [31–33], and explored
the synergy and trade-off effects between these indicators [34,35].
However, few studies have comprehensively considered multiple
scenarios of SDGs, including the economic, environmental, and
social aspects, to develop projections of land use. To fill this knowl-
edge gap, this study addresses three main questions based on mod-
els that integrate system dynamics (SD) and cellular automata
(CA). (1) How are SDG scenarios set? (2) What are the trends of
future land-use change in different sub-regions under SDG scenar-
ios? (3) How does the impact of land-use on terrestrial ecosystem
carbon pools differ under SDG scenarios?

Based on the interaction between land use and the key targets
of SDGs, we considered the following scenarios: the sustainable
economy (ECO), sustainable grain (GRA), sustainable environment
(ENV), and reference (REF) scenarios (Supplementary Note 2
online). In the REF scenario, we observed the actual development
of SDGs; in the ECO scenario, we observed a high-speed economy
growth rate; in the GRA scenario, people would obtain adequate
food and the cultivated land would completely guarantee grain
safety; and in the ENV scenario, less environmental pollution was
emitted (Supplementary Note 2 online). Rapid industrialisation
and urbanisation along the Silk Road have caused a series of envi-
ronmental problems, including soaring resource consumption, air
and water pollution, land degradation, and biodiversity reduction,
which jeopardise sustainable development in and beyond the
region [36]. Therefore, we selected countries along the Silk Road
to forecast land use changes during 2020–2030, under the four
SDG scenarios. Considering the economic, climatic, and location
factors, we separated the study area into nine regions (Table S1
online, Methods), and their SDG scenarios were constructed based
on the regional development characteristics (Tables S2–S4 online).

Several studies have analysed the SDGs, with a focus on regional
or global single-goal progress assessments, while considering the
synergistic trade-offs among multiple goals [1]. The uncoordinated
ratio of the land consumption rate to population growth rate
(LCRPGR) affects the progress of sustainable development of cities
[37,38] (Supplementary Note 3 online). The SD model is widely
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used to simulate land-use changes influenced by socio-economic
and climate change factors [39]. Since further comprehensive anal-
ysis normally need model coupling [40], many scholars use CA [6],
combined with SD, to simulate future land-use changes driven by a
variety of factors.

Based on the SDG scenarios, we integrated the SD and CA mod-
els and considered the socio-economic and climatic factors, to pre-
dict future land-use changes [41–43], in the countries located
along the Silk Road (Methods) for 2020–2030 (spatial resolution:
300 m), we proposed a kind of new scenario assumption. We built
nine SD models to explore the future land-use demand and the
interaction between socio-economic and climate change drivers
for each scenario (Fig. S2 online) and analysed the changing trends
in the land types along the Silk Road. Furthermore, we analysed the
distribution pattern of urban expansion and land-type conversion
in some representative areas in 2030. We calculated the changes
in terrestrial carbon stock caused by urban expansion and forest
change in the countries along the Silk Road, using the integrated
valuation of ecosystem services and trade-offs (InVEST) and inte-
grated biosphere simulator (IBIS) models for 2020–2030 while
considering SDG scenarios [44,45]. Notably, our study provides a
new perspective for exploring future land-use change and its
impact on terrestrial ecosystem carbon stock under the SDG
framework.
2. Materials and methods

2.1. Study region and subregion definition

The Silk Road is the collective name for a number of ancient
routes that connected Europe, Africa, and Asia, which has been a
bridge between the East and the West for >2000 years. The natural
environment along the Silk Road is complex and diverse, spanning
tropical, temperate, and boreal zones. The region along the Silk
Road has a large geographical span and a variety of land cover
types.

We divided the study area along the Silk Road into nine sub-
regions (Supplementary Note 4 and Table S1 online), on the basis
of geopolitical and socioeconomic regions from shared socioeco-
nomic pathways (SSPs) database, and agro-ecological zones (AEZs)
developed by the Food and Agricultural Organization (FAO) and the
International Institute for Applied Systems Analysis (IIASA) [46].
Geopolitical and socioeconomic regions represent economic condi-
tions such as industrial production, energy consumption, trade,
and natural resources. AEZs reflect the natural ecosystems and
agricultural activities across the global land area [42], and coun-
tries located in a specific AEZ have similar or homogenous soil,
landforms, and climatic characteristics. The nine subregions are
defined as follows: China (CHN), Central and Western Asia
(CWS), Eastern Europe (EEU), Europe high-income countries (EU-
H), Europe middle-income countries (EU-M), Middle East high-
income countries (MEA-H), Middle East middle-income countries
(MEA-M), other Asian countries (OAS), and Russia (RUS).
2.2. Setting SDG scenarios

We set SDG scenarios based on trends that may be generated in
the future (Supplementary Note 2 online). The SDG trend dash-
boards indicate whether a country is on track to achieve specific
goals by 2030, based on its recent performance on given indicators,
providing a visual representation of each country’s performance on
17 SDGs. The ‘‘traffic light” color scheme (green, yellow, orange,
and red) illustrates how far a region is from achieving a particular
goal; the colours correspond to on track or maintaining SDG
achievement, moderately improving, stagnating, or decreasing,
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respectively [47]. In this study, we considered four SDG scenarios:
REF, ECO, GRA, and ENV (Supplementary Note 2 online). Addition-
ally, we considered four SDG indicators: GDP growth rate (SDG
8.1.1), cereal yield (SDG 2.3.1), prevalence of undernourishment
(SDG 2.1.1), and annual average concentration of PM2.5 (SDG
11.6.2). For the four SDG indicators, we obtained the thresholds
for different development trends based on SDG trend dashboards
(Table S2 online). Development trends of the SDG indicators were
set separately under different SDG scenarios (Table S3 online),
which were developed in nine sub-regions based on regional
development characteristics (Table S4 online).
2.3. Application of SD and CA: development of artificial neural
networks (CA–ANNs) models

In this study, we built nine SD models to predict the land-use
areas by 2030 (Supplementary Note 5 online). The sources of the
SD variables included spatial and statistical data (Table S5 online).
First, we selected the sustainable development indicators for the
four SDG scenarios as the key factors driving the entire system
(Fig. S2). We reclassified the European Space Agency Climate
Change Initiative (ESA CCI) land cover products (Table S6 online).
Different types of land are interconversion by a system feedback
loop of coupling population, economy, food, and environment.
The formulation and variable abbreviations of the SD models for
the nine sub-regions are shown in Tables S7 and S8 (online). Addi-
tionally, the trends of land-use change in different scenarios were
obtained, by inputting the parameter constraints of different SDG
scenarios. The average relative error of the SD model was <5%,
which indicated that the simulated results fitted well with the
actual land use (Table S9 online).

Based on the land-use demand predicted by the SD model, we
employed the CA-ANNs model, to spatialise the land use from
2020 to 2030 for all the SDG scenarios (Supplementary Note 6
and Fig. S1 online), with the World Goode Homolosine Land for
spatial reference. The land-use conversion was carried out accord-
ing to the combined probability estimated by ANNs, neighbour-
hood effects, conditional constraints, and a random variable
during the iteration (Table S10 online), which continued until
land-use demands were met. Finally, the annual spatialisation of
land use data from 2020 to 2030 was obtained. The CA–ANNs
model returned a kappa coefficient of 0.77 (Tables S11 and S12
online). We developed the projection for the four SDG scenarios,
in terms of urban, cultivated land, and forest, and calculated the
growth of land area from 2020 to 2030 (Fig. 1). Secondly, we
selected representative regions of CHN, Thailand, India, Tajikistan,
Greece, Romania, Slovakia, and Indonesia for spatialisation of the
urban, cultivated land, and forest in 2030 (Figs. 2–4). To improve
the presentation, we implemented a focal summation analysis,
with radii of 15, 5, and 3 km for the urban (Fig. 2), cultivated land
(Fig. 3), and forest (Fig. 4) areas. We calculated the growth rate of
land type areas using the following equation:

Growth ¼ ðUj � UiÞ=Ui; ð1Þ

where Growth indicates growth rates of land-type areas relative to
the base year in each interval; Ui and Uj are land-type areas in the
beginning and ending years within an interval, respectively.
2.4. Forecasting terrestrial carbon stock

We analysed future ecosystem carbon stock change along the
Silk Road, under the SDG scenarios. The carbon density data were
obtained using the IBIS model [45]. We calculated the future
ecosystem carbon stocks of different land types for 2020–2030
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using the InVEST model [44]. The InVEST model divides ecosystem
carbon stock into four basic carbon pools:

Ctotal ¼ Cabove þ Cbelow þ Csoil þ Cdead; ð2Þ

where Ctotal denotes the total carbon stocks; Cabove means the above-
ground biogenic carbon; Cbelow means the belowground biogenic
carbon; Csoil denotes the soil organic carbon, and Cdead means the
dead organic carbon.

We re-classified the carbon density data from IBIS in 2020 into
four types of carbon density [45]. The average carbon density of the
four basic carbon pools of different land types was calculated sep-
arately according to the classification of land use, and will be
assumed to remain unchanged from 2020 to 2030. Then, the future
land-use data for the four SDG scenarios were input into the
InVEST model to predict land carbon stocks (cultivated land, forest,
and grass) from 2020 to 2030. The area of each land-type was mul-
tiplied by its carbon density and summed to obtain the total carbon
stock. We obtained the predictions for carbon stocks along the Silk
Road for SDG scenarios in 2020–2030, and we calculated the
changes in forest, cultivated carbon stocks, and carbon losses
caused by urban expansion under the SDG scenarios (Table S13
online).
3. Results

3.1. Future land-use change in different SDG scenarios

In our study, land-use conversion in the countries along the Silk
Road portrayed significant differences from 2020 to 2030 (Figs. S3–
S11 online). Our projection indicated that, in the future, urban and
grass areas will increase, whereas the area of cultivated land will
decrease. Additionally, from 2020 to 2030, urbanisation will
expand rapidly in CHN, OAS, MEA-M, and CWS, while steadily in
RUS, EEU, and the EU-M. In the four SDG scenarios, there were sig-
nificant differences in the future land-use growth of the nine sub-
regions (Fig. 1). Predicted changes in land-type areas are shown in
Figs. S3–S11 (online). From 2020 to 2030, in all four scenarios, the
cultivated land area decreased in most sub-regions along the Silk
Road, especially in CHN, EU-M, and EU-H, whereas that in the
MEA-M increased (Figs. S3–S11 online). Compared with that in
the REF scenario, the cultivated land areas in most sub-regions
declined in the ECO scenario. However, in the GRA scenario, the
cultivated land area increased in MEA-M, MEA-H, CWS, and OAS.
It indicates that cultivated land will be preserved under the GRA
scenario which contributes to SDG 2.

There were significant spatial differences in the growth of forest
areas in all four scenarios from 2020 to 2030 (Fig. 1). In the ENV
scenario, the forest areas in most countries decreased and the loss
rates of forest and grassland slowed, whereas, in China, it
increased. In the ECO scenario, the declining rate of forest area
accelerated, with the most significant decline observed in OAS
and EU-H. In the four scenarios, the grassland areas increased,
except for the EU-M, and the EU-H region portrayed the highest
rate of growth under the ENV scenario. In the GRA scenario, the
grassland area increased at a slower rate. In CHN, the forest area
increased under the ENV scenario and decreased in the GRA and
ECO scenarios. The urban expansion rate of the EEU was the slow-
est. In the ECO scenario, the urban expansion rate was the fastest,
with OAS, MEA-M, and CHN portraying the highest future urban
expansion rates among all the nine sub-regions. Notably, CHN por-
trayed the highest loss rate of cultivated land, whereas the OAS
portrayed the highest loss rate of forests; this indicated that the
urban expansion in CHN was mainly at the expense of cultivated
land and that in OAS could be mainly attributed to encroachments
into forestland.



Fig. 1. Future growth rate of different land-type areas predicted by system dynamics (SD) model in the study area, for different sustainable development goal (SDG) scenarios
(2020–2030). The map portrays the growth rate of cultivated land in sustainable grain (GRA) (a), forest in sustainable environment (ENV) (b), and grass in reference (REF) (c),
and sustainable economy (ECO) (d) scenarios. The bars indicate the comparison of growth rate for land use area in nine regions under the four SDG scenarios. Error bars
represent the standard deviation (considered as uncertainty range) among the four SDG scenarios projection.
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3.2. Spatial pattern of land use in 2030

In CHN, MEA-M, and OAS, the regions with the fastest urban
expansion rates experience intensive erosion of cultivated land.
Therefore, we selected representative areas that portrayed signifi-
cant expansions, including Hubei, Hunan, Jiangxi, and Bangkok,
along with their surrounding areas in Thailand and the coastal
region of southern China. Notably, we visualised the urban land
distribution corresponding to the four SDG scenarios and calcu-
lated the main land-type conversion (Fig. 2). The conversion of land
types mainly involved the transfer of cultivated land to urban land.
Urban expansion was the most significant in the Hubei, Hunan, and
743
Jiangxi provinces in China (Fig. 2a). In the ECO scenario, urban
expansion in the three representative districts was the most signif-
icant, and their urban distribution areas were estimated to be den-
sely connected by 2030. In the ENV and GRA scenarios, the urban
distribution areas of the three regions were small and sparse, with
the most common land-type conversion being that from cultivated
to urban land. This indicated that rate of urban expansion, with
respect to encroachment on cultivated land, could compromise
SDG 2.

Cultivated land is crucial for ensuring food security (SDG 2). In
this study, we selected regions in the southern part of the Deccan
Plateau in India, the lower reaches of the Vakhsh River plain in



Fig. 2. Spatialisation results of urban land in representative regions for the four scenarios. (a) Hubei, Hunan, and Jiangxi provinces in China; (b) Bangkok and its surroundings
in Thailand; (c) coastal area of southern China. The bars indicate the comparison of area of urban land transferred to cultivated land in nine regions, under the four SDG
scenarios. Error bars represent the standard deviation (considered as uncertainty range) among the four SDG scenarios projected.
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Tajikistan and the Sesalia region in Greece to estimate the area
converted to cultivated land under the SDG scenarios (Fig. 3). By
2030, under the GRA scenario, most of the other land types were
converted to cultivated land, while the least amount of cultivated
land converted to other land types. Fig. 3a, c shows the conversion
of mainly forest land and grassland to cultivated land, while Fig. 3b
shows the conversion of cultivated land to grassland. The distribu-
tion density of cultivated land in the southern part of the Deccan
Plateau was highest for all four SDG scenarios (Fig. 3). In the GRA
scenario, the three representative areas portrayed a higher distri-
bution density of cultivated land, compared with that in the other
scenarios. In the ECO scenario, the distribution density of culti-
vated land decreased, and the most significant decrease was
observed in the lower reaches of the Vakhsh River plain.

As an important carbon sink, forest land is crucial for regulating
climate and achieving IPCC temperature goals. In this study, we
selected countries in EU-M, EU-H, and OAS that had abundant for-
est resources to analyse the changes in the forests by 2030 for the
four SDG scenarios (Fig. 4). The conversion of areas into and from
forests by 2030 is shown in Fig. 4. In the ENV scenario, the forest
area is the most transferred in and the least transferred out.
Fig. 4a shows the highest conversion of cultivated land and grass-
land to forested land, Fig. 4b shows the least conversion of forest
land to urban and cultivated land, and Fig. 4c shows a minimum
conversion of forest land to cultivated land. As per Fig. 4a, culti-
vated land is the main source of forest land transfer. By 2030, the
distribution characteristics of forests in Romania in the four SDG
scenarios were similar, with high distribution density (Fig. 4a). In
Slovakia and the Java Island, forest distribution was relatively
dense in the ENV scenario, and relatively sparse in the ECO and
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GRA scenarios (Fig. 4b, c). Additionally, Romania showed a
decrease in the forest area, resulting from years of deforestation;
however, in recent years, the afforestation areas have increased
annually, owing to the influence of supporting policies. This proves
that considering SDGs in policy development can be effective in
conserving forest resources.

3.3. Future impact of land-use change on terrestrial ecosystem carbon
pools

We calculated the changes in cultivated carbon, forest carbon
stocks, and loss of carbon stocks caused by urban expansion in
the nine sub-regions along the Silk Road from 2020 to 2030 for
the four SDG scenarios (Fig. 5 and Table S13 online). Future impact
of land-use change on terrestrial carbon pools exhibited large spa-
tial variations in different regions. Ecosystem carbon stocks in for-
est and cultivated land showed a decrease in a majority of regions
and a slight increase in a minority of sub-regions. Forest ecosystem
carbon stocks of decreased least in the ENV scenario; total ecosys-
tem carbon stocks decreased most in the ECO scenario along the
Silk Road.

In the ECO scenario, urban expansion in CHN and OAS returned
the largest carbon losses, higher than the REF scenario by approx-
imately 25% and 38%, respectively, from 2020 to 2030. However,
under the ENV scenario, the loss of carbon from forest land was
much less in OAS, accounting for approximately 29% of the ECO
scenario. The carbon stocks of cultivated ecosystems showed a
decreasing trend, and the change trend was similar to that of the
carbon loss caused by urban expansion under the ECO scenario.
The forest carbon stocks in each sub-region portrayed a decreasing



Fig. 3. Spatialisation results of cultivated land in representative regions for the four SDG scenarios. The sub-parts indicate: (a) southern part of the Deccan Plateau in India; (b)
lower reaches of the Vakhsh River plain in Tajikistan; (c) Sesalia region of Greece. The bars indicate the comparison of the conversion area of cultivated land in nine regions
under the four SDG scenarios. Error bars represent the standard deviation (considered as uncertainty range) among the four SDG scenarios simulated.

M. Cao et al. Science Bulletin 68 (2023) 740–749
trend, except for the EU-M region; that in the EEU region portrayed
only a slight increase. The forest carbon loss in the OAS region was
higher than that in other sub-regions and larger than the carbon
loss caused by urban expansion. Under the ECO scenarios, the loss
of forest carbon stocks in OAS is approximately 1.19 times more
than in the REF scenario (Fig. 5 and Table S13 online), from 2020
to 2030.

In the GRA scenario, the reduction in forest carbon stock and the
carbon loss caused by urban expansion were slightly less than
those in the ECO scenario. Under the GRA scenario, the carbon loss
in forest was the largest in OAS, accounting for approximately 62%
of the REF scenarios; the forest ecosystem carbon stock loss in CHN
was slight, accounting for only approximately 9% of the ECO sce-
nario. In the GRA scenario, the cultivated ecosystem carbon stock
loss was significantly mitigated compared to other scenarios; the
carbon stock change of cultivated land in OAS increased by approx-
imately 1.11 times compared to in the REF scenario. In the GRA
scenario, carbon stock loss of cultivated land in CHN accounted
for only approximately 65% of the REF scenario.

In the ENV scenario, carbon losses from forestland and urban
expansion were mitigated significantly. The forest carbon loss in
OAS under the ENV scenario accounted approximately 29% under
the ECO scenario. Additionally, carbon loss from forest and culti-
vated conversion was less than that from urban expansion. In the
ENV scenario, the trend of decreasing forest land was mitigated,
and forest carbon stocks in CHN increase by 0.60% in 2030 com-
pared to 2020. Notably, in CHN, carbon loss from urban expansion
was the least in the ENV scenario. In all the four SDG scenarios, we
observed a small increase in forest carbon stocks, along with a
745
small carbon loss from urban expansion, in the EU-M and EEU
sub-regions.
4. Discussion

At present, OAS and CHN sub-regions are facing severe popula-
tion pressure, and thus, food security is an important guarantee for
sustainable development in these regions [48–50]. Compared with
the reduction in other scenarios, the cultivated land area in OAS
increased significantly in the GRA scenario. Reduction in the culti-
vated land area in CHN was effectively controlled in the GRA sce-
nario. The urban expansion of regions intensified significantly in
all the SDG scenarios and sub-regions, with the only exception
being the EEU sub-region. In the future, the urban expansion rate
in the EEU sub-region would be significantly lower than that in
other sub-regions; this was indicated in all four scenarios. This
could be due to the lower population rate in the EEU sub-
regions, causing an insufficient driving force for urban expansion
[51]. The urban expansion in Thailand and China’s south-eastern
coastal cities has transformed cultivated land and forests into
urban areas. The urban expansion causes not only the reduction
of forest and cultivated land, but also the loss of terrestrial carbon
stocks and an increase in carbon emissions [7,8,10,12,52]. Calcu-
lated total terrestrial ecosystem carbon in China for 2020 (112.01
± 0.06 PgC) is slightly higher than the total carbon stock predicted
by studies (99.15 ± 8.71 PgC) in 2018 [53]. In this study, the calcu-
lated forest ecosystem carbon (33.56 ± 0.01 PgC) was similar to it
(30.83 ± 1.57 PgC) [54]. The carbon loss due to urban expansion



Fig. 4. Spatialisation results of forest area in representative regions for the four scenarios. The sub-parts represent: (a) Romania; (b) Slovakia; and (c) Java Island in Indonesia.
The bars indicate the comparison of forest area conversion in nine regions, under four the SDG scenarios. Error bars represent the standard deviation (considered as
uncertainty range) among the four SDG scenarios simulated.

Fig. 5. Future changes in cultivated carbon, forest carbon stock, and carbon losses due to urban expansion in different regions from 2020 to 2030 for the different SDG
scenarios. Error bars represent the standard deviation (considered as uncertainty range) among the four SDG scenario projections.
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for China projected in this study is 0.61 ± 0.23 PgC, which is similar
to the average annual carbon loss rate of 0.05 PgC a�1 due to urban
expansion from 2000 to 2030, as predicted by previous studies [9].
Therefore, achieving multiple SDGs depends on the harmonisation
of socio-economic environment, and land use and conservation.
746
The coordination of future urban expansion and population
growth (SDG 11.3.1) is an important step towards sustainable
development [9,55]. In this study, we calculated the LCRPGR in
the countries along the Silk Road from 2020 to 2030 for all the
SDG scenarios (Fig. 6 and Figs. S12–S15 online), which can quantify
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the relationship between urban expansion and population growth
in different regions [3]. Generally, the closer the value of LCRPGR is
to 1, the more coordinated is the population growth and urban
land expansion in the region, and more sustainable is the urban
development [56]. The most significant factor for regional urban
expansion was observed in the ECO scenario (Fig. 6). The LCRPGR
values between 0 and 1 were mainly concentrated in the coastal
cities and scattered in the inland cities, indicating a relatively har-
monious relationship between urban expansion and population
growth in these places. The regions with an LCRPGR value <0 were
mainly distributed in Europe, which indicated that there may be
depopulation and urban surplus. The predicted results portrayed
that the regions with LCRPGR value >2 were mainly distributed
in Southeast China and Northeast India, suggesting that urban
expansion in these regions may be more intensive than that in
other regions.

In SDG scenarios, the future LCRPGR in different regions por-
trayed significant spatial heterogeneity in 2030 (Fig. 6). In the
OAS and CHN sub-regions, which indicated significant urban
expansion, the coordination between the urban areas and the pop-
ulation (0 < LCRPGR < 1) in the GRA and ENV scenarios was higher
than that in the ECO and REF scenarios. This indicates that coordi-
nated development of urban expansion and population growth
requires comprehensive consideration of sustainable goals that
support food security and environmental protection. Clean air
and sufficient food supply are important guarantees for sustainable
Fig. 6. Ratio of land consumption rate to population growth rate (LCRPGR) in the study
grades of LCRPGR (0 < LCRPGR < 1, LCRPGR > 2) in regions of A and B, under the four
provinces in China, in the ECO and GRA scenarios; B: Bihar, Jharkhand, Uttar Pradesh, a
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urban development (SDG 11) [3,9,57]. The area of LCRPGR (>0 but
<1) in the GRA and ENV scenarios were larger in the ECO and REF
scenarios (Fig. 6). The number of grids with LCRPGR values in the A
and B regions (>0 but <1) in the GRA scenario were approximately
2.6 and 3.4 times in the ECO scenario, respectively. Additionally, in
CHN, the coordination of eastern coastal cities in the urban expan-
sion (0 < LCRPGR < 1) was higher. Among the OAS sub-regions, we
observed significant differences in India, where there was higher
urban expansion in the north-eastern regions of the Ganges Plain
(LCRPGR > 2). Intensive urban development (0 < LCRPGR < 1) was
observed in the coast of Southeast Asia. The EEU and EU-M regions
portrayed an opposite trends in terms of urban expansion and pop-
ulation growth (LCRPGR < 0), which is mainly due to a decrease in
the population growth rate (PGR) of the region from 2020 to 2030.
Therefore, promoting the coordinated development of urban
expansion and population growth can help countries achieve sus-
tainable cities and communities sooner (SDG 11).

Our study has some limitations. The scenario setting is deter-
mined by the interaction between the economy, environment,
and land-use aspects [6,21,22]. Considering the availability of data
and the complexity of the model, we covered only a subset of the
full SDG space. Despite this limitation, our results are reliable,
especially regarding land demand projections, LCRPGR, urban
expansion, and the impact of forest land change on terrestrial car-
bon pools for the four scenarios. Additionally, the detrimental
effects of the COVID-19 pandemic [47,58] and wars are not yet cap-
area, under the ECO and GRA scenarios from 2020 to 2030. Area ratios of different
SDGs scenarios: ECO, REF, ENV, and GRA. A: Henan, Anhui, Shandong, and Jiangsu
nd West Bengal in India, in the ECO and GRA scenarios.
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tured in our modelling framework; we suppose that considering
these factors, certain SDGs will take longer to attain. Hence, future
studies could consider the impact of such emergencies in the
model prediction process, to accurately reflect future land-use
demand and the resulting changes in the terrestrial carbon stocks
in SDG scenarios. Nevertheless, this study investigated the implica-
tions of projecting future land use change and impacts on terres-
trial carbon stocks under different SDG scenarios. It provides new
perspectives for exploring scientific pathways to sustainable devel-
opment and policy development.

5. Conclusion

In this study, we proposed a new strategy to predict future
land-use demand in countries along the Silk Road, while ensuring
the realisation of the regional SDGs. In general, the CA–ANNs
model combined different basic spatial data (topography, climate,
economy, and soil), to simulate future land use by 2030. Consider-
ing the impact of economic, social, and environmental factors on
land use and analysing the carbon stocks loss caused by future
urban expansion and the change in carbon stocks in the compara-
tive forest areas, we observed significant differences in the nine
sub-regions in the four SDG scenarios. The sub-regions with the
most significant changes in urban expansion and forest carbon
stocks were RUS, CHN, and OAS. In the ENV scenario, China’s forest
area experienced a transition from negative growth to net increase.
In the OAS sub-region, the rapid decline in the forest area was
reduced in the ENV scenario. Significant spatial and temporal dif-
ferences in future land use demands under the different SDG sce-
narios were observed. Urban expansion intensified under the
economic scenario, which, however, may threaten the achieve-
ment of SDG 2, SDG 13, and SDG 15 owing to the encroachment
of the cultivated land and forest land. Consequently, focusing on
the achievement of one SDG target requires considering the
impacts on other SDGs. Combining multiple SDGs scenarios to pre-
dict future land-use change and impacts on terrestrial carbon pools
will help explore scientific pathways towards sustainable develop-
ment, which will contribute to the advancement of global sustain-
able development processes.
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