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A B S T R A C T

Harvesting solar energy on rooftops can be a promising solution for providing affordable energy. This requires
accurately estimating spatio-temporal solar photovoltaic (PV) potential on urban surfaces. However, it is still
a challenge to obtain a fast and accurate estimation of rooftop solar PV potential over large urban built-up
areas. Thus, this study proposes a parametric-based method to estimate annual rooftop solar irradiation at a
fine spatial resolution. Specifically, seven parameters (Digital Surface Model, Sky View Factor, shadow from
buildings, shadow from terrain, building volume to façade ratio, slope, and aspect) are determined that having
great importance in modeling rooftop solar irradiation. Three machine learning methods (Random Forest (RF),
Gradient Boost Regression Tree (GBRT), and AdaBoost) trained by the selected parameters are cross-compared
based on 𝑅2, Mean Absolute Error (MAE), and computation time. As a case study in Hong Kong, China, the
RF outperformed GBRT and AdaBoost, with 𝑅2 = 0.77 and 𝑀𝐴𝐸 = 22.83 kWh∕m2∕year. The time for training
and prediction of rooftop solar irradiation is within 13 h, achieving a 99.32% reduction in time compared
to the physical-based hemispherical viewshed algorithm. These results suggest that the proposed method can
provide an accurate and fast estimation of rooftop solar irradiation for large datasets.
1. Introduction

1.1. Background

The global society is facing great challenges regarding increasing
energy demand, climate change, and air pollution with accelerated
global urbanization. Particularly, cities are responsible for 70% of
overall global energy consumption, making up more than two-thirds of
carbon emissions [1,2]. To mitigate these problems, governments need
to implement effective policies to simultaneously curb the demand for
fossil fuels and develop renewable energy [3]. Global solar photovoltaic
(PV) power generation increased by 179 TWh in 2021 with a rough
total generation of 1000 TWh, which makes solar PV become one of the
major contributors to electricity generation in most of the countries [4,
5]. Therefore, solar energy is a promising solution for satisfying the
growing energy demands and for mitigating energy-related emissions
in cities.

∗ Correspondence to: Block Z, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong.
E-mail address: Ls.charles@polyu.edu.hk (M.S. Wong).

To realize the aim of Hong Kong’s Climate Action Plan 2050, the
Hong Kong Government has been promoting the utilization of renew-
able energy and has set an ambitious target on solar PV deployment
in Hong Kong that all solar energy generation systems planned and
approved in this Plan can generate about 200 million kWh of elec-
tricity each year, which is sufficient to meet the electricity demand of
about 67,000 households [6]. Since Hong Kong is one of the densest
cities with limited land to generate utility-scale green electricity, it is
challenging to require large land space for concentrated solar farming.
Rooftop solar PV system becomes a reasonable choice in terms of the
availability of unused rooftop areas, easy installation and maintenance,
and lower network transmission losses. However, optimal deployment
of solar PV arrays on building rooftops still faces challenges in the
accurate estimation of rooftop solar potential and the design of the
intelligent distribution of PV deployment in existing studies.
vailable online 18 July 2023
960-1481/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.renene.2023.119034
Received 20 March 2023; Received in revised form 11 June 2023; Accepted 12 Jul
y 2023

https://www.elsevier.com/locate/renene
http://www.elsevier.com/locate/renene
mailto:Ls.charles@polyu.edu.hk
https://doi.org/10.1016/j.renene.2023.119034
https://doi.org/10.1016/j.renene.2023.119034
http://crossmark.crossref.org/dialog/?doi=10.1016/j.renene.2023.119034&domain=pdf


Renewable Energy 216 (2023) 119034X. Liao et al.
1.2. Impact factors on rooftop solar irradiation

Spatio-temporal distribution of rooftop solar irradiation is affected
by shade effects from buildings and mountains [7], rooftop slope and
aspect [8], and a series of urban morphological features [9], such as
the Sky View Factor (SVF). In the urban area, various artificial and
natural objects create complex urban morphology, which increases
shaded areas on building rooftops and decreases rooftop solar poten-
tial. Previous studies [10–14] have proven that urban morphological
features influence building solar energy potential. Specifically, Zhu
et al. [15] investigated the relationship between solar capacity and ur-
ban morphology features. The results illustrate urban morphology has
an important effect on solar capacity influenced by the weather. Simi-
larly, Poon et al. [16] conducted a parametric assessment to understand
the correlation relationship between urban morphological features and
annual average solar irradiation on rooftops and façades in Singapore.
The results illustrate that SVF has the strongest correlation with solar
irradiation on buildings. Furthermore, shade from surrounding build-
ings and mountains would directly and greatly reduce the amount of
the received solar energy. Therefore, understanding the impact of these
shades on rooftop solar irradiation is important for estimating and
deploying PV arrays on building rooftops. Li et al. [17] indicated that
the shade effects caused by building structures substantially influence
the amount of installed power capacity and proposed a method to effec-
tively compute the shaded areas on rooftops for accurately estimating
the solar potential. Additionally, Digital Surface Model (DSM), rooftop
slope, and aspect play vital roles in calculating solar irradiation in
the model proposed by Rich et al. [18]. In conclusion, morphological
features, shade effects, DSM, and rooftop slope and aspect are signifi-
cant parameters for estimating rooftop solar irradiation. However, few
existing studies investigate the specific impact of these parameters on
evaluating rooftop solar potential. Our study not only analyzes the cor-
relation of above-mentioned parameters with rooftop solar irradiation
but also constructs the optimal machine learning model to explore the
relationship between these parameters and solar irradiation.

1.3. Morphological tessellation

In the studies of urban morphology [19–21], the ratio between the
footprint area and the unbuilt space is generally used to define density.
And the calculation of density requires the definition of a boundary
which is often based on a grid. Leng et al. [22] used a radius of 150 m
as the investigation scale to calculate the urban morphological features
(i.e., building site cover, floor area ratio, building height, road network
density, road height-width ratio, green space ratio, and total wall
surface area). Although the selection of the scale size is based on the
empiricism of previous relevant studies [23–25], this selection method
lacks reliable and accurate scientific supporting and the selected scale
with regional limitations is difficult to be applied to other complex
regions. To solve this problem, Yong et al. [26] investigated the spatial
scale’s influence on the accuracy of estimated results at spatial resolu-
tions of 100, 200, 300, 400, 500, and 600 m. The results demonstrate
that R square values grow as the spatial scale grows coarser, and
this finding indicates that better prediction accuracy can be achieved
using a coarse spatial scale. However, the approach of using a specific
spatial scale for calculating density results in averaged values of a space
portion, and it fails in capturing site-specific and building-related den-
sity morphological features. To overcome this limitation, Fleischmann
et al. [27] presented Morphological Tessellation (MT) method to derive
a spatial unit from the building footprint for urban morphometric
analysis. And this study used MT method to generate morphological
tessellation cells across four different urban tissues (i.e., organic tissue
of Niederdorf, compact tissue of Langstrasse, detached villas of Hot-
tingen, and mixed post-war development of Friesenberg) and had a
visual inspection of these generated cells, and this suggests that MT
method can be applied into other regions with similar urban tissues.
2

Furthermore, Boccalatte et al. [28] used this MT method to calculate
morphological features and evaluate the impact of urban morphology
on rooftop solar radiation in Geneva. Since MT method can greatly
evaluate the impact of each building on the surrounding space and
accurately calculate building-related density information, this study
employs MT method to calculate morphological features related to
building density.

1.4. Methods for estimating rooftop solar potential

The estimation methods of roof solar potential can be classified into
four methods, i.e., sampling method, geostatistical method, physical
modeling method, and machine learning method [29]. The basic prin-
ciple of the sampling approach is to calculate an estimate of available
rooftop areas for the selected area, and then the estimate is extrapolated
for the entire area. Specifically, Lzquierdo et al. [30,31] conducted
stratified statistical sampling to compute the technical potential of
rooftop photovoltaic (PV) energy production in Spain. The results
showed that the total available rooftop area was approximately 571
km2 across the country, and around 4% of the overall electrical energy
can be generated by the PV system in Spain. Sampling methods can be
used to extract the available rooftop area in a large-scale area, but these
methods can only provide a rough estimation of rooftop solar potential,
and they cannot satisfy the requirements of highly accurate estimation
of rooftop solar irradiation.

The geostatistical methods performed spatial statistical analyses
to predict solar potentials, such as spatial interpolation and statisti-
cal clustering-related methods. Fathizad et al. [32] proposed an air
temperature-based model for the estimation of solar radiation and
compared the evaluation performance of solar mapping using eight geo-
statistical methods, namely, Inverse Distance Weighted, Global Poly-
nomial Interpolation, Radial Basis Function, Local Polynomial Inter-
polation, Ordinary Kriging, Simple Kriging, Universal Kriging, and
Empirical Bayesian Kriging. The results suggested that the Radial Basis
Function method is the most effective approach, with 𝑅2 = 0.904, MAE
= 3.02 MJ∕m2∕day, and Root Mean Square Error (RMSE) = 0.39%.
Additionally, Mishra et al. [33] used statistical clustering to calculate
the available areas of rooftops for the estimation of rooftop solar
potential in Uttarakhand, India. The results showed that 58% of rooftop
area receives solar radiation greater than 4 kWh∕m2∕day throughout
the year and could generate 57% of the electrical energy consumption
in this region. Since geostatistical methods are usually focused on the
total solar energy received, these methods can provide probabilistic
estimations of solar potential. Sampling methods and geostatistical
methods are limited in roughly and simply evaluating rooftop solar
potential, so both methods face challenges in providing accurate and
high spatio-temporal resolution estimates of the solar potential for an
individual building.

GIS-based physical modeling methods have been considered as the
optimal approach for estimating rooftop solar irradiation in terms of
good estimation accuracy and the possibility of automated application
in several areas. Saadaoui et al. [34] conducted an assessment method
for solar PV potential on flat roofs in the city of Ben Guerir, Morocco
using GIS and photogrammetry. The result indicated that more than
345 GWh of electricity can be annually generated by the rooftop solar
PV system. Hong et al. [35] developed a method for estimating the
hierarchical rooftop solar PV potential (i.e., physical, geographic, and
technical potential) by analyzing the available rooftop area through
Hillshade analysis in Seoul. The result illustrated that the physical, geo-
graphic, and technical potentials in the Gangnam district were found to
be 9,287,982 MWh, 4,964,118 m2, and 1,130,371 MWh, respectively.
Although these methods can provide satisfactory results and investigate
the multiple factors related to rooftop solar irradiation, it requires a
much longer computation time for obtaining high-accuracy and reliable

estimation results. For instance, Tabik et al. [36] proposed a Gradient
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Ascent algorithm to compute the maximum irradiation based on GPU-
CPU heterogeneous system, and it spent 2.477 s calculating a Digital
Elevation Model (DEM) of 500 points. Therefore, these methods are
more appropriately applied to micro-medium scale regions. Although
the modeling-based methods for estimating solar potential have merits
in terms of highly accurate estimates and a wide range of applications,
these methods are limited to a large amount of execution time for
large-scale regions.

In the last few years, machine learning methods have been in-
creasingly used in studies related to the estimation of solar potential,
with their merits on fast computation, application on a large scale,
and providing high-accuracy and reliable results. Liao et al. [37] pro-
posed a method to estimate spatially continuous land surface solar
irradiation based on four machine learning methods in Australia and
China, namely, Gradient Boosting Machine (GBM), Random Forest
(RF), Support Vector Regression, and Multilayer Perceptron. The results
showed GBM model achieved the highest accuracy with 𝑅2>0.7 and
he fastest computation ability using less than 10 s for processing
undreds of thousands of data. Likewise, Assouline et al. [38] combined
olar models in GIS and the Random Forest algorithm to estimate
he rooftop solar potential in 200×200 m2 pixels in Switzerland. The
esults showed that the total estimated PV electricity production from
uilding rooftops in Switzerland is 16.29 TWh/year, which can pro-
ide 25.3% of the yearly demand. Wang et al. [39] proposed a new
V power prediction model based on the Gradient Boost Decision
ree. The results suggested that this model has a good performance

n model interpretation, prediction accuracy, and stable error per-
ormance. Babbar et al. [40] used Adaboost as a hybrid of linear
nd non-linear machine learning models for long-term solar power
eneration prediction. The hybrid Adaboost outperformed other indi-
idual machine learning models, with Percentage Mean Absolute Error
MAPE)= 8.88%. Compared to the aforementioned three methods,
achine learning methods outperform them because of the fast com-
utation applied in the large dataset and high accuracy for prediction.
herefore, it is reasonable to consider machine learning methods as
ppropriate alternative approaches for assessing and estimating rooftop
olar potential.

.5. Contributions

In summary, this study proposes a fast and accurate estimation
ethod to estimate annual rooftop solar irradiation combined with
ulti-source data in Hong Kong, China. The main contributions of this

tudy are: (i) performing the parametric assessment to understand the
elationship between parameters related to the receiving rooftop solar
rradiation and the corresponding annual solar irradiation on building
ooftops, (ii) comparing different machine learning methods to estimate
he annual rooftop solar irradiation at 1-m resolution in entire buildings
n Hong Kong, and (iii) using a data and model dual-driven approach
ombined with the merits from machine learning methods and physical
odels.

This paper is organized as follows. Section 2 describes the data
sed in this study. Section 3 introduces the method for extracting
orphological parameters and the methodology for estimating rooftop

olar irradiation using machine learning models. Section 4 presents the
stimated result and analyzes the distribution of rooftop solar irradia-
ion in Hong Kong SAR. Section 5 offers conclusions and discusses the
indings of the analysis.

. Data

This section includes the description of the data sources, the data
tructure design adaptive to machine learning models, the study area,
nd data pre-processing.
3

A

2.1. Study area

Hong Kong, China, is located at 22◦ 15′ N, 114◦ 15′ E, with a typical
subtropical climate. It has a total land area of about 1110 km2 with

hilly and mountainous topography, and around 75% of the land in
ong Kong is a mountainous area. High population density and limited

and resources have formed the high-density urban morphology in
owntown areas of Hong Kong associated with densely packed high-rise
uildings [22]. The territory is divided into 18 districts, with around
23,886 buildings by 2019. Because of the high building density and
imited land resources, the rooftop solar PV system can be suitable and
easible for Hong Kong’s renewable energy development in the future.
ig. 1 (b-g) shows the annual clear sky surface solar irradiance time
volution in six locations from 2012 to 2021 in Hong Kong, and the
ata is obtained from NASA Power [41]. To calculate the annual clear
ky irradiance, we employed the monthly clear sky irradiance from
ASA Power dataset. NASA power adopted the data from the Baseline
urface Radiation Network site observations. The monthly clear sky
rradiance demonstrated a Bias of 0.03% and an RMSE of 5.7%. The
esolution of the data is 1 degree latitude by 1 degree longitude. It
s clear that the annual clear sky surface solar irradiance in different
ocations in Hong Kong is highly consistent, so this study does not use
lear sky irradiance as the input variable. Fig. 1 (h-i) shows the amount
f annual solar irradiation observed by the King’s Park Station and Kau
ai Chau Station [42] from 2012 to 2021, which suggests that Hong
ong has a great potential for developing solar energy.

.2. Dataset description

This study considers six influential factors that can affect spatio-
emporal solar distribution on rooftops [7–9,17,43–45], namely mor-
hological data, Digital Surface Model (DSM), building shadow, terrain
hadow, tilted rooftop slope, and tilted rooftop aspect. Among them, the
SM at 1 m resolution and building polygons enriched with the height
ttribute were obtained from the Civil Engineering and Development
epartment and the Lands Department of the Government of Hong
ong SAR in 2019, respectively. This study intends to investigate the
pecific impact of building shade and mountain shade on rooftop solar
rradiation, respectively. Therefore, this study calculates the building
hade using the building footprint with building height and uses DEM
o calculate the mountain shade. The rooftop solar irradiation map with

m resolution used for cross-validation is obtained from the project
f Hong Kong Solar Irradiation Map for Building Rooftops which is
onducted by the Electrical and Mechanical Services Department [46]
nd Remote sensing Lab at Hong Kong Polytechnic University, and it
s calculated by using Remote Sensing technologies and Geographic
nformation Systems [47].

.2.1. Urban morphological data
Previous studies have proved that urban morphology can affect

he building solar energy potential [9,11,13–15,48–50]. Boccalatte
t al. [28] evaluated the impact of 40 urban morphological param-
ters on rooftop solar radiation. Additionally, many studies [51–53]
uggest that Sky View Factor (SVF) has a strong correlation with
ooftop solar irradiation. Therefore, a total of 41 urban morphological
arameters are calculated from building polygons in Hong Kong using
Python library named Momepy [54]. The Momepy library is based

n several well-known Python packages for GIS-based data analysis,
amely GeoPandas [55], PySAL [56], and networkX [57]. These 41
orphological parameters can be divided into four categories, and

hese can represent the building dimension, building shape, building
ntensity, and building spatial distribution. The list of these parameters,
s well as the related equations and description, are displayed in
ppendix A.
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Fig. 1. The annual solar irradiance time evolution from 2012 to 2021 in Hong Kong, China. (a)Locations of eight sites. (b-g) Annual clear sky surface solar irradiance in six sites.
(h-i) Annual solar irradiation from the King’s Park Station and Kau Sai Chau Station.
2.2.2. Building shadow
Since skyscrapers in cities often cast shadows on each other [17],

the mutual shadowing by buildings is considered in our study. A
shadow polygon will be formed when the sunshine arrives at the
rooftop. The direction of solar irradiation is described by the elevation
and azimuth with a determined intensity at an instant of time.

2.2.3. Terrain shadow
Hong Kong is characterized by complex topography with high

mountains and dense urban developments [43]. Therefore, the effect
of terrain variation on rooftop solar irradiation is considered in this
study.

2.2.4. Rooftop slope and aspect
Previous studies have suggested that tilted rooftops with various

orientations significantly affect the site selection of solar PV arrays [7,
8,44,45]. Thus, the rooftop characteristics, i.e., slope and aspect, are
considered the input variables in our dataset. The 𝐴𝑠𝑝𝑒𝑐𝑡 and 𝑆𝑙𝑜𝑝𝑒
toolsets in ArcMap generate the rooftop aspect image and slope image
at 1-m resolution based on the DSM data.

2.3. Dataset pre-processing and data construction

Urban morphological data and rooftop slope and aspect are static
data, which are directly calculated by Python Library and ArcMap.
While building shadow and terrain shadow are dynamic data, both data
need to be performed in accumulation processing for transforming into
annual data. The building footprints and the height information are
used to generate hourly 2D building shadow polygons from 7 am to
5 pm on 15th August 2019. Generated 2D building shadow polygons
are transformed into Raster images, and these shadow images are
overlayed into one day 2D building shadow image. The overlapped
shadow image is considered daily shadow distribution for calculating
the annual total building shadow image with a 1-m resolution. Figs. 2
(a) to (k) demonstrates hourly building shadow changes from 7 am to
5 pm, and Fig. 2(l) presents the accumulated shadow distribution on
that day. Also, the 𝐻𝑖𝑙𝑙𝑠ℎ𝑎𝑑𝑒 toolset in ArcMap is used to calculate
hourly terrain shadow from 7 am to 5 pm on 15th August 2019 using
the DEM data. Next, hourly shadow distributions are accumulated on
a daily basis, and it is considered the average annual terrain shadow
intensity at the resolution of 1 m.

All data are transformed into the raster files having the same reso-
lution, orientation, and projection system (i.e., Hong Kong 1980 Grid
4

coordinate system), which are deemed as multi-band images for train-
ing, validating, and testing. Our dataset contains 323,886 buildings
that occupy 51-km2 land surface in total. The whole data is organized
according to the 18 districts. We divided these districts into the training
and prediction regions (Fig. 3), which respectively account for 45%
and 55% of the total rooftop area. This is based on two considerations.
First, the training region covers high-density, middle-density, and low-
density buildings, and the amount of building rooftops is well-sufficient
for training and testing the models. Second, to evaluate the model
performance, this study trains and validates the models and utilizes
the resulting models to estimate the rooftop solar potential based on
the testing dataset. The ratio of the training and testing datasets is 9 to
1. To improve the quality of the dataset, the outliers of all data values
in datasets (i.e., the null value and infinite) which consumed 0.18% of
the entire datasets are filtered out in the dataset.

3. Methodology

This study proposes a fast and accurate method based on the ma-
chine learning model for the estimation of annual rooftop solar ir-
radiation over an urban area, with a flowchart presented in Fig. 4.
Firstly, the Morphological Tessellation (MT) method [27] is used to
calculate morphological features. Secondly, as a preliminary analysis
to investigate the relationship between solar irradiation and the 41
morphological features A, Pearson correlation analysis has been per-
formed to test the effectiveness of the proposed indices. To improve
the training efficiency, Random Forest, a widely used machine learn-
ing model particularly useful for classification and prediction, is used
to select suitable input variables. Furthermore, the estimation results
are compared using different machine learning models and select the
optimal model based on criteria of fast computation and the highest
performance to estimate annual rooftop solar irradiation. Finally, this
study analyzed the distribution of mean annual solar irradiation re-
ceived by rooftops on different rooftop slopes and aspects for providing
a reliable reference for effective deployment of solar PV arrays.

3.1. Calculation of morphological features

Forty-one morphological features used in this study are divided into
four categories. The specific classification is shown in Appendix A. The
features related to the categories of building dimension and building
shape are directly calculated based on the building footprint. Addition-
ally, this study employs the morphological tessellation cells (MTC) [27]
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Fig. 2. Hourly shadow distribution in an urban area of Hong Kong on 15th August 2019. (a–k) Hourly shadow distribution from 7 am–5 pm. (l) Accumulated shadow distribution.
Fig. 3. The specific distribution of the training and testing regions.
to define a reference boundary for calculating the features related to
building intensity. The aim of spatial distribution analysis is to calculate
the spatial relationship among buildings, so the spatial distance of
200 m between a building and its adjacent buildings is employed based
on the previous studies [58,59] for calculating the features related to
building spatial distribution.

3.1.1. Morphological tessellation
Using a boundary for calculating the building density information

requires the selection of specific spatial scale which is based on a
grid or the administrative district for calculating building density [22].
5

However, this selection of an appropriate spatial scale usually relies
on empiricism [23–26], and this leads to time-consuming for select-
ing the spatial scale and narrow scope of application. Compared to
above-mentioned traditional method, the tessellation cell (MTC) is
a geometric derivative of Voronoi polygons obtained from building
footprints, and it represents the smallest spatial unit that delineates the
portion of land around each building [28]. This allows us to obtain
the density information related to buildings for a better estimation of
solar distribution. The process of generating morphological tessellation
consists of five steps: (i) inward offset from building footprint; (ii)
discretization of polygons’ boundaries into points; (iii) generation of
Voronoi cells; (iv) dissolution of Voronoi cells; (v) clip of preliminary
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Fig. 4. The specific distribution of the training and testing regions.
essellation. Fig. 5 shows the morphological tessellation distribution in
ong Kong. Based on the MTC, it is feasible to capture the influence

hat each building exerts on the surrounding space as well as the
uilding-related density information.

.2. Machine learning models

.2.1. Random forest regression
RF [60] is a combined regression model that is composed of a

arge amount of decision tree ℎ(𝑋; 𝜃𝑘)(𝑘 = 1, 2,… , 𝑛), where 𝜃𝑘 is an
identically distributed random vector, 𝑛 is the number of decision trees,
and 𝑋 is the input variables, namely, morphological indices, DSM,
building shadow, terrain shadow, rooftop slope, and rooftop aspect. We
set 𝑌 as the output variable that denotes the solar irradiation values
calculated by the physical model, then (𝑋, 𝑌 ) composed of the original
datasets. The RF model uses the Bootstrap method [61] for sampling
of input datasets, and then employs the complete splitting method to
construct the decision trees.

3.2.2. Gradient boost regression tree
GBRT [62] is an ensemble model using forward addition based on

the base function of the classification and regression tree (CARF). The
process of constructing one CARF consists of two parts, generation of
the decision tree and decision tree pruning. In the process of construct-
ing the GBRF model, the squared error is used as the learning target of
the model (Eq. (1)):

𝐿(𝑦𝑖, 𝑓 (𝑥)) = 𝑚𝑖𝑛
𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑓 (𝑥))2 (1)

Where 𝑦 represents the solar irradiation values calculated by the
physical model as ground truth, 𝑥 denotes seven input variables in
our dataset, 𝑓 (𝑥) represents the prediction value of the model, and 𝑁
represents the size of the sample.
6

3.2.3. Adaboost regression tree
The Adaboost algorithm [63,64] is one of the best supervised learn-

ing methods with satisfactory prediction performance. This algorithm
can inherit many weak regression models and finally form a strong
model. The processing of the Adaboost algorithm is that for the same
sample points, their weight will be continually updated for training
multiple weak regression models, then the weak regression models with
different weights are composed of a final strong regression model.

3.3. Selection importance parameters

The importance of each variable in RF can be estimated by the
random sampling method. The original sample size is set as 𝑁 , and
variables are 𝑥1, 𝑥2,…, 𝑥𝑚 (here 𝑚 = 46, because we have 46 input
variables in our dataset). Each time a bootstrap method is used to
randomly select a sample from the total sample and randomly select
𝑛 times with replacement. 𝑛 bootstrap samples generate n regression
trees. The samples that are not drawn each time are composed of 𝑛
out-of-bag data as test samples, so that the importance order of each
variable in the classification regression can be obtained.

3.4. Estimation model for annual rooftop solar irradiation

Physical modeling for the solar irradiation estimation are usually
performed based on physical principles and mathematical modeling,
thus these methods are often referred to as model-driven methods [65].
Model-driven methods have advantages of clear logistic and rigorous
derivation. However, improving computing efficiency by simplifying
model would always lead to decrease in the estimation accuracy [66].
Machine learning can extract knowledge from massive data with the
advantages of high computing efficiency and high accuracy, thus these
methods are known as data-driven methods. Nevertheless, these meth-
ods are dependent on a prior-knowledge and database. Since it is
difficult to measure the ground truth of rooftop solar irradiation in
large-scale regions, it faces challenges in obtaining ground truth for
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Fig. 5. Building footprints and related tessellation cells of a specific area of Hong Kong.
training the model. To rapidly and accurately estimate rooftop solar
irradiation, a data and model dual-driven loosely coupled approach
was proposed by the integrations of machine learning models and
physical models. In this study, the estimation model consists of two
modules, namely, the model-driven model and the data-driven model.
The model-driven model uses the method proposed by Wong et al. [47],
which is based on the hemispherical viewshed algorithm developed
by Rich et al. [18], to calculate hourly rooftop solar irradiation. The
specific hemispherical viewshed algorithm is introduced in Appendix B.
The hourly solar data is accumulated into annual rooftop solar ir-
radiation, and the model-driven model passes the annual data onto
the data-driven model as the ground truth. In the data-driven model,
three machine learning methods are compared to select the optimal
one for estimating all rooftop solar potential by using three evaluating
indicators, including 𝑅2, Mean Absolute Error (MAE), and computation
time.

4. Results

4.1. Correlation analysis between morphological features and rooftop solar
irradiation

Pearson correlation analysis is performed to investigate the relation-
ship between annual rooftop solar irradiation and 41 morphological
features, and the Variance Inflation Factor (VIF) [67] is used to diag-
nose multicollinearity for these morphological features. These features
can be divided into four categories, namely, building dimension, build-
ing shape, building intensity, and building spatial distribution [28].
Table 1 shows the Pearson correlation coefficients and corresponding
𝑝-values between rooftop solar irradiation and each morphological
feature, and Table 2 shows multicollinearity among these features.
The most explainable parameters relevant to rooftop solar irradiation
are the ones related to the building shape (i.e., building shape index
(Shp ), building Rectangularity (Rec), building equivalent rectangular
7

𝑖𝑑𝑥
index (ERI), building circular compactness (Com), building elongation
(Elg), and building square compactness (Squ𝑐𝑜𝑚)), with R>0.65. Fur-
thermore, the parameters related to the building dimension (i.e., build-
ing fractal dimension (Fra), Tessellation longest axis length (LAL𝑡𝑒𝑠𝑠),
building volume to façade (VFR), and building longest exis length
(LAL)) and ones related to the building spatial distribution, includ-
ing, negative average neighborhood shading angle (Shd𝑎𝑛), building
adjacency (Adj), sky view factor (SVF), and mean inter-building dis-
tance (IBD𝑚𝑒𝑎𝑛). They show strong and positive correlations with R
ranging between 0.65 and 0.7. On the contrary, the parameters with
strong correlation coefficients do not consist of the ones related to
the building intensity. For example, CAR has moderate correlations
with rooftop solar irradiation, with R=0.61. The results indicate that
the mentioned parameters related to the building shape, dimension,
and spatial distribution can greatly affect the amount of the receiving
rooftop solar irradiation. Only one feature, building shape index, has
𝑝-values between 0.01 and 0.005, which suggests that it is statistically
significant at the 0.01 level. The 𝑝-values of four features (i.e., positive
average neighborhood shading angle, average building height, rugosity,
and alignment) are between 0.01 and 0.05, which suggests that they
are statistically significant at 0.05 level. In addition, the 𝑝-values of the
remaining 36 features are less than 0.005, which suggests that they are
statistically significant at 0.005 level. The small values of VIF (VIF≤ 10)
corresponding to 11 morphological features suggest there is no issue
with multicollinearity. In addition, the values of VIF corresponding to
16 morphological features are between 10 and 100, which suggests that
these features have moderate multicollinearity, while the remaining
morphological features whose values of VIF are larger than 100 suggest
that they have strong multicollinearity.

4.2. Parameters selection and importance analysis

The RF model is often employed for calculating the parameter im-
portance and selecting variables for training machine learning models
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Table 1
Results of Pearson correlation analysis between rooftop solar irradiation and each
morphological feature.

Group Name Name R Name R

Fra 0.70*** CAR𝑚𝑒𝑎𝑛 0.62*** A 0.47***
Shp𝑖𝑑𝑥 0.70** P 0.62*** HD𝑃 0.47***
Rec 0.69*** CAR 0.61*** V𝑚𝑒𝑎𝑛 0.47***
ERI 0.69*** Shd𝑎𝑝 0.61* TFA𝑚𝑒𝑎𝑛 0.46***
Com 0.68*** H 0.58*** Squ 0.42***
Adj 0.68*** H𝑚𝑒𝑎𝑛 0.57* SWR 0.42***
Shd𝑎𝑛 0.68*** FAR𝑚𝑒𝑎𝑛 0.54*** V 0.40***
SVF 0.67*** Ort 0.53*** Flr𝑎𝑟𝑒𝑎 0.39***
Elg 0.67*** A𝑚𝑒𝑎𝑛 0.51*** HW 0.35***
IBD𝑚𝑒𝑎𝑛 0.66*** Rug 0.50* H𝑎𝑏𝑠 0.11***
Squ𝑐𝑜𝑚 0.66*** HD𝑛 0.49*** N𝑛𝑒𝑖𝑔ℎ 0.019***
VFR 0.65*** FAR 0.49*** HD −0.28***
LAL𝑡𝑒𝑠𝑠 0.65*** A𝑡𝑒𝑠𝑠 0.47*** Shd𝑚𝑒𝑎𝑛 −0.35***
LAL 0.65*** Ali 0.47*

*p≤ 0.05.
*p≤ 0.01.

***p≤ 0.005.

Table 2
Results of multicollinearity analysis among morphological features.

Group Name VIF Name VIF Name VIF Name VIF

VIF >100

V𝑚𝑒𝑎𝑛 8110 Rug 4542 Com 1069 LAL 109
TFA𝑚𝑒𝑎𝑛 7712 FA 4334 Fra 763
Flr𝑎𝑟𝑒𝑎 5393 Shp𝑖𝑑𝑥 3463 Squ𝑐𝑜𝑚 469
V 5388 ERI 1485 Rec 181

10<VIF≤ 100

P 96 FAR𝑚𝑒𝑎𝑛 50 CAR 23 A𝑚𝑒𝑎𝑛 17
H𝑚𝑒𝑎𝑛 54 CAR𝑚𝑒𝑎𝑛 38 LAL𝑡𝑒𝑠𝑠 22 Adj 14
Shd𝑎𝑛 52 VFR 35 Shd𝑎𝑝 21 N𝑛𝑒𝑖𝑔ℎ 14
Elg 51 H 26 SVF 17

VIF ≤ 10

IBD𝑚𝑒𝑎𝑛 10 A𝑡𝑒𝑠𝑠 6 Ort 3 HW 1
HD 8 H𝑎𝑏𝑠 6 A 3
HD𝑛 7 HD𝑃 5 Ali 2
SWR 7 Shd𝑚𝑒𝑎𝑛 4 Squ 2

in some studies [68–70]. The results are sorted in descending order as
shown in Table 3. It presents that DSM makes a significant contribu-
tion to our estimation model, with 0.55 importance, followed by the
rooftop slope. However, the importances of other parameters are close
to zero. To increase the efficiency of the computation, we conducted
recursive parameter selection for selecting useful parameters. In order
to improve the efficiency of the selection, the interval of eliminating
parameters was selected based on three indicators, i.e., 𝑅2, MAE, and
computation time. The order for eliminating parameters is based on
the values of importance from low values to high values. Table 4
presents 𝑅2, MAE, and computation time for recursively eliminating
parameters from the parameter sets. The RF model with 46 parameters
showed the highest estimation accuracy, with 𝑅2=0.78. We further
calculated the importance of these 46 parameters and arranged these
parameters in descending order. The corresponding parameters are
sequentially removed from the dataset parameter list, starting with
the smallest value, based on their order of importance. Initially, the
parameter removal interval was set at four. However, even with this
interval, the 𝑅2 value remained consistently at 0.78. As a result, the
interval was adjusted to ten. However, this adjustment resulted in a
slight increase in MAE. Consequently, the interval was further refined
to eight. Considering the MAE and computation time, when the 𝑅2

value decreased by 0.77, the interval was adjusted to one. Overall,
as the number of parameters gradually decreases, corresponding 𝑅2

and computation time also reduce, and MAE slightly increases. To
balance the performance regarding the three indicators, models built by
seven parameters are considered as appropriate for estimating rooftop
solar irradiation, achieving high accuracy and fast computation. This is
because the 𝑅2 and MAE of the model with seven parameters are near
8

d

Table 3
The importance between rooftop solar irradiation and each parameter.

Name I Name I Name I Name I

DSM 0.55 H𝑚𝑒𝑎𝑛 0.0049 HW 0.0034 SWR 0.0027
Slope 0.13 Elg 0.0047 V 0.0034 FAR 0.0027
Shadow 0.055 IBD𝑚𝑒𝑎𝑛 0.0045 Shd𝑎𝑛 0.0031 Rug 0.0025
Aspect 0.039 FAR𝑚𝑒𝑎𝑛 0.0041 ERI 0.0031 TFA𝑚𝑒𝑎𝑛 0.0024
SVF 0.026 LAL𝑡𝑒𝑠𝑠 0.0040 HD𝑛 0.0030 Shp𝑖𝑑𝑥 0.0024
Hillshade 0.021 Rec 0.0040 Flr𝑎𝑟𝑒𝑎 0.0030 V𝑚𝑒𝑎𝑛 0.0023
VFR 0.016 CAR𝑚𝑒𝑎𝑛 0.0039 HD 0.0030 Squ𝑐𝑜𝑚 0.0023
A𝑡𝑒𝑠𝑠 0.0070 CAR 0.0038 Adj 0.0029 Com 0.0023
Ort 0.0064 HD𝑃 0.0038 Shd𝑚𝑒𝑎𝑛 0.0028 H𝑎𝑏𝑠 0.0023
Ali 0.0051 H 0.0038 Fra 0.0028 N𝑛𝑒𝑖𝑔ℎ 0.0021
Squ 0.0051 A𝑚𝑒𝑎𝑛 0.0038 LAL 0.0027
A 0.0051 Shd𝑎𝑝 0.0037 P 0.0027

Table 4
𝑅2, MAE, and time for recursively selecting parameters .

No. of input
parameters

𝑅2 MAE
(kWh/m2/year)

Time (h)

46 0.78 20.71 20.47
42 0.78 20.72 19.27
38 0.78 20.73 17.10
28 0.78 20.77 12.50
20 0.78 20.94 8.54
14 0.78 21.21 6.01
7 0.77 22.83 3.00
6 0.74 24.77 2.50
5 0.74 24.63 2.10
4 0.70 27.33 1.70
3 0.67 27.74 1.30

to that of the model with 14 parameters, and using seven parameters
can save half the computation time. The final dataset consists of DSM,
shadow from the surrounding buildings, shadow from natural terrain,
rooftop aspect, rooftop slope, building volume to façade ratio, and SVF.

4.3. Estimation of annual rooftop solar irradiation using machine learning
models

The experiments were performed on a desktop with Intel Core
i7-9700K CPU and 32 GB memory. Five-fold cross-validation [71]
was performed to train and test each model. Specifically, the origi-
nal dataset was randomly divided into five equally-sized sub-datasets.
Among these five sub-datasets, one was designated as the validation
data for evaluating the performance of machine learning models, while
the remaining four sub-datasets were utilized as the training data. The
grid search method [72] was used to optimize the hyper-parameters,
and the optimization of hyper-parameters can be found in Table 5.

After selecting the final dataset, this study compared the estimation
performance of three machine learning models in the Kowloon district (
Table 6). The RF model using 46 parameters (RF46) obtains the highest
estimation accuracy with 𝑅2 = 0.78 and MAE = 20.71 kWh/m2/year.
However, it costs 20.47 h to train a robust model. The value of 𝑅2

of the RF model using seven parameters (RF7) is close to that of the
RF46 model, while the computation time of the RF46 model is around
seven times longer. This suggests that the RF46 model is a complex
stimation model with redundant parameters, which can lead to low
omputational efficiency. Although the AdaBoost model utilizing seven
arameters (AdBoost7) spends the least time for training, 𝑅2 is only
.58. This means that this model has a low capability to accurately
stimate rooftop solar irradiation in the study area. The performance of
F7 and GBM utilizing seven parameters (GBM7) are followed by that
f RF46. The 𝑅2 and MAE of the RF7 datasets are higher than those of
BM7, while the RF7 model takes twice as long as the GBM7 model.

To investigate the estimation accuracy of the models, this study
lso calculated the absolute errors. Table 7 shows the absolute error

istribution in different ranges using four models in the Kowloon
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Table 5
The hyper-parameters of the different machine learning models.
Model The used hyper-parameters

RF46 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 ∶ 200, 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑙𝑒𝑎𝑓 ∶ 1, 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡 ∶ 2
RF7 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 ∶ 100, 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑙𝑒𝑎𝑓 ∶ 1, 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡 ∶ 2
GBM7 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 ∶ 100, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ∶ 0.1, 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ ∶ 3, 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒 ∶ 0.8
AdBoost7 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 ∶ 50, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ∶ 1.0, 𝑏𝑎𝑠𝑒_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 ∶ 𝑑𝑒𝑝𝑟𝑒𝑐𝑎𝑡𝑒𝑑, 𝑙𝑜𝑠𝑠 ∶ 𝑙𝑖𝑛𝑒𝑎𝑟
Table 6
𝑅2, MAE, and time of different models in Kowloon.

Model 𝑅2 Mean absolute error
(MAE)
(kWh/m2/year)

Time of training
models (h)

RF46 0.78 20.71 20.47
RF7 0.77 22.83 3.00
GBM7 0.71 28.72 1.47
AdBoost7 0.58 42.25 0.87

Table 7
Absolute error distribution in different models in Kowloon.

Model Range of the absolute error (kWh/m2/year)

0–20 20–500 500–1000 >1000

AdBoost7 92.53% 1.62% 5.86% 0.00%
GBM7 92.67% 5.14% 1.87% 0.31%
RF7 93.79% 4.39% 1.58% 0.24%
RF46 94.15% 4.22% 1.36% 0.27%

district. The percentages of the absolute errors within 20 kWh/m2/year
are 94.15% for RF46, 93.79% for RF7, 92.67% for GBM7, and 92.53%
for AdBoost7, respectively. For all models, the absolute errors over
500 kWh/m2/year account for less than 6%. Compared with the four
models, AdBoost7 shows a slightly worse estimation performance, with
around 8% of the absolute errors over 20 kWh/m2/year. Overall,
these four machine learning models show satisfactory estimation per-
formance. This means that the estimation accuracy of all models is high
and these models can provide reliable estimation results.

Combined with the results of Tables 6 and 7, the performance of
estimation accuracy (i.e., 𝑅2, MAE, and absolute error) of two RF

odels are better than the GBM model and AdaBoost model. To greatly
nvestigate the computation efficiency of two RF models, this study
ompared calculation time for the calculation of the dataset, training
odel, and prediction using two RF models in Hong Kong. Table 8 is

he result. Overall, the calculation time for each part using the RF7
odel is obviously less than those using the RF46 model. Especially, the

training time using RF46 is more than 26 times longer than that of using
RF7. Thus, considering the estimation accuracy and computation time,
we selected the RF model with seven parameters dataset for estimating
the rooftop solar irradiation in the whole area of Hong Kong to obtain
a balance between time cost and estimation accuracy.

The annual rooftop solar irradiation map was created by using the
RF7 model. Fig. 6(a) displays the annual rooftop solar map in Hong
Kong, and Figs. 6 (b) to (e) show annual rooftop solar maps in Hong
Kong Island, Central and West, Yuen Long, and Kowloon, respectively.
The high density area shows smaller rooftop solar potential, while the
low density area shows larger solar potential. This is because buildings
in dense areas are greatly affected by the shadow from surrounding
buildings. Therefore, shadow effect is a significant factor in estimating
rooftop solar irradiation in dense cities.

To evaluate the usability and generalization ability of our model,
this study compared Mean Relative Error (MRE) between the training
and prediction regions (Tables 9 and 10). For training the model, the
MRE of all the training regions is within 7%, and the time for training
the model is approximately 12 h. For estimating the whole of Hong
Kong, the MRE varies from about 9% to 5%, and the computation
time is about 0.85 h. Although the MRE of the prediction regions is
slightly higher than that in the training regions, this is a high estimation
9

Table 8
The comparison of calculation time for calculation of the dataset, training model, and
prediction using two RF models in Hong Kong.

Model Time for calculation
of the dataset (h)

Time for training
the model (h)

Time for
prediction (h)

RF46 32.79 319.79 2.41
RF7 20.84 12.13 0.85

Table 9
The prediction accuracy in training regions.

Region MRE Region MRE Region MRE

Central and Western 6.20% Kwai Tsing 3.88% Sham Shui Po 4.19%
East 4.57% Kwun Tong 3.93% Southern 4.50%
Yau Tsim Mong 4.58% Sha Tin 4.73% Wan Chai 5.69%
Wong Tai Sin 4.26% Yau Tsim Mong 4.71%

accuracy for the prediction regions which are not trained. The results
indicate that our model has good generalization capability.

4.4. Accuracy assessment of physical model

The estimation of rooftop solar irradiation from the physical model
was employed as the ground truth to cross-validate the machine learn-
ing models. To assess the accuracy of the physical model, field veri-
fication was conducted at five different sites, including a single-house
rooftop in Kam Tin, a 20th-floor rooftop of private housing in Sha Tin,
a sky garden at the Hong Kong Polytechnic University (PolyU), the
lawn at the HKO King’s Park Station, and a secondary school rooftop
in Tseung Kwan O. Measurements were taken using MS-802, CM21,
and CMP11 pyranometers. Table 11 shows the details of field verifica-
tion, including data collection periods, site names and locations, and
the equipment used. Additionally, Table 12 presents the comparison
between validation field data and the estimated global horizontal solar
irradiation using the physical model. Overall, the model achieves a
high accuracy of 95.99% with an MRE of 4.01%. These results affirm
the highly accurate performance of the physical model, validating the
reliability of estimation values derived from it as ground truth.

4.5. Comparison of the physical model and machine learning model

The physical model demonstrated highly accurate results, with
hourly estimations exhibiting 4.01% MRE for the entire year. Although
the accuracy of the RF7 model at 7.72% MRE is slightly lower than
that of the physical model, both models can provide high accuracy
and reliable estimation results. For comparison, the physical model
and RF7 model were used to estimate rooftop solar irradiation on
5334 buildings. These buildings cover 423,876 square meters randomly
selected from the 18 districts in Hong Kong. The physical model spent
around 927 s, versus the RF7 model cost 6 s. From Table 8, it is clear
that all calculation time required for estimating the whole rooftop solar
potential using RF7 model is approximately 33.82 h. In contrast, the
physical model needs to spend nearly a year to complete the same
estimation. This demonstrates that our model can greatly decrease
computation time and thus overcome the low-efficiency problem when
using the physical model. For the input parameters, the physical model
utilized DSM, locational information (latitude and longitude), slope,

aspect, and direct and diffuse solar radiation to calculate the rooftop
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Fig. 6. Annual rooftop solar map in Hong Kong. (a) The whole solar map. (b) specific solar map in Hong Kong Island. (c) specific solar map in Central and West. (d) specific
solar map in Yuen Long. (e) specific solar map in Kowloon.
Table 10
The prediction accuracy in prediction regions.
Region MRE Region MRE Region MRE Region MRE

Hong Kong Island 9.11% Sai Kung 7.17% Tai Po 8.37% Tsuen Wan 9.27%
Tuen Mun 9.30% Yuen Long 9.59% North 5.16%
Table 11
Details of field verification.
Site Period Location Name Coordinates Equipment Used

1 22 Feb 2020−
25 Feb 2020

Kam Tin (22.24, 114.07) MS-802, CM21

2 25 Feb 2020−
28 Feb 2020

Sha Tin (22.38, 114.20) MS-802, CM21

3 29 Apr 2020−
6 May 2020

PolyU (22.31, 114.18) MS-802, CM21

4 27 Aug 2020−
7 Sep 2020

King’s Park Station (22.31, 114.17) MS-802, CM21, CMP11

5 30 Dec 2020-
6 Jan 2021

Tseung Kwan O (22.32, 114.26) CMP11
10
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Fig. 7. Annual mean solar radiation (kWh/m2) as a function of slope and aspect of roof surfaces for buildings in Hong Kong, China.
Table 12
Comparison between validation field data with the estimated result at the five validation sites.
Site Estimated result (Wh∕m2) Measurement (Wh∕m2) (MRE)

MS-802 CM21 CMP11

1 18,979 19,092 (−0.59%) 19,711 (−3.71%) N/A
2 12,771 11,331 (12.71%) 11,408 (11.95%) N/A
3 35,914 35,964 (−0.14%) 37,508 (−4.25%) N/A
4 42,631 43,038 (−0.94%) 44,412 (−4.01%) 44,264 (−3.69%)
5 24,357 24,357 24,357 24,232 (0.51%)
solar irradiation, obtaining high spatial–temporal resolution of solar
radiation. Compared to the physical model, the RF7 model only uses
seven parameters (i.e., DSM, shadow from the surrounding buildings,
shadow from natural terrain, rooftop aspect, rooftop slope, and SVF) to
get highly accurate and efficient estimation, and these parameters are
relatively easy to obtain a reliable generalization.

4.6. Analysis of rooftop solar irradiation distribution

After the estimation of annual mean solar irradiance by applying
our trained model, we conducted an analysis to explore the relationship
between annual mean solar irradiance and slopes as well as aspects.
This analysis involved associating the estimated solar irradiance values
with their corresponding slopes and aspects, which were determined
based on the geographical locations of the rooftops. Fig. 7 visualizes the
average annual solar irradiation received by the rooftop as a function
of roof slope and aspect. Overall, the annual mean solar irradiation
received by rooftops is high, from 1120 kWh/m2 to 1280 kWh/m2. This
suggests that solar potential on rooftops in Hong Kong could generate
a considerable amount of electricity efficiently. The distribution of
rooftop solar irradiation is east–west symmetry, and the values of
solar irradiation gradually decrease from north to south. Furthermore,
the largest irradiation is found for south-facing rooftops with a slope
between 30 and 40 degrees, while north-facing rooftops have the lowest
solar irradiation, smaller than 1200 kWh/m2. The results are in line
11
with the order of nature that the sun shines mainly from the south to
the north in the northern hemisphere.

The team also investigated annual mean solar irradiation on rooftops
surfacing different aspects and slopes, respectively. Results in Fig. 8(a)
show that the rooftops facing south receive the greatest solar irradia-
tion, followed by rooftops facing west and east; in particular, the north
receives the least irradiation, as expected. Fig. 8(b) shows that the flat
to gently sloping rooftops, with the slope ranging from 0–40 degrees,
receive the greatest solar irradiation. The results illustrate the steeper
the slope, the smaller the received solar irradiation.

5. Discussion and conclusion

Obtaining a fast and accurate estimation of rooftop solar PV poten-
tial over large urban built-up areas poses several challenges, including
processing vast amounts of data, selection of appropriate impact fac-
tors, as well as appropriate models. To overcome these limitations, this
study proposes a data and model dual-driven loosely coupled method.
This innovative method enables fast and accurate estimation of annual
rooftop solar irradiation at a spatial resolution of 1 m in Hong Kong,
China. This study parameterizes the influential factors (i.e., morpho-
logical features, building rooftop structures, DSM, the shadow from
buildings, and the shadow from terrain) and quantifies the importance
of these features on rooftop solar irradiation. Compared between RF,
GBM, and AdaBoost, the RF model is used for the estimation of annual
rooftop solar irradiation for individual buildings since its estimation
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Fig. 8. Annual mean solar irradiation (kWh/m2) of roof surfaces for different ranges of (a) aspect and (b) slope.
accuracy is high (𝑅2 = 0.77), and the computation speed is fast. Com-
pared with the physical model, the machine learning models developed
in this study can greatly reduce the computation time for rooftop solar
estimation at fine spatio-temporal scales. These results suggest that our
method can estimate rooftop solar irradiation on individual buildings,
which is useful for solar related applications, such as planning rooftop
PV arrays. As our developed models are well-trained and validated with
a satisfactory scalability in various spatial and temporal resolutions, it
is possible to apply these models to other regions having a similar built
environment, and the proposed method is also deliverable for entirely
different areas.

The traditional methods of calculating building density usually
require the definition of a reference boundary, which is generated by
a grid or administrative limits of a district. However, these methods
just calculate the average value in a certain portion and fail in cap-
turing site-specific and density information related to buildings. The
morphological tessellation method used in our study can overcome this
limitation, which makes it possible to capture the specific impact of
surrounding space on each building.

This study approximated the estimated rooftop solar irradiation
from the physical model as the ground truth for cross-validation. This is
because getting field measurements by installing high density of solar
sensors on all the rooftops in Hong Kong is almost impossible. This is
one of the feasible solutions as previous studies also utilized the similar
method for validation [63,73].

Compared with the conventional physical models, such as the
upward-looking hemispherical viewshed algorithm, our approach is
5592 times faster in computing annual solar potential on all rooftops
in Hong Kong. Therefore, we conduct recursive parameters selection
to filter out redundant parameters based on the balance of estimation
accuracy and computation time. Results of the model with seven pa-
rameters show high accuracy with fast computation, and this indicates
that this model enables to satisfy the requirements for estimating
rooftop solar irradiation in terms of accuracy and computation speed.

However the developed method outperformed compared with oth-
ers, it has some limitations, i.e. we calculated building shadow and
terrain shadow on one specific day to represent annual shadow distribu-
tion, which would affect the estimation accuracy in some extent. This is
because the calculation of hourly building shadow and terrain shadow
for one day with high spatio-temporal resolution requires a computa-
tion time around 24 h. In this regard, this study uses this estimation
method for shadow data. From the final results of the estimation of
rooftop solar irradiation, the method proposed in this study can provide
high estimation accuracy. Therefore, using a generalized shadow data
can decrease the computation time and confirm estimation accuracy at
12

the same time.
In conclusion, we propose a fast and accurate parametric method
for estimating rooftop solar irradiation based on the machine learning
method using seven parameters (DSM, SVF, shadow from buildings,
shadow from mountains, VRF, slope, and aspect). The results demon-
strate that the proposed method can provide a reliable, fast, highly
accurate reference for potential applications, including solar PV instal-
lation planning, financial analysis and investment decision-making, and
urban planning. Specifically, our results can help relevant parties to
identify suitable locations for solar PV installations and make decisions
on the feasibility and optimal placement of solar panels on rooftops.
The method also can help to assess the potential solar energy generation
and associated cost savings, enabling governments and companies to
evaluate the viability and profitability of rooftop solar PV installa-
tions. Additionally, the highly accurate estimation results can provide
reliable references to optimize the orientation and layout of future
constructions and maximize solar energy utilization which can help to
effectively reduce the Urban Heat Island.
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Table A.1
Morphological features.

Name Description Symbol Category Equation

Building height Building height H D –

Building area Building footprint area A D –

Building volume Building volume V D –

Building perimeter Sum of lengths of the building exterior walls P D –

Building longest axis length Diameter of the minimal circumscribed circle around the
building footprint

LAL D –

Building volume to fac̨ade ratio Ratio between building volume and the total area of fac̨ades VFR D 𝑣𝑜𝑙𝑢𝑚𝑒
𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟∙ℎ𝑒𝑖𝑔ℎ𝑡

Building fractal dimension Statistical index of the complexity of a geometry Fra D 2log(𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟∕2)
log(𝑎𝑟𝑒𝑎)

Building circular compactness Index of the similarity of a shape with a circle. It is based on
the area of the minimal enclosing circle (Ac)

Com S 𝑎𝑟𝑒𝑎
𝐴𝑐

Building square compactness Measure of the compactness of the building footprint Squ𝑐𝑜𝑚 S
(

4
√

𝑎𝑟𝑒𝑎
𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟

)2

Building squareness Mean deviation 𝜇 of each 𝑖 corner of the building from 90◦ .
Ncor is the number of corners

Squ S
∑𝑁𝑐𝑜𝑟
𝑖=1 𝜇𝑖
𝑁𝑐𝑜𝑟

Building Rectangularity Index of the similarity of a shape with a rectangle. It is based
on the area of the minimal rotated bounding rectangle of the
building (AMBR)

Rec S 𝑎𝑟𝑒𝑎
𝐴𝑀𝐵𝑅

Building shape index Shape index of the building footprint Shp𝑖𝑑𝑥 S

√

𝑎𝑟𝑒𝑎
𝜋

0.5∙𝑙𝑎𝑙

Building equivalent rectangular
index

Measure of shape complexity based on the area of the minimal
rotated bounding rectangle of a building (AMBR) and its
perimeter (PMBR)

ERI S
√

𝑎𝑟𝑒𝑎
𝐴𝑀𝐵𝑅 ∙ 𝑃𝑀𝐵𝑅

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟

Building elongation Measure of the deviation of the building shape from a square
based on the length of the minimal rotated bounding rectangle
of a building (LMBR) and its width (lMBR)

Elg S 𝐿𝑀𝐵𝑅
𝐼𝑀𝐵𝑅

Floor area ratio Ratio between the building total floor area and the area of the
related tessellation cell

Flr𝑎𝑟𝑒𝑎 I 𝑎𝑟𝑒𝑎
𝑡𝑎𝑟𝑒𝑎

Shared walls ratio of adjacent
buildings

Ratio between the length of the perimeter shared with
adjacent buildings (Pshared) and the building perimeter

SWR SD 𝑃𝑠ℎ𝑎𝑟𝑒𝑑
𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟

Building orientation Building orientation Ort D –

Alignment Mean deviation of solar orientation (devsol) of neighboring
buildings

Ali SD
∑

𝑗∈𝑛𝑒𝑖𝑔ℎ 𝑑𝑒𝑣𝑠𝑜𝑙(𝑗)
𝑁𝑛𝑒𝑖𝑔ℎ

Building adjacency Ratio between the number of joined adjacent structures
(Nneigh,join) and the number of neighboring buildings (Nneigh)

Adj SD
𝑁𝑛𝑒𝑖𝑔ℎ𝑗𝑜𝑖𝑛
𝑁𝑛𝑒𝑖𝑔ℎ

Mean inter-building distance Mean distance between the building and the adjacent buildings IBD𝑚𝑒𝑎𝑛 SD 1
𝑁𝑛𝑒𝑖𝑔ℎ

∑

𝑗∈𝑛𝑒𝑖𝑔ℎ 𝑑(𝑗)

Average building area Mean footprint area of building neighboring constructions A𝑎𝑟𝑒𝑎 SD 1
𝑁𝑛𝑒𝑖𝑔ℎ

∑

𝑗∈𝑛𝑒𝑖𝑔ℎ 𝑎𝑟𝑒𝑎(𝑗)

Average building height Mean height of building neighboring constructions H𝑚𝑒𝑎𝑛 SD 1
𝑁𝑛𝑒𝑖𝑔ℎ

∑

𝑗∈𝑛𝑒𝑖𝑔ℎ ℎ𝑒𝑖𝑔ℎ𝑡(𝑗)

Average building volume Mean volume of building neighboring constructions V𝑚𝑒𝑎𝑛 SD 1
𝑁𝑛𝑒𝑖𝑔ℎ

∑

𝑗∈𝑛𝑒𝑖𝑔ℎ 𝑣𝑜𝑙𝑢𝑚𝑒(𝑗)

Average building total floor area Mean total floor area of building neighboring constructions TFA𝑚𝑒𝑎𝑛 SD 1
𝑁𝑛𝑒𝑖𝑔ℎ

∑

𝑗∈𝑛𝑒𝑖𝑔ℎ 𝑓𝑙𝑜𝑜𝑟𝑎𝑟𝑒𝑎(𝑗)

Average Height to Width ratio Mean ratio between building height and width of building
neighboring constructions

HW SD 1
𝑁𝑛𝑒𝑖𝑔ℎ

∑

𝑗∈𝑛𝑒𝑖𝑔ℎ
𝐻
𝑑(𝑗)

Distance-weighted average height
difference

Mean height difference with distance weighted between the
reference building and its neighboring buildings

HD SD
∑

𝑗∈𝑛𝑒𝑖𝑔ℎ (𝐻(𝑗)−𝐻)∙𝑤(𝑗)
∑

𝑗∈𝑛𝑒𝑖𝑔ℎ 𝑤(𝑗)

Average neighborhood shading
angle

Mean shading angle between the reference building and its
neighboring buildings

Shd𝑚𝑒𝑎𝑛 SD 𝑎𝑟𝑐𝑡𝑎𝑛
( 1
𝑁𝑛𝑒𝑖𝑔ℎ

∑

𝑗∈𝑛𝑒𝑖𝑔ℎ
𝐻(𝑗)−𝐻

𝑑(𝑗)

)

Positive distance-weighted average
height difference

Mean height difference with distance weighted between the
reference building and its neighboring buildings (H(j)>H)

HD𝑝 SD
∑

𝑗∈𝑛𝑒𝑖𝑔ℎ (𝐻(𝑗)−𝐻)∙𝑤(𝑗)
∑

𝑗∈𝑛𝑒𝑖𝑔ℎ 𝑤(𝑗)

Negative distance-weighted
average height difference

Mean height difference with distance weighted between the
reference building and its neighboring buildings (H(j)<H)

HD𝑛 SD
∑

𝑗∈𝑛𝑒𝑖𝑔ℎ (𝐻(𝑗)−𝐻)∙𝑤(𝑗)
∑

𝑗∈𝑛𝑒𝑖𝑔ℎ 𝑤(𝑗)

Positive average neighborhood
shading angle

Mean shading angle between the reference building and its
neighboring buildings (H(j)>H)

Shd𝑎𝑝 SD 𝑎𝑟𝑐𝑡𝑎𝑛
( 1
𝑁𝑛𝑒𝑖𝑔ℎ

∑

𝑗∈𝑛𝑒𝑖𝑔ℎ
𝐻(𝑗)−𝐻

𝑑(𝑗)

)

Negative average neighborhood
shading angle

Mean shading angle between the reference building and its
neighboring buildings (H(j)<H)

Shd𝑎𝑛 SD 𝑎𝑟𝑐𝑡𝑎𝑛
( 1
𝑁𝑛𝑒𝑖𝑔ℎ

∑

𝑗∈𝑛𝑒𝑖𝑔ℎ
𝐻(𝑗)−𝐻

𝑑(𝑗)

)

Rugosity Ratio between the building volume and the area of the related
tessellation cell

Rug I 𝑣𝑜𝑙𝑢𝑚𝑒
𝑎𝑟𝑒𝑎𝑡

Floor area Floor area of each object based on height and area FA S ℎ𝑒𝑖𝑔ℎ𝑡∙𝑎𝑟𝑒𝑎
3

Coverage area ratio Ratio between the building footprint area and the area of the
related tessellation cell

CAR I 𝑎𝑟𝑒𝑎
𝑎𝑟𝑒𝑎𝑡

Mean coverage area ratio Mean coverage area ratio of the neighboring tessellation cells CAR𝑚𝑒𝑎𝑛 SD 1
𝑁𝑛𝑒𝑖𝑔ℎ

∑

𝑗∈𝑛𝑒𝑖𝑔ℎ 𝐶𝐴𝑅(𝑗)

Mean floor area ratio Mean floor area ratio of the neighboring tessellation cells FAR𝑚𝑒𝑎𝑛 SD 1
𝑁𝑛𝑒𝑖𝑔ℎ

∑

𝑗∈𝑛𝑒𝑖𝑔ℎ 𝐹𝐴𝑅(𝑗)

Sky view factor Sky view factor SVF SD –

Number of neighbors Number of neighbors N𝑛𝑒𝑖𝑔ℎ SD –

Tessellation longest axis length Diameter of the minimal circumscribed circle around the
tessellation cell

LAL𝑡𝑒𝑠𝑠 D –

Average tessellation area Mean tessellation area of building neighboring tessellation cells A𝑡𝑒𝑠𝑠 SD 1
𝑁𝑛𝑒𝑖𝑔ℎ

∑

𝑗∈𝑛𝑒𝑖𝑔ℎ 𝑎𝑟𝑒𝑎𝑡(𝑗)
13
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Appendix B. Upward-looking hemispherical viewshed algorithm

The estimates of rooftop solar irradiation calculated by the Solar
Analyst Tool in ArcMap are as the ground truth in our machine learning
model training. The Solar Analyst Tool is based on methods from the
hemispherical viewshed algorithm developed by Fu and Rich [18].
The specific process of the upward-looking hemispherical viewshed
algorithm is as follows.

B.1. Viewshed calculation

A viewshed is the angular distribution of sky visibility versus
obstruction and represents the proportion of the obstructed sky in
a specific location on a DEM, which is similar to the view from
upward-looking hemispherical photographs. Viewsheds are calculated
by searching a specified set of directions around an interesting location
on DEM in each direction and determining the maximum angle of sky
obstruction. For the unsearched directions, the interpolation method is
used to calculate the horizon angles. The horizon angles are projected
into a two-dimensional (2D) grid using an equiangular hemispherical
projection. A value with visible versus obstructed sky directions is as-
signed to each corresponding grid unit. The grid cell location (i.e., row
and column) represents a zenith angle 𝜃 and an azimuth angle 𝛼 on the
hemisphere of directions.

B.2. Sunmap calculation

After generating a viewshed for a specific location on a DEM, a
sunmap is created to represent the amount of direct solar radiation from
each sky direction in the same 2D grid system. The sunmap consists
of specified suntracks, and it represents the apparent position of the
sun as it varies through time. Zenith and azimuth angles are used for
representing the position of the sun, and they are calculated based
on latitude, day of year, and time of day using standard astronomical
formulae [18]. Zenith and azimuth angles are projected to 2D grids
with the same resolution as the viewsheds. Two sunmaps are created,
namely, sunmap for winter solstice to summer solstice, and sunmap
for summer solstice to the winter solstice. For each sky sector of the
sunmap, the associated time duration and the position of the sun are
calculated, and each sector is assigned a unique identification number.

B.3. Skymap calculation

To achieve the skymap calculation, the whole sky is divided into
a series of sky sectors defined by zenith and azimuth divisions. The
skymap is used in the final solar radiation calculation to estimate
diffuse solar radiation. The sky sectors in the skymap are required
to be small enough that the centroid zenith and azimuth angles can
reasonably represent the direction of the sky sector in subsequent
calculations. The skymap is also projected into the 2D grid for the final
solar radiation calculation.

B.4. Overlay of viewsheds with sunmaps and skymaps

After creating sunmap and skymap, two maps are overlayed to
enable calculation of the direct and diffuse solar radiation received
from each sky direction. For gap fraction in the skymap or sunmap
sector, it is calculated by dividing the number of unobstructed units
14

by the total of units in that sector.
B.5. Global solar radiation calculation

Since reflection radiation accounts of small proportion of the global
solar radiation, global radiation 𝐺𝑅 is calculated as the sum of direct
and diffuse radiation of all sectors in the sunmap and skymap. The
formula is as follows:

𝐺𝑅 = 𝐷𝑅 + 𝐹𝑅 (B.1)

where 𝐷𝑅 denotes the total direct solar radiation for all sunmap sectors,
𝐹𝑅 represents the total diffuse solar radiation for all skymap sectors.
The formula is as follows:

𝐷𝑅 =
∑

𝐷𝜃, 𝛼 (B.2)

where 𝐷𝜃, 𝛼 denotes the direct insolation from the sunmap sector with
a centroid at zenith angle 𝜃 and azimuth angle 𝛼. The formula for
calculation of 𝐷𝜃, 𝛼 is as follows:

𝜃, 𝛼 = 𝑆𝑐𝑜𝑛𝑠𝑡 × 𝜏𝑚(𝜃) ×𝑆𝑢𝑛𝐷𝑢𝑟𝜃, 𝛼 ×𝑆𝑢𝑛𝐺𝑎𝑝𝜃, 𝛼 × cos
(

𝐴𝑛𝑔𝐼𝑛1𝜃, 𝛼
)

(B.3)

here 𝑆𝑐𝑜𝑛𝑠𝑡 denotes a solar constant and the its range is from 1338 to
368 WM−2, 𝜏 is transmittivity of the atmosphere for the shortest path,
(𝜃) is the relative optical path length, 𝑆𝑢𝑛𝐷𝑢𝑟𝜃, 𝛼 the time duration

epresented by the sky sector, 𝑆𝑢𝑛𝐺𝑎𝑝𝜃, 𝛼 is the gap fraction for the
unmap sector, and 𝐴𝑛𝑔𝐼𝑛1𝜃, 𝛼 is the angle of incidence between the
entroid of the sky sector and the axis normal to the surface. The
ormula for calculation of 𝐹𝑅 is as follows:

𝑅 = 𝑅𝑔𝑙𝑏 ×𝑃𝑑𝑖𝑓 ×𝐷𝑢𝑟×𝑆𝑘𝑦𝐺𝑎𝑝𝜃,𝛼 ×𝑊 𝑒𝑖𝑔ℎ𝑡𝜃,𝛼 × cos
(

𝐴𝑛𝑔𝐼𝑛2𝜃, 𝛼
)

(B.4)

here 𝑅𝑔𝑙𝑏 is the global normal radiation, 𝑃𝑑𝑖𝑓 is the proportion of
lobal normal radiation flux that is diffused, Dur is the time interval
or analysis, 𝑆𝑘𝑦𝐺𝑎𝑝𝜃,𝛼 is the gap fraction (proportion of visible sky) for
he sky sector, 𝑊 𝑒𝑖𝑔ℎ𝑡𝜃,𝛼 is proportion of diffuse radiation originating
n a given sky sector relative to all sectors. 𝐴𝑛𝑔𝐼𝑛2𝜃, 𝛼 is the angle of
ncidence between the centroid of the sky sector and the intercepting
urface.
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