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A B S T R A C T   

Building-integrated photovoltaics are increasingly used to build low-carbon buildings and promote energy 
transition. However, the absence of three-dimensional (3D) building models may hinder accurate estimation of 
photovoltaic (PV) potential on 3D urban surfaces. This study develops a detail-oriented deep learning approach, 
which for the first time constructs 3D buildings from high-resolution satellite images and estimates PV potential. 
Specifically, two convolutional neural networks, i.e., the Rooftop Segmentation Model and Height Prediction 
Model, were developed by advancing the basic DeepLabv3+ architecture and integrating dedicated layers, 
adaptive activation functions, and hybrid losses. Next, the two models were trained and tested on a self-made 
dataset targeted at Shanghai and an open datasets under standard data augmentation and transfer learning 
strategies. Then, morphological post-processing procedures were developed to cluster and regularize individual 
rooftops with estimated heights. Finally, PV potentials in typical areas were estimated and compared. Accuracy 
assessments suggest satisfactory rooftop segmentationand building height estimation. The absolute relative error 
between the PV potentials derived from the actual and predicted building models showed little difference, 
implying the reliability of the extracted buildings. The proposed model is novel and effective for constructing 3D 
building models that can facilitate PV penetration and urban studies in various fields.   

1. Introduction 

1.1. Background and motivation 

Because of the development of solar photovoltaic (PV) technology, 
solar PV framing has been considered an emerging way of promoting 
sustainable energy transition (Wong et al., 2016). Unlike massive solar 
farming plants, which generate great amounts of electricity for a na-
tional grid, building-integrated photovoltaics (BiPV) show promising 

feasibility for developing low-carbon solar cities (Zhu et al., 2022a). This 
relies on appropriate site selection to ensure that BiPVs are placed at 
solar-abundant locations to build an efficient PV system, which requires 
an accurate estimation of spatio-temporal solar potential distribution on 
three-dimensional (3D) urban surfaces (Zhu et al., 2022b). To achieve 
this, it is crucial to obtain precise and up-to-update 3D building models 
to estimate shadow effects from surrounding buildings, which are 
mainly produced by advanced surveying technologies, such as Light 
Detection and Ranging (LiDAR) (Hu et al., 2018; Yang et al., 2016). 
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However, the precise 3D city models are usually confidential because of 
policy or security issues and unavailable in many countries due to 
limited budgets. Also, such data can quickly become outdated for 
fast-growing cities. Although building footprint polygons obtained from 
open-sourced maps, such as OpenStreetMap (2022), are accurate in 
many global cities, they usually do not contain the building height 
attribute. Since urban morphology significantly affects spatiotemporal 
solar distribution on 3D urban surfaces (Zhu et al., 2020), estimating PV 
potential without considering shadow effects from 3D buildings may 
cause unforeseeable uncertainties (Zhang et al., 2022a; Zhong et al., 
2021). Therefore, the unavailability of 3D building models may have 
impeded the widespread deployment of PV in the development of solar 
cities. Thus, this study aimed to develop a simple and effective model for 
building accurate 3D building models, fulfilling large-scale estimation of 
PV potential. 

1.2. Rooftop segmentation models 

Over the past few decades, precise and high-resolution surveying 
data, such as 3D point clouds and Digital Surface Model (DSM) derived 
from LiDAR data, have been used as major data sources for PV potential 
estimation (Aslani & Seipel, 2022). For example, one study utilized 
airborne laser scanning (ALS) data to extract tilted rooftops and estimate 
solar potential (Jochem, Höfle, Rutzinger & Pfeifer, 2009), and another 
one recognized rooftop areas with an 87% success rate by using rela-
tively low-resolution (2 m) DSM data (Gooding, Crook & Tomlin, 2015). 
These datasets are fundamental for accurately mapping the solar po-
tentials of rooftops. However, some cities cannot obtain such data 
covering the entire region with affordable and frequent updates. 

To address the limitation of missing data, some studies have pro-
posed new methods of extracting rooftop areas from high-resolution 
remote sensing images, either from commercial satellite image pro-
viders such as WorldView (Norman, Shafri, Idrees, Mansor & Yusuf, 
2020) or publicly available platforms such as Google Earth Engine 
(Huang, Mendis & Xu, 2019a; Zhang et al., 2022b; Zhong et al., 2021). 
For example, one study used deep learning-based image segmentation to 
extract rooftop areas in 90 Chinese cities with an overall accuracy of 
more than 97%, which was extracted from the 18-level Google Earth 
Satellite (GES) images with a resolution of 0.6 m (Zhang et al., 2022b). 
This implies that sub-meter resolution GES images allow for an accurate 
extraction of rooftop areas, which shows its advantages in terms of 
considerably low acquisition cost, spatially broad coverage, and rela-
tively frequent updates. 

Over the past few years, conventional edge detection algorithms 
have been used to extract rooftop areas from satellite imagery; for 
example, object-based image analysis was applied to Quickbird satellite 
images (Kabir, Endlicher & Jägermeyr, 2010). These methods usually 
use low- or mid-level features to classify building and non-building 
objects; this classification is significantly affected by threshold adjust-
ments and determined empirical rules (Huang, Zhang, Xin, Sun & Zhang, 
2019b). With continuous urbanization along with expanded urban 
areas, diversified rooftops, and complicated urban landscapes, setting 
up appropriate thresholds and using suitable empirical rules has 
become, thus impeding the wide utilization of these methods. Alterna-
tively, with the advancements in artificial intelligence and remote 
sensing technologies, rooftop areas can be extracted from 
high-resolution remote sensing images using deep learning models. For 
instance, one study incorporated rooftop features into a Support Vector 
Machine to categorize rooftops into six classes (Mohajeri et al., 2018). 

Recently, many studies extracted rooftop areas based on the image 
semantic segmentation model (Huang et al., 2019a; Li et al., 2021; 
Zhang et al., 2022b; Zhong et al., 2021a, 2021b). Qian et al. (2022a) 
extracted rooftop areas in 90 Chinese cities from GES images using a 
deep learning-based semantic segmentation network (i.e., Deep-
Labv3+), which achieved an overall accuracy and F1-score of 97.95% 
and 83.11%, respectively. Further, Qian et al. (2022b) proposed a 

network based on DeepLabv3+ to achieve the more challenging task of 
segmenting rooftop structure lines from satellite imagery, wihch needs a 
high capability of sensitively and accurately detecting linear-object 
features. The network (i) utilized transfer learning to fine-tune param-
eters and designed hybrid loss functions to alleviate class imbalance 
issues and obtain refined delineation, (ii) upgraded the backbone and 
integrated the Dural-Attention Mechanism with Atrous Spatial Pyramid 
Pooling in Encoder, and (iii) adapted PointRend in Decoder to refine the 
line segmentation. These studies enlighten us on the utilization of 
DeepLabv3+ to refine rooftop area segmentations. 

1.3. Building height prediction 

Previous studies developed many methods to estimate building 
heights in various spatial scales. The most widely used method is to 
retrieve large-scale building heights from single Synthetic Aperture 
Radar (SAR) data (Sun et al., 2022b) or LiDAR data (Lao et al., 2021). 
This method can build accurate and large-scale 3D city models; how-
ever, some cities cannot obtain such data, especially those experiencing 
rapid urbanization but confronting a limited budget. In contrast, some 
other studies have estimated building heights by detecting shadows 
from satellite imagery and calculated building heights based on complex 
geometric modeling (Liasis & Stavrou, 2016; Qi, Zhai & Dang, 2016). 
However, it faces challenges in certain urban areas with a high density of 
tall buildings because (i) buildings adjacent to each other will not create 
shadows, (ii) some low-rise buildings are always in shadow during the 
daytime, and (iii) separating shadow polygons affiliated to specific 
building instances is difficult. For instance, some shadows projected 
onto building façades severely impedeheight estimation. Although the 
above-mentioned problem can be solved by detecting and measuring the 
heights of building façades captured in street view images (Bshouty, 
Shafir & Dalyot, 2020; Yan & Huang, 2022), this is only effective for 
buildings along streets that have been captured by cameras and where 
up-to-date street view images are not readily available. 

Another approach aggregated building heights based on grid cells 
with various spatial resolutions, and examples of this approach include 
using AW3D30 DSM to produce 30-m resolution building height maps of 
China (Huang et al., 2022); developing the Random Forest machine 
learning model for building height prediction based on Landsat and SAR 
images at 1-km resolution in China, Europe, and the United States (US) 
(Li, Koks, Taubenböck & Van Vliet, 2020a); and utilizing Sentinel-1 SAR 
data at a 500-m resolution that covers a total area greater than 500 km2 

in seven cities in the US (Li, Zhou, Gong, Seto & Clinton, 2020b). These 
building height datasets are important for large-scale analysis related to 
urban morphology; however, they are difficult to be used for research on 
micro-scale investigations. 

To achieve micro-scale 3D building construction, one study utilized 
ZY-3 multi-view images to estimate building heights at a spatial reso-
lution of 2.5 m (Cao et al., 2021). Specifically, a multi-spectral, multi--
view, and multi-task deep neural network was developed, which is a 
multi-task learning framework with the fusion of ZY-3 multi-spectral 
and multi-view images that achieved competitive results in 42 Chinese 
cities compared to the Random Forest model. This novel study en-
lightens us on exploring the possibility of accurately estimating building 
heights from optical bands of single-view/orthographic satellite images 
by learning the relationships between building heights and features. 

1.4. solar pv estimation 

Solar potential has been estimated by mainly focusing on four pro-
gressive perspectives: (i) estimating land-surface solar irradiation by 
developing physical models (Feng & Wang, 2021) and machine learning 
models (Liao, Zhu & Wong, 2022); (ii) developing physical models to 
estimate solar distribution on urban surfaces (Catita, Redweik, Pereira & 
Brito, 2014; Jakubiec & Reinhart, 2013; Zhu et al., 2020; Zhu, You, 
Santi, Wong & Ratti, 2019); (iii) investigating spatial and temporal 
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distribution patterns of solar irradiation on urban surfaces (Catita et al., 
2014; Jakubiec & Reinhart, 2013; Lindberg, Jonsson, Honjo & 
Wästberg, 2015; Lobaccaro, Carlucci, Croce, Paparella & Finocchiaro, 
2017; Peronato, Rey & Andersen, 2018); and (iv) analysing and opti-
mizing solar accessibility by designing new urban forms or hybrid sys-
tems (Bianchi, Branchini, Ferrari & Melino, 2014; Zhang et al., 2019; 
Zhu et al., 2019). To estimate solar distribution on 3D urban surfaces 
that supports complex building geometries (e.g. two buildings having 
concave rooftops are nested with each other) usually occurring in 
megacities and enable big data computation over a large area, a study 
developed an accurate solar estimation model at high spatiotemporal 
resolutions (Zhu et al., 2020). This suggested that urban solar potential 
is comprehensively affected by geo-location that determines 
time-dependent direct and diffuse solar irradiation, historical weather 
that affects land-surface solar irradiation qualified by land cover and 
urban morphology that creates shadow effects from surrounding 
buildings. Thus, the model developed by this study (Zhu et al., 2020) is 
appropriate for estimating PV potential on both actual and estimated 
building surfaces to evaluate the effectiveness of the proposed 
framework. 

1.5. Contribution 

In light of the limitations of previous methods, this study is inno-
vative in that 3D urban surfaces were accurately, economically, easily, 
and rapidly constructed from two-dimensional (2D) satellite imagery. It 

addresses the critical issue that the most updated 3D building dataset is 
unavailable in most cities. Our framework is feasible to construct 3D 
building datasets for global cities, which is particularly useful for a wide 
range of urban applications, such as estimating PV potential for urban 
solar farming. 

The remaining sections of this paper are organized as follows. Sec-
tion 2 develops a deep learning-based framework to segment building 
rooftop areas and predict building heights from satellite images. Section 
3 introduces the model for PV estimation adapted for complex urban 
areas. Section 4 presents the study area, pre-processing, transfer 
learning, and the experiments and analyses for the rooftop area seg-
mentation and building height prediction. Section 5 compares PV po-
tential obtained from actual and estimated 3D urban surfaces. Finally, 
Section 6 presents the discussion and conclusion. 

2. Deep learning-based 3D building model for PV potential 
estimation 

2.1. Research framework 

This study proposes a research framework for estimating solar PV 
potential on 3D urban surfaces in the following major steps (Fig. 1). 
First, a detail-oriented deep-learning network is proposed to accurately 
segment building rooftop areas and predict building heights from sat-
ellite imagery, resulting in the construction of 3D buildings. To achieve 
this, this study advances one of the state-of-the-art model architectures 

Fig. 1. A framework of 3D solar PV potential estimation based on the detail-oriented deep learning network.  
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(i.e., the DeepLabv3+) by integrating adaptive activation functions, 
hybrid loss functions, transfer learning, morphological post-processing, 
etc. Second, a 3D solar distribution model is adapted into the frame-
work, which estimates land surface solar irradiation (determined by 
direct and diffuse solar radiation) and quantifies the 3D shadow effects 
from surrounding buildings. Third, solar PV potential is modeled by 
incorporating crucial parameters, such as PV conversion efficiency, PV 
size, PV installation layouts, and the associated time and geo-location. 

2.2. Overview of the detail-oriented deep learning network 

To construct 3D buildings based on 2D satellite images, we first 

convert 2D rooftop polygons enriched with the height attribute to two 
types of raster images, one of which identified urban areas belonging to 
either rooftops or ground, while the other one presented the number of 
storeys in the buildings (Fig. 2). Next, two deep-learning networks, i.e., 
the Rooftop Segmentation Model (RSM) and Height Prediction Model 
(HPM), were developed and trained to perform rooftop segmentation 
and building height estimation, respectively. Furthermore, images of 3D 
buildings were obtained by multiplying binary rooftop images with 
building height images. Finally, rule-based K-means clustering was uti-
lized to refine building heights, and boundary regularization was pro-
cessed to construct regular 3D buildings. 

Fig. 2. Workflow of 3D building construction based on the detail-oriented deep learning network.  

Fig. 3. Detail-oriented deep learning network eliminating marginal effects.  
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2.3. A refined deep learning network for constructing 3D buildings 

2.3.1. Semantic image segmentation model 
The RSM and HPM were developed using DeepLabv3+, a semantic 

segmentation model constructed by the Encoder-Decoder structure 
(Qian et al., 2022b). The encoding phase utilizes Deep Convolutional 
Neural Network and Atrous Spatial Pyramid Pooling (ASPP) to capture 
multi-scale features from the images, whereas the decoding phase 
up-samples the features obtained from the ASPP module by using 
bilinear interpolation to obtain an enlarged feature map. Next, the 
feature map concatenates with low-level features from the backbone for 
reconstructing the output at appropriate dimensions. 

2.3.2. Deep learning network eliminating marginal effects 
Building shadows are supposed to be crucial information for accu-

rately segmenting rooftops and estimating building heights because a 
shadow is always associated with its rooftop and the building height and 
changes the brightness of the geo-objects in the shadow. However, 
shadows affiliated with buildings are often incomplete in discrete im-
ages, which may affect the accuracy of estimating building heights. To 
better account for shadow, an optimized training and estimation strat-
egy has been proposed. Specifically, the input and output images are 
centralized at the same location with the input image having a larger 
extent. In this case, building shaodws in the marginal area of each image 
can also be considered during a series of convolution processes. To 
accomplish that, input images are extended outward for 64 pixels in 
each edge, resulting in an extension of the image size from 512 × 512 
pixels to 640 × 640 pixels, which is named a patch (Fig. 3). Further, two 
cropping processes are adapted into the Encoder to align input and 

output. One is made during the skipping path from the Encoder to the 
Decoder, while the other is made right after the concatenation of ASPP. 
This ensures that the low- and high-level features have the same spatial 
extent. 

In a hypothetical scenario, it is possible to detect rooftops and predict 
building heights based on a single deep learning model when the 
training datasets are pairs of remote sensing images and building foot-
print polygons with the height attribute. However, our preliminary 
study has confirmed that this approach will obtain unsatisfactory 
rooftop segmentation even though the accuracy of height estimation will 
be relatively high. Therefore, it is necessary to perform rooftop seg-
mentation and height prediction as two independent and consecutive 
tasks. To achieve this, three crucial improvements are introduced: 
adaptive activation functions, hybrid loss functions to strengthen 
attention on rooftop areas, and transfer learning. 

2.3.3. Adaptive activation functions 
Adaptive activation functions are selected to predict building rooftop 

areas and heights. For RSM, the Sigmoid function is used to convert real 
values into a number between 0 and 1, which is interpreted as a prob-
ability (Zhou & Vosselman, 2012); this enables binary classification that 
indicates either non-building or building pixels when the probability is 
lesser or greater than 0.5, respectively. For HPM, the Rectified Linear 
Unit function is used to predict the number of storeys at each pixel 
(Zhang, Li, Li & Liu, 2018), which is a piecewise linear function where 
input (float values) is directly replicated as output (integer values) when 
it is positive. Otherwise, it will output zero. 

Fig. 4. One original image and five augmented images.  
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2.3.4. Hybrid loss functions 
To properly train RSM and HPM, two hybrid loss functions are 

constructed. For RSM (a binary segmentation task), the loss is designed 
by combining the commonly used Binary Cross Entropy (BCE) and the 
Dice coefficient loss (Dice) Eqs. (1)-(3). The Dice coefficient loss (Li, He, 
Li & Shen, 2022; Qian et al., 2022b), sometimes classified as one of the 
region-based losses, focuses more on the overlap between the true and 
estimated buildings, which is critical for boundary detection tasks. More 
specifically, the Hybrid Loss 1 (HL1) for RSM is: 

HL1 = 1 − Dice+ BCE (1)  

Dice =
2
∑N
i=1yi ŷi + smooth

∑N
i=1yi2 +

∑N
i=1 ŷi

2
+ smooth

(2)  

BCE = −
1
N

∑N

i=1
yilog(ŷi) + (1 − yi)log(1 − ŷi) (3)  

where ŷi ∈ {0,1} and yi ∈ [0,1] are the truths and probabilities of a pixel 
being buildings, the smooth is simply a constant set to 1.0 to avoid di-
vision by zero. 

For HPM, the objective is to estimate the number of storeys on each 
pixel, that is, the outputs are continuous numbers rather than proba-
bilities. Thus, the constructed loss is essentially the mean squared error 
with more weights attached to the building pixels so that the model 
focuses more on height estimation rather than on building boundary 
detection Eqs. (4)-(6). The Hybrid Loss 2 (HL2) for HPM is: 

HL2 = 0.9SEbuilding + 0.1SEnon− building (4)  

SEbuilding =
1
N

∑N

i=1
I(hi> 0)(hi − ĥi )2 (5)  

SEnon− building =
1
N

∑N

i=1
I(hi = 0)(hi − ĥi)2 (6)  

where hi and ĥi are the true and predicted building heights (number of 
storeys), respectively; SEbuilding and SEnon− building refer to the mean 
squared errors of the building and nonbuilding pixels, respectively; I(⋅) 
is the indicator function and {0.9, 0.1} are the weights attached to the 
building and non-building pixels, respectively. 

2.3.5. Transfer learning 
To improve prediction accuracy and training efficiency, a transfer 

learning strategy has been designed with four hierarchical training 
steps. First, the DeepLabv3+ model is pre-trained based on two datasets, 
Visual Object Classes Challenge (2022) and Cityscapes Dataset (2022), 
so that the model will obtain preliminary knowledge on geo-object 
segmentation. Next, the RSM is obtained by adjusting the inpu-
t/output size and adding necessary layers to the pre-trained Deep-
Labv3+ model; the RSM is trained on aerial images with labelled 
rooftops in several global cities, allowing it to quickly obtain a general 
ability to segment rooftops. Further, to segment rooftops in a city with a 
unique urban landscape and rooftop patterns, the RSM is trained on the 
footprint training dataset of the city. Moreover, the HPM is obtained by 
adjusting the activation function of the last layer of the trained RSM and 
re-trained on the training dataset of the city that contains building 
height information. The TensorFlow and keras framework is imple-
mented in all training and testing procedures. 

2.4. Data augmentation 

Satellite imagery is usually organized as a set of spatially contiguous 
tiles with the same size if the image data size is significantly large. To 
effectively construct a training dataset, several data augmentation 

methods are proposed in this study (Fig. 4). First, a patch (640 × 640 
pixels) is selected from a tile (1600 × 1600 pixels) at a random location 
so that the training data is no longer at fixed blocks. Second, each patch 
has a 5% probability of being adjusted on (i) contrast using Gamma 
Correction (γ ranging between ±5) and brightness (ranging between 
±10%), and (ii) saturation with 0–50% random change, where 0 means 
completely black and white. Third, each patch has a 10% probability of 
being adjusted by (i) random rotation at 90◦, 180◦, or 270◦, and (ii) 
performing the Gaussian blur function with a 3 × 3 or 5 × 5 convolution 
size. 

2.5. Morphological post-processing 

Rooftop polygons converted from estimated rooftop pixels may show 
irregular serration along their boundaries, and some polygons with 
significantly small areas or low heights (e.g., lower than one meter) are 
probably noises. Height estimations may also fluctuate around the true 
values. For example, the real building in Fig. 2 comprises two parts (2 
and 10 storeys), but the prediction demonstrates random fluctuations 
between 2 and 10. To solve this problem, this study proposes morpho-
logical post-processing to refine building geometries. First, a building 
height raster is generated by multiplying the binary output of the RSM 
and the corresponding height prediction from the HPM. Second, the 
building heights are further refined using the rule-based K-means clus-
tering algorithm such that the building instances can be elaborately 
separated despite the unavailability of instance segregation models. In 
addition, final building polygons with refined heights are generated 
using the polygonisation and regularization tools in ArcGIS Pro. Spe-
cifically, the rule-based K-means clustering algorithm is as follows:  

1) Extract the pixels of a group of adjacent buildings with rounded 
heights denoted as {hi}.  

2) Get the unique height values of {hi} denoted as {Hm}.  
3) Calculate the proportion of pixel numbers (equivalent to footprint 

area) and the proportion of the summation of the pixel numbers 
(equivalent to the floor area) of each unique height Hm, denoted as 
{Pfootprint

m } and {Pfloor
m }, respectively.  

4) Count the number of unique height values that have their Pfootprint
m or 

Pfloor
m exceeding Ω, denoted as Kn. After several tests, we found that 

Ω=20% was sufficient to identify significant height values and omit 
other fluctuating heights produced by the model.  

5) Run K-means clustering algorithm on {hi} with K set to Kn.  
6) Assign the cluster centres’ height values to all the pixels in the same 

cluster and then get the refined heights. 

2.6. Accuracy assessment 

In this study, we constructed a confusion matrix [TP, TN, FP, FN] 
that presents the numbers of true-positive, true-negative, false-positive, 
and false-negative pixels, respectively. Specifically, TP means that the 
pixels belong to the footprint area in the real world and the prediction is 
correct, and FN means that the pixels belong to the footprint area but the 
prediction is wrong. In contrast, FP denotes that the pixels are not in the 
rooftop area and the prediction is wrong, while TN denotes that the 
pixels are not in the rooftop area and the prediction is correct. Next, the 
performance of the proposed model was systematically evaluated using 
a set of indices, mIoU (Eq. (7)), precision (Eq. (8)), recall (Eq. (9)), ac-
curacy (Eq. (10)) and F1-score (Eq. (11)), which are commonly used in 
classification and image segregation problems. Meanwhile, the mean 
absolute error (MAE) and the mean percentage error (MPE) are calcu-
lated (Eqs. (12)-(13)) to measure the accuracy of the models in 
regression-like situations. 

mIoU =
TP

FP+ FN + TP
(7) 
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precision =
TP

TP+ FP
(8)  

recall =
TP

TP+ FN
(9)  

accuracy =
TP

TP+ FP
(10)  

F1 − score =
2 × precision× recall
precision+ recall

(11)  

MAE =
1
N
∑

N
|hi − ĥi | (12)  

MPE =

∑
Areapredict −

∑
Areatrue

n
∑
Areatrue

(13)  

3. Estimation of PV potential on 3D urban surfaces 

3.1. Land surface solar irradiation estimation 

It is noteworthy that cities on the same latitude can have distinctly 
different climates and varying solar potential over time. To accurately 
quantify land surface solar irradiation associated with a specific time 
and location, cloud cover under real weather conditions needs to be 
considered, as it conclusively determines solar radiation affected by the 
atmosphere (Zhu et al., 2019). Thus, the average atmospheric trans-
mittivity (t) and diffuse proportion (d) are calculated based on Eqs. 
(14)-(15) (Huang, Rich, Crabtree, Potter & Fu, 2008), using the statis-
tical data on the proportions of sunny, partly cloudy and cloudy days, 
which are presented by psunny, ppartlycouldy, and pcloudy, respectively. 

t = 0.70 × psunny + 0.50 × ppartlycloudy + 0.30 × pcloudy (14)  

d = 0.20 × psunny + 0.45 × ppartlycloudy + 0.70 × pcloudy (15)  

3.2. Estimation of solar potential on 3D urban surfaces 

A well-developed model has been used to estimate solar irradiation 
on 3D urban surfaces (Zhu et al., 2020). The model utilizes 2D footprints 
of a building having the height attribute to build a set of 3D polygons 

denoted by P, which consists of horizontal rooftops R, vertical façades F 
and the ground G. On this basis, each polygon p ∈ P can be discretized by 
spatial contiguous and homogenous grid cells such that a complete set of 
3D centroids denoted by O can be obtained from the grid cells and used 
to present urban surfaces as 3D point clouds. In more detail, ∀o ∈ O, o 
contains several crucial elements, including the point ID i, the 3D co-
ordinate c, and the accumulated solar irradiation u during a period, i.e. 
o=〈i, c, u〉. Then, solar irradiation can be modeled as a set of parallel 3D 
vectors (E) that passes through the atmosphere and approaches O at a 
given time and location. Meanwhile, a set of 3D solar vectors will 
intersect with the rooftop vertexes, leading to the creation of initial 
shadow surfaces modelled by 3D parallelograms. 

Further, these shadow surfaces will be modified and recorded by S 
based on the following situations. First, shadow surfaces will be 
removed if façades are entirely in shadow, facing the sunlight or adja-
cent to a shorter one. Second, shadow surfaces will be reshaped if 
rooftop edges are partly in shadow or shadow surfaces intersect with 
other rooftops or façades. Ultimately, ∀o ∈ O, u will be 0 if point clouds 
are in shadow and calculated based on the energy conservation law if 
they are in sunlight. This model was developed in a relational database 
management system (PostgreSQL) with a series of SQL functions to 
support Big Data geo-computation, which utilized several database 
accelerating technologies, such as Spatial Index, Parallel Query, Views, 
and Temporary Tables. 

4. Empirical investigation 

4.1. Study area 

Shanghai, a commercial center in Asia, is one of the biggest cities 
across the globe with a population of more than 25 million and an 
electricity consumption of more than 1500 GWh in 2021 (Shanghai 
Bureau of Statistics, 2022). Since Shanghai has a long history and has 
developed at an extraordinarily rapid rate over the past 40 years, it is 
polycentric and has a complex urban landscape with various building 
types, a mixture of modern skyscrapers and old villages (Shen & Wu, 
2012; Chen et al., 2022; Yan, Wang, Zhang & Ratti, 2021). In an attempt 
to cope with the conflicts between energy transition and economic 
development, the demand for solar energy in Shanghai has increased 
(Chen et al., 2022), making it an ideal study area for constructing 3D 
urban surfaces and estimating PV potential. The study covered almost 

Fig. 5. The study area in Shanghai, located in the eastern part of China.  
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the whole administrative area of Shanghai (Fig. 5) except for Chongm-
ing Island (5400 km2), where the building density is relatively low. 

4.2. Datasets 

Optical remote sensing images covering the whole of Shanghai were 
obtained from Google Earth via Python scripts, which were acquired in 
the historical maps of 2014 and 2019 with three tunnels (Red, Green, 
and Blue) at a spatial resolution of 0.3–0.6 m. The reasons for using 
Google Earth satellite images are (1) they have sufficient pixel resolution 
for the building extraction task, (2) these images are pre-screened and 

merged in a way that most of them are cloudless, and (3) they cover 
almost all cities around the world so that our trained models may have 
the maximum range of application. The corresponding building foot-
print polygons in 2015 with height information (i.e. the number of 
storeys) were obtained from the Baidu Map, which has been used in 
numerous studies (Chen et al., 2020; Wang et al., 2021; Yao et al., 2017). 
The Baidu building polygons generally cover the whole central city, 
important new towns, and some of the suburban areas of Shanghai, 
providing a comprehensive representation of various building types and 
densities. To build a robust training model, an additional training 
dataset was obtained from the Inria Aerial ImageLabeling Dataset 

Fig. 6. Examples of labelled images in Shanghai. (a) A selected tile with high-quality labels in the central area. (b) A selected tile with high-quality labels in the 
suburban area. (c) An abandoned tile with low-quality labels. 
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(2022), which provides satellite images at 0.3 m resolution with labelled 
building rooftops in three cities (i.e., Austin, Chicago, and Kitsap 
County) in the US and two (i.e. Vienna, and Western Tyrol) in Austria. 
The daily cloud cover data between 2009 and 2022 in Shanghai were 
obtained from World Weather Online (2022). 

4.3. Data pre-processing 

Since high-resolution images lead to huge data size, we divided the 
images and organized a set of tiles each containing 1600 × 1600 pixels. 
To obtain high-quality training and testing datasets in Shanghai, 
building polygons used as labels were geo-referenced onto the two-year 
satellite images. Since the accuracy and the update frequency of building 
polygons vary dramatically across areas, tiles with high-quality labels 
were manually screened and maintained for training and validation, 
while the rest were abandoned when they got outdated or misaligned 
with building footprint labels (Fig. 6). The OpenCV modules in Python 
were utilized in the above-mentioned procedures. Eventually, 16,300 
well-matched tiles were selected for the experiment, covering about 
1350 km2 in Shanghai (Table 1). Together with the Inria dataset, we 
have 21,940 tiles with high-resolution satellite images covering about 
1755 km2 of four city areas worldwide. Since the number of tiles was 
sufficient, the selected tiles were organized into three categories, taking 
95% and 5% for training and testing, respectively. 

4.4. Transfer learning 

As described in Section 2.3.5, the proposed model was first trained 
based on the Visual Object Classes Challenge and Cityscapes Dataset to 
obtain a general knowledge of geo-object segmentation. Next, the model 
selected a patch from each of the tiles in the Inria dataset at a random 
location for further training to gain specific capability on rooftop area 
segmentation. Lastly, the model was retrained by applying the same 
method used for the Shanghai dataset to accurately segment rooftops in 
Shanghai. 

4.5. Rooftop segmentation accuracy 

The evaluation based on Shanghai satellite images in 2014 achieved 
the best result, with mIoU, recall, precision, accuracy, and F1-score 
equalling 0.75, 0.84, 0.87, 0.94 and 0.84, respectively (Table 2), indi-
cating that most of the building or non-building pixels are both correctly 
classified. Meanwhile, the rooftop area’s MPE was limited to 1.8%, and 
the Pearson correlation was significantly high with R = 0.97 (p<0.001). 
These values indicate a high accuracy of the RSM segmentation. In 
contrast, the accuracy on Shanghai satellite images in 2019 is the lowest 

regarding all metrics. This is probably because the satellite images in 
2014 best matched the ground truth, i.e., the Baidu rooftop polygons 
acquired in 2015. Although the satellite images in 2019 that are not well 
matched with the building polygons are manually abandoned, the 
screening process still introduces some errors. Nevertheless, more than 
80% of the building or non-building pixels in 2019 are still correctly 
classified, which is a satisfactory result. Additionally, despite that the 
trained model was particularly developed for Shanghai, it sufficed for 
Inria rooftop segmentations, achieving a mIoU of 0.75 and out-
performing 76.8% of similar studies that utilized the Inria dataset 
(Leaderboard, 2022). Compared with similar large-scale building 
extraction studies, e.g., the one conducted by Microsoft in the U.S. and 
Canada, which obtained approximate IoUs of 0.86 and 0.76 and 
pixel-wised recall of 92% and 72% (Microsoft, 2023a, 2023b), our 
model can still be qualified for application. 

4.6. Height estimation accuracy 

Table 3 shows that the MAE of building height was 0.79 and 0.87 for 
the Shanghai testing dataset in 2014 and 2019, respectively, and the 
Pearson correlations are significantly high, implying that even on the 
testing dataset the estimated number of stroeys varied from the actual 
number within just one floor, and indicating an accurate prediction of 
building height. The MPE of building floor area was relatively large at 
7.5% and 8.1% for the testing dataset. The reason is that the building 
floor area is calculated by multiplying the predicted rooftop/footprint 
area and the floor number so that the MPE inherits both the error of RSM 
and HPM. Meanwhile, this may also indicate significant challenges in 
building height prediction using solely satellite images: a small error in 
height prediction may lead to larger mistakes in building floor statistics. 

4.7. Geo-visualized comparison between actual and estimated buildings 

Quantitative accuracy assessments demonstrated that estimated and 
actual buildings could accurately match each other. To provide a direct 
visual impression, the two datasets are shown in Fig. 7, further vali-
dating two important characteristics. First, the predicted rooftop loca-
tions and shapes accurately match the actual ones, except for some 
predicted buildings that are missing in ground truth, which is due to the 
lack of timely updates on Baidu map. Second, the predicted building 
heights mostly match the actual ones quite well. However, 3D view also 
reveals that the height error of high-rise buildings is more significant 
than lower ones. The reason may be that training samples of high-rise 
buildings are not seemingly sufficient, making the model not that 
smart in estimating the height of tall blocks. Nevertheless, visual 

Table 1 
Summary of the experimental datasets.  

Datasets No. of 
Tiles 

Area 
(km2) 

Resolution 
(m) 

Height 
information 

Inria 5640 405 0.3 No 
Shanghai 

(2014) 
8950 740 0.2–0.6 Yes 

Shanghai 
(2019) 

7350 610 0.2–0.6 Yes 

Total 21,940 1755 – –  

Table 2 
Accuracy assessment of the RSM.  

Rooftop segmentation model Pixel-wised statistics Rooftop area statistics  

mIoU Recall precision accuracy F1-score MPE Pearson correlation(p<0.001) 

Testing dataset (Inria) 0.75 0.87 0.85 0.92 0.84 3.2% 0.95 
Testing dataset (2014) 0.75 0.84 0.87 0.94 0.84 1.8% 0.97 
Testing dataset (2019) 0.70 0.80 0.84 0.92 0.80 4.2% 0.95  

Table 3 
Accuracy assessment of the HPM.  

Height prediction 
model 

Pixel-wised 
statistics 

Building floor area statistics  

Height MAE MPE Pearson correlation 
(p<0.001) 

Testing dataset 
(2014) 

0.79 7.5% 0.98 

Testing dataset 
(2019) 

0.87 8.1% 0.97  
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Fig. 7. Comparison of actual buildings and post-processed building predictions. (a) Actual buildings in 3D view. (b) Predicted buildings in 3D view. (c) Boundaries 
comparison in 2D view. 

Fig. 8. Intermediate outputs of high- and low-level features of the advanced RSM and HPM.  
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comparisons generally indicates that the model is effective in various 
urban morphologies where building densities are low or high, rooftop 
areas are small or large, and building heights are short or tall. 

4.8. Interpretability of the RSM and HPM 

Motivated by the impressive performance of the detail-oriented deep 
learning network that has been well-packaged as a black box, we further 
explored the intermediate outputs of the model, as conducted in many 
studies (e.g., Sun et al., 2022a; Zhang & Zhu, 2018). To accomplish this, 
both high- and low-level features, as shown in Fig. 3, were extracted 
from the network, highlighted in red and overlapped with input images 
(Fig. 8). We found that high-level features of the RSM successfully 
learned to identify abstract objects, including the green space between 
buildings, rooftops, and the open space in each street block, while 

high-level features of HPM focused more on the side profiles of buildings 
and the shadows. In contrast, the low-level features of both the RSM and 
HPM focused particularly on basic textures and veins, especially of 
rooftops, impervious surfaces and shadows. This implies that our refined 
network, which coped with the shadow effect, can effectively improve 
the height estimation. Our analysis also revealed that land use and land 
cover associated with specific textures and hues are important 
geo-features for 3D building construction. 

5. Spatiotemporal distribution of 3D solar PV potential 

Fig. 9(a) shows the hourly solar distribution in the business district 
based on the estimated 3D urban surfaces on the 15th of September 
2022; this figure successfully models spatiotemporal variation of solar 
distribution with shadow effects made by surrounding buildings. To 

Fig. 9. Spatial distribution of solar potential on the 15th of September 2022. (a) Hourly distribution based on the predicted 3D urban surfaces. (b) Accumulated solar 
potential based on the predicted 3D urban surfaces in the business (left), residential (middle) and industrial (right) areas. (c) Accumulated solar potential based on 
the surveyed 3D urban surfaces in the business (left), residential (middle) and industrial (right) areas. 
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investigate the similarity of solar distribution on 3D urban surfaces 
constructed by deep learning-based estimation (Fig. 9(b)) and LiDAR 
scanning (Fig. 9(c)), we compared the accumulated solar distributions in 
three districts (i.e. business, residential and industrial) on the same day 
which had distinctly different urban morphology. Visually, solar distri-
butions computed from the two urban-surface sources are highly similar. 
Statistics of hourly solar irradiation on three urban partitions (i.e., 
rooftops, façades and ground) are presented in Fig. 10 and suggest that 
there is only an insignificant difference based on two difference data 
sources, i.e., predicted versus surveyed urban surfaces. Specifically, R2 

was larger than 0.99 for all three partitions (Table 4), implying a robust 
regression between hourly solar irradiations from the two sets of urban 
surfaces. Meanwhile, the absolute relative errors of estimated solar po-
tential on rooftops and ground were less than 10% (Table 4), suggesting 
a satisfactory estimation accuracy on horizontal surfaces. However, the 
errors were relatively large for solar estimation on façades, especially in 
the business district which had a high density of tall buildings. We also 
found that the errors mainly came from the early morning (between 8 
am and 10 am) when solar irradiation has a low elevation angle. This 
means that the errors in building heights and differences in façade ori-
entations may affect façade solar estimation considerably. 

Finally, assuming that the PV conversion efficiency is 22% and the 
performance ratio is 80% (Zhu et al., 2022c), the PV potentials based on 
the predicted and surveyed building datasets are presented in Table 5, 
which shows that the PV potentials based on estimated and surveyed 3D 

building surfaces are extraordinarily similar on rooftops, façades, and 
ground. For the total PV potential on all surfaces, the absolute relative 
errors were only 2.95%, 0.95%, and 0.30% for the business, residential 
and industrial areas, respectively. These results suggest that the PV 
potential estimations using the constructed 3D urban surfaces are 
effective in the scope of large-scale analysis. 

6. Discussion and conclusion 

This study proposes a novel deep learning-based approach for con-
structing 3D buildings and estimating solar PV potential. The two hi-
erarchical models for segmenting rooftop areas (with an MPE between 
1.8% and 4.2%) and predicting building heights (with an MPE between 
7.5% and 8.1%) with morphological post-processing have achieved 
satisfactory accuracy based on several testing datasets. The models also 
achieved a highly accurate estimation of PV potential on rooftops and 
ground; however, the accuracy was relatively low on façades. Although 
the total PV potential on the estimated 3D urban surfaces was highly 
accurate in all three large areas, the future study can conduct accuracy 
assessments on individual buildings by developing an adaptive spatio-
temporal statistical model. 

This study is significant in three aspects. First, we developed a deep 
learning-based approach to accurately constructing all 3D building 
surfaces in a densely urban area from optical bands of satellite imagery. 
It is innovative in integrating two semantic segmentation networks by 
eliminating the marginal effects, revising the outputs from possibility 
distributions to real numbers, and proposing hybrid loss functions, 
which successfully constructed 3D buildings purely from 2D satellite 
imagery. Second, this study provides an in-depth understanding of the 
deep learning network built by the Decoder and Encoder structure. The 
results suggest the effectiveness of spatial and channel attention that the 
high-level features can identify abstract objects in the RSM and pay 
special attention to the side profiles of buildings and shadows in the 
HPM, and the low-level features particularly focus on the basic textures 
and veins. Third, this study proposes an alternative approach for con-
structing 3D building models when the current 3D city models built by 
surveying technologies become outdated or unavailable. In this aspect, 
our approach is particularly useful for easy, fast, and economical 3D-city 
data generation that can be used for a variety of applications, such as 
urban planning and PV installation optimization. Thus, our approach 
can facilitate the development of many fast-growing countries where 
frequent LiDAR data updates are unavailable. 

The dates of satellite images and building polygons used for valida-
tion and testing are not entirely consistent with each other, adversely 
affecting accuracy assessment. For example, visual examination 
confirmed that the developed network successfully segmented rooftop 
areas from satellite imagery; however, some of them were not included 
in the 3D building dataset. This implies that the actual accuracy for both 

Fig. 10. Statistics of hourly solar potential based on the predicted and surveyed 3D urban surfaces in three districts (i.e., business, residential, and industrial) on the 
15th of September 2022. 

Table 4 
Accuracy statistics of the three partitions in three urban districts.  

Index Area Rooftop Façade Ground 

R2 Business 0.9974 0.9812 0.9999 
Residential 0.9998 0.9983 0.9999 
Industrial 0.9999 0.9951 0.9999 

Relative error (%) Business 9.3590 31.3194 4.8354 
Residential 2.7115 13.7284 3.0238 
Industrial 0.7821 26.7684 1.7134  

Table 5 
PV potential on the 15th of September 2022.  

Area Building 
datasets 

Rooftop 
(MWh) 

Façade 
(MWh) 

Ground 
(MWh) 

Absolute 
relative error 
(%) 

Business Predicted 283.42 222.87 422.76 2.9493 
Measured 261.99 291.07 403.40 

Residential Predicted 164.27 185.72 552.29 0.9553 
Measured 160.92 210.89 539.07 

Industrial Predicted 269.59 34.08 590.15 0.3047 
Measured 272.05 43.21 581.29  
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rooftop areas and building heights should be higher than the current 
statistics. Meanwhile, the results show that relative errors of estimated 
building heights are larger than those of segmented rooftop areas. 
Nevertheless, R2 is very high for all three urban partitions, indicating a 
robust regression between the predicted and measured building sur-
faces. Therefore, it is possible to integrate the regression models into 
transfer learning for urban areas having similar morphological charac-
teristics, which can considerably improve building height estimation. 

Notably, morphological post-processing can be further improved. 
The Regularize Building Footprint tool provided by ArcGIS Pro-was used 
to regularize the polygons converted from the predicted buildings. 
However, the tool focuses on eliminating undesirable geometric arte-
facts, while many building properties, such as the angles which usually 
stay within a certain range and edges which are usually perpendicular to 
each other and generally maintaining a certain length, are not taken into 
consideration. Therefore, we speculate that morphological post- 
processing can be improved using well-tuned regularization algo-
rithms that combine several manually defined rules. 

This study used the same solar irradiation model and input param-
eters based on the estimated and surveyed building data for solar dis-
tribution evaluation. This means that solar distribution differences are 
created only because the same solar irradiation arrives at different 
building surfaces (e.g., different heights and façade orientations). To 
create large variations of solar conditions, hourly comparisons were 
made when solar irradiations changed significantly in azimuths (from 
85.81◦ to 266.10◦) and elevation angles (from 3.86◦ to 61.71◦) from 8 
am to 5 pm on 15th September 2022. This allows us to confidently 
evaluate the robustness of the constructed building model. Nevertheless, 
the evaluation can be more robust if computing more days in a year, 
such as considering solstices and equinoxes or the characteristic decli-
nation days (Brito, e Silva & Freitas, 2021), which helps to systematic 
estimate and evaluate annual solar PV potential while minimize the total 
computation. 

The assumption that all rooftops are flat causes a certain deviation 
from reality. Motivated by the satisfactory results of this study, future 
work can develop a similar deep-learning network to estimate the slope 
and aspect of all rooftops. Since rooftop surfaces in different slopes (flat 
or steep) and aspects (facing the sun or shadow) present various 
brightness and textures, their high- and low-level features can be 
captured and learned by deep learning networks. This can be achieved 
when the datasets from real observations, such as 3D point clouds ob-
tained from LiDAR scanning, are available to calculate slopes and as-
pects for training, validation, and testing. Further, rooftop structure 
lines (e.g. boundaries and valley lines) have been segmented from high- 
resolution satellite imagery (Qian et al., 2022b), which means that 
rooftop surfaces can be determined and used as input features to facil-
itate rooftop slope and aspect prediction. 

In conclusion, this study is innovative in presenting a model that 
easily, rapidly, economically and accurately constructs 3D buildings 
from 2D satellite imagery and estimates PV potential on continuous 
urban surfaces. The proposed framework is technically effective for 
integrating deep learning-based rooftop area segmentation and building 
height estimation with transfer learning, shadow effect elimination and 
morphological post-processing. The proposed framework can be gener-
alized and is deliverable in other cities; this is particularly useful for a 
variety of applications related to the urban built environment. 
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