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A B S T R A C T   

To estimate electricity generation and evaluate the socio-economic effects of solar photovoltaic (PV) systems, it is 
critical to calculate the installed PV areas and quantify the installed capacity over a large region. Although 
general deep learning networks can be used to extract PV areas from satellite imagery, the capability of seg
menting small and distributed ones with accurate and refined boundaries is still lacking. This is because 
significantly small foreground objects (i.e., PV areas) severely impeded by large and highly diverse background 
contexts, background objects having similar characteristics to PV modules are easily misclassified, and PV 
modules under various daylighting conditions present varying textures and colours. To overcome the challenges, 
this study proposes Deep Solar PV Refiner, a detail-oriented deep learning network, to enhance PV segmentation 
from satellite imagery. The proposed network advances the backbone by incorporating Split-Attention Network, 
combines Dual-Attention Network with Atrous Spatial Pyramid Pooling using four different structures, and in
tegrates PointRend Network that refines PV boundary prediction. With transfer learning, a synthetic strategy, 
hybrid loss functions, and ablation experiments, the optimal network is obtained that outperforms the bench
mark by 5%, 2%, 3%, 3%, and 2% for IoU, Accuracy, F1-score, Precision, and Recall, respectively. The network is 
also competitive with the state-of-the-art semantic segmentation networks and has a favourable generalization 
capability, with the mean IoU increasing by 0.63–11.18%. The new network effectively improves the capability 
of segmenting hard and small PV samples, which is deliverable to different areas and is significant for estimating 
the installed capacity of PV systems.   

1. Introduction 

Fossil fuel consumption has caused severe environmental problems, 
such as air pollution (Wong et al., 2021), global warming (McGlade & 
Ekins, 2015), and the urban heat island effect (Zhu et al., 2017), which 
urges people to promote energy transition with the penetration of 
renewable energy. For solar power generation, photovoltaic (PV) panels 

are increasingly being used for solar farming (Inderberg et al., 2018) and 
a substantial number of PV power production systems have been 
installed in many countries (Zhang et al., 2021; Sabadini & Madlener 
2021). 

To facilitate PV installation, the academic community has estimated 
land surface solar irradiation (Liao et al., 2022), modelled PV potential 
on three-dimensional urban surfaces (Wong et al., 2016; Zhong et al., 
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2021; Zhu et al., 2019; Zhu et al., 2020; Zhu et al., 2022a), and opti
mized the location and installed capacity of PV modules (Zhu et al., 
2022b; Zhu et al., 2022c). In general, these studies effectively supported 
PV planning considering electricity generation and life-cycle techno- 
economic assessment. Since massive PV modules have been installed in 
the past few years, increasing attention has been paid to extracting 
installed PV areas from satellite imagery over large geographical areas 
(Wang et al., 2018; Li et al., 2021), which is vital for estimating the total 
installed capacity and PV potential (Vries et al., 2020), analyzing the 
economic and environmental impacts (Lukač et al., 2016), and guiding 
PV policy-making (Chapman et al., 2016). 

Recently, the methods for PV area extraction have been developed 
using remote sensing image segmentation (Wang et al., 2018), machine 
learning (Joshi et al., 2021; Chen et al., 2022a, b), and advanced deep 
learning (Costa et al., 2021; Kruitwagen et al., 2021; Li et al., 2021; 
Jiang et al., 2021). They suggested that machine learning models can 
achieve high accuracy on PV area segmentation, and deep learning 
models, such as Convolutional Neural Networks (CNN), are capable of 
extracting PV areas that are affected by various background environ
ments and multi-source satellite images with different resolutions. 

As deep learning networks have shown competitiveness in image 
segmentation (Zhang et al., 2022a; Liu et al., 2022; Li et al., 2022), PV 
areas have been extracted from satellite imagery based on deep learning, 
such as DeepSolar (Yu et al., 2018) and ConvNet (Yuan 2018). However, 
general deep learning models still meet difficulties in PV area segmen
tation. Previous studies indicate that (i) certain PV modules, such as 
small and distributed on rooftops, sometimes are hard to be detected and 
thus cannot be segmented from the images (Li et al., 2021); (ii) PV 
modules under various daylighting conditions present varying textures 
and colours that are confusable to other geo-objects and thus can be 
easily misclassified (Costa et al., 2021); and (iii) boundaries of the 
predicted PV areas are irregularly saw-toothed, implying inaccurate 
classification of pixels along the PV edges (Kruitwagen et al., 2021). 
These inconspicuous errors may be accumulated and propagated to be 
apparent mistakes when estimating the total installed capacity of PV 
modules, causing uncertain and unreliable analysis. 

Furthermore, sophisticated CNN architectures were used to separate 
PV areas from satellite images. One study developed a cross-learning 
driven U-Net to extract PV areas, which achieved the maximum IoU of 
74.92 % (Bradbury et al., 2016; Zhuang et al., 2020). Most recently, 
Deeplabv3+, which is a type of CNN employing an Encoder-Decoder 
structure and utilizing Atrous Spatial Pyramid Pooling (ASPP) to 
expand the receptive field, has been used to extract PV areas (Jiang 
et al., 2021; Costa et al., 2021), rooftop areas (Zhang et al., 2022b; Lin 
et al., 2022), and rooftop structural lines (Qian et al., 2022a). These 
studies suggested that Deeplabv3 + was competitive compared to 
models such as U-Net, Fully Convolutional Network, and Feature Pyra
mid Network. 

Further study examined the PV segmentation performance of the U- 
Net, RefineNet, and DeepLabv3 + on various satellite image resolutions 
in Jiangsu, China (Jiang et al., 2021), which found that DeepLabv3 +
outperformed the other two models in terms of Precision, F1-score, and 
IoU. It was also noticed that DeepLabv3 + tends to guarantee the 
extracted PV area dependable by sacrificing some parts of PV, whereas 
U-Net and RefineNet attempt to identify as many PV modules as possible 
at the expense of precision and yield more misclassified regions than 
DeepLabv3+ (Jiang et al., 2021). Therefore, DeepLabv3 + is preferable 
to U-Net and RefineNet for extracting PV areas. 

Although PV segmentation results obtained from Deeplabv3 + were 
generally superior to some CNN approaches and may provide reasonable 
PV area estimation, it still has limitations since some PV boundaries 
were over-smoothed or saw-toothed with a drop of IoU, some geo- 
objects were misclassified as PV modules when their spatial textures 
were similar with each other, and some PV modules could not be 
detected due to the reflection of sunlight, resulting in significantly 
different spectral information than usual. As DeepLabv3 + has 

demonstrated the best performance and dependability among the 
studied deep learning approaches, this study will propose a detail- 
oriented deep learning network based on DeepLabv3 + to address the 
above limitations. Specifically, this study will develop a synthetic 
strategy to optimize the backbone to enhance feature map attention and 
multipath representation (Qian et al., 2022a), incorporate the Dual- 
Attention mechanism to alleviate the effects of confusable background 
context and the complex object forms (Lu et al., 2020), add the Poin
tRend module to improve the edge detection accuracy (Qiu et al., 2021), 
and optimize loss functions to solve the class imbalance problem (Das 
et al., 2021). 

This study aims to propose a detail-oriented deep learning network 
to enhance the PV area segmentation from satellite images, which has 
three major contributions. First, a detail-oriented deep learning network 
is developed for PV segmentation, which is competitive with the basic 
Deeplabv3 + and other state-of-the-art networks. Second, this study 
provides a better understanding of deep learning networks for extracting 
the features of positive and negative samples for effective semantic 
segmentation. Third, the well-trained network can be utilized for 
transfer learning to perform fine-scale PV segmentation in different 
areas, and the network can be generalized and deliverable for the other 
imaged segmentation applications. 

2. Materials and methodology 

2.1. Study area and the datasets 

This study selects Heilbronn as the study area, which is a city in 
northern Baden-Württemberg, Germany, with an abundance of distrib
uted PV installations (Fig. 1). A set of patch images were collected from 
Google Earth Satellite with three optical bands (i.e., Red, Green, and 
Blue) that covered a 115.6 km2 area at a resolution of 0.15 m. The 
dataset has been proved being effective for PV area segmentation (Li 
et al., 2021), and it has been demonstrated that images at this resolution 
can fulfil the PV segmentation task (Jiang et al., 2021). Meanwhile, 
7197 manually labelled PV areas covering a total area of 1.0 km2 were 
obtained from the related literature (Li et al., 2021). The ratio of PV to 
background is about 1:20.1, indicating the challenge of PV segmentation 
task because of the significant imbalance of the positive and negative 
samples. Also, rooftop polygons were downloaded from open-sourced 
OpenStreetMap. 

2.2. Research framework 

Fig. 2 describes the research framework of this study. To begin with, 
satellite images and rooftop PV labels were processed to fulfill the re
quirements of deep learning. Then, detail-oriented deep learning net
works with various structures and the implementation of loss functions 
were proposed to improve PV segmentation capability, and the optimal 
network was determined based on a series of ablation experiments. After 
that, the new network was compared with other networks to illustrate 
the effectiveness of the new network on rooftop PV segmentation. Spe
cifically, this study (i) utilizes transfer learning to fine-tune initial pa
rameters, (ii) advances the backbone using the Split-Attention module to 
enhance the channel-wise attention on different network branches, 
which is expected to improve the capability in capturing cross-feature 
interactions and learning diverse representations between PV and non- 
PV classes, (iii) integrates Dual-Attention module with ASPP to alle
viate the effects of confusable background context and the complex 
object forms on PV area segmentation, (iv) incorporates PointRend 
module to improve the PV edge detection accuracy, and (v) optimizes 
loss functions to solve the class imbalance problem. 

2.3. Refinement of the backbone 

As shown in Fig. 3, the backbone serves as the input of the ASPP 
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Fig. 1. Study area in Heibronn, Germany.  

Fig. 2. Research framework.  

Fig. 3. The network architecture using ResNetV1c or ResNeSt as backbone.  
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module in Deeplabv3+, which was scaled and concatenated with the 
low-level feature map created by the backbone. This combined feature 
map was then up-sampled to provide the final forecast. Compared to the 
conventional ResNet (Qian et al., 2022b), ResNetV1c substitutes the 7 ×
7 convolution layers in the input stem with three 3 × 3 convolutional 
layers to save computation and sets stride on the 3 × 3 convolutional 
layer in the down-sampling part to reduce feature loss (He et al., 2019; 
Chen et al., 2022a, b). 

Furthermore, ResNeSt incorporated the Split-Attention Network 
(SAN) into ResNetV1c to improve model performance (Zhang et al., 
2022c), and it has been demonstrated to be competitive with the plain 
ResNet when used as backbones in segmentation methods like Deep
Labv3. In comparison to ResNetV1c, the 3 × 3 convolutional layer in the 
down-sampling and residual modules was replaced by SAN, and the 
average pooling layer was used to reshape the image instead of the 

convolutional layer with a stride in the down-sampling module. The 
SAN will not alter the input’s size or the number of channels in this 
study. Therefore, ResNetV1c and ResNeSt were employed independently 
as the backbone in DeepLabv3 + to compare the performance of the two 
modules. It was noticed that increasing the number of layers could 
improve the backbone’s capacity to extract features, while the inference 
latency was also increased. This study used 101 layers as a trade-off 
since 50 and 101 layers were frequently employed. 

2.4. Integration of the Dual-Attention module 

Considering PV areas are significantly small samples and PV seg
mentation can be easily affected by the complex environment in a sat
ellite image, there is a demand for strengthening the extraction of PV 
characteristics. Thus, the Dual-Attention Module (DAM) was applied in 

Fig. 4. Integration of DAM into Deeplabv3 +. (a) PCS ASPP-DAM; (b) PCC ASPP-DAM; (c) SC ASPP-DAM; (d) SC DAM-ASPP.  
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this study to adaptively combine local characteristics with their global 
dependencies (Lu et al., 2020). DAM comprises two types of attention 
modules, which respectively describe semantic interdependencies in 
spatial and channel dimensions. By adding DAM into the network, 
detailed objects can be more lucid, certain misclassified categories 
caused by obstructions can be accurately classified, and semantic con
sistency can be significantly enhanced. Therefore, it is possible to miti
gate the issue caused by varying object sizes, occlusion, and lighting 
changes, and thus enhance segmentation results when dealing with 
complex and diverse scenes. This study proposed four structures to 
integrate DAM with ASPP, as shown in Fig. 4. 

The first structure was the Parallel Connection of Separate ASPP and 
DAM (PCS ASPP-DAM), which was depicted in Fig. 4(a). In this struc
ture, the output of Backbone was separately entered into the ASPP 
module and the DAM, and then the outputs of these two modules were 
concatenated with Backbone’s low-level features. After convolution and 
up-sampling, this combined feature map could produce predictions. 

The second structure was the Parallel Connection of Concatenated 
ASPP and DAM (PCC ASPP-DAM), as shown in Fig. 4(b). Separately, the 
output of Backbone was fed into the ASPP module and the DAM module 
before the outputs of these two modules were concatenated. The 
concatenated feature map was then processed by a convolution module 
before being concatenated with Backbone’s low-level features. After 
convolution and up-sampling, this newly combined feature map pro
duced predictions. There were considerable differences between the 
modified model with PCS ASPP-DAM and PCC ASPP-DAM, such as the 
number of network parameters. 

The third structure was the Series Connection of ASPP and DAM (SC 
ASPP-DAM), which was presented in Fig. 4(c). In this case, the output of 
the Backbone was firstly entered into the ASPP module. Then, the output 
of the ASPP module was processed by the DAM module, which was 
concatenated with Backbone’s low-level features. After convolution and 
up-sampling, the combined feature map performed predictions. 

The fourth structure was the Series Connection of DAM and ASPP (SC 
DAM-ASPP), as shown in Fig. 4(d). Different from the previous structure, 
the output of Backbone was first entered into the DAM module, and then 
processed by the ASPP module. Furthermore, the output of the ASPP 
module was coupled with the low-level features of Backbone. This new 
concatenated feature map yielded predictions following convolution 
and up-sampling. The sole variation between the SC ASPP-DAM and SC 
DAM-ASPP models is the order of the ASPP and DAM components. 

2.5. Integration of the PointRend module 

During the up-sampling procedure, the border of the projected PV 
areas may be fuzzy; thus, the PointRend Module (PRM) was utilized in 
this work to create clear boundaries of PV areas. The PRM identified 
contour points of foreground objects in both the course prediction mask 
and the fine-grained feature map, and then refined these uncertain re
gions using Multi-Layer Perceptron (MLP). It has been demonstrated 

that DeepLabv3 with PRM outperformed DeepLabv3 for semantic seg
mentation on the Cityscapes datasets (Cordts et al., 2016). As shown in 
Fig. 5, PRM was integrated into the Decoder after Concatenation and 3 
× 3 Convolution to refine the PV segmentation results. 

2.6. Development of the hybrid loss functions 

2.6.1. Dice loss function 
The Dice loss function offers a solution to the problem that network 

predictions are heavily skewed toward the background since the fore
ground is considerably smaller than the backdrop (Qian et al., 2022a). 
Eq. (1) describes the Dice loss function used in this study, in which H 
denotes the height of an image, W denotes the weight of the image, p(r,c)
denotes the predicted class membership probability of pixel (r, c), g(r,c)
denotes the true classification of pixel (r,c), and ε denotes the smoothing 
factor that prevents the denominator from being zero. 

LD = 1 −
2
∑H

r=1
∑W

c=1p(r,c)g(r,c) + ε
∑H

r=1
∑W

c=1[p(r,c)
2 + g(r,c)

2] + ε
(1)  

2.6.2. Cross-entropy loss function 
The Cross-entropy loss function is commonly employed in classifi

cation and semantic segmentation tasks because the negative log func
tion is suited for tackling inaccurate predictions (Bahri et al., 2020). Eq. 
(2) provides Cross-entropy loss when there are two classes to be iden
tified, in which H, W, p(r,c), and g(r,c) denote the same meaning as used in 
the Dice loss function, and ω denotes the weight of foreground. 

LwC = −
∑(H,W)

(r=1,c=1)

[ωg(r,c)log
(

p(r,c)

)
+ (1 − g(r,c))log(1 − p(r,c))] (2)  

2.6.3. Focal loss function 
The Focal loss function is a solution to the problem that certain 

classes are easy to classify while others are difficult, which is also helpful 
in the segmentation task. Eq. (3) provides the Focal loss when the class 
number is equal to 2 (Lin et al., 2017). In the equation, p(r,c) denotes the 
predicted class membership probability of pixel (r,c), α is the parameter 
that controls the class weights, and γ is used to decrease the weight of 
easy-to-classify pixels. α = 0.5 and γ = 2 in this study. When α = 1 and 
γ = 0 the Focal loss is recast as Cross-entropy loss. 

Lfocal = α(1 − p(r,c))
γ
• LBCE (3)  

2.6.4. IoU loss function 
The IoU loss provides a solution to the imbalance between fore

ground and background in binary segmentation tasks, which directly 
enhances IoU. Eq. (4) defines the IoU loss function, which utilizes the 
same parameters as the above functions. 

Fig. 5. Integrate PRM into Deeplabv3 +.  
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LIoU = 1 −
∑H

r=1
∑W

c=1p(r,c)g(r,c)
∑H

r=1
∑W

c=1[p(r,c)+g(r,c) − p(r,c)g(r,c)]
(4)  

2.6.5. Hybrid loss functions 
The Hybrid loss function (HLF) is a mixture of two or more types of 

loss functions and could be more efficient for satellite image object 
recognition and semantic segmentation tasks. The nonlinear combina
tion of Cross-entropy loss and Dice loss has been utilized to successfully 
extract land cover and roads from satellite images (Wan et al., 2021; 
Zhang et al., 2020; Qian et al., 2022a). This study employed HLFs by 
incorporating Cross-entropy loss (LC), Dice loss (LD), IoU loss (LIoU), and 
Focal loss (LF). In the following equations, λC, λD, and λI refer to the 
coefficients of Cross-entropy loss, Dice loss, and IoU loss, respectively. 
By assigning coefficients and adjusting Cross-entropy loss, this study 
designs four HLFs. 

CDI = LC + 2LD + LIoU (5)  

CDhI = LC + 2LD + 3LIoU (6)  

wCDI = LwC + 2LD +LIoU (7)  

FDI = LF + 2LD + LIoU (8) 

In CDI, λC = 1, λD = 2, λI = 1 are allocated, with the coefficient of 
Dice loss increased from 1 to 2 due to the extreme imbalance of the 
dataset (Eq. (5)). In CDhI, the factor of IoU loss is increased from 1 to 3 to 
increase the weight of foreground influence during training (Eq. (6)). In 
wCDI, the weighted Cross-entropy loss replaces the standard Cross- 
entropy loss in CDI to increase the weight of the PV class during 
training (Eq. (7)). Focal loss may be superior to Cross-entropy loss for 
addressing the imbalance issue, and it replaces Cross-entropy loss in CDI 
to generate FDI (Eq. (8)). 

2.7. Evaluation metrics 

Four indices were used to evaluate the performance of trained 
models, i.e., Intersection-over-Union (IoU), F1-score, Precision, and 
Recall. The greater value of the indices, the better the model perfor
mances. Specifically, IoU is extensively used to evaluate the perfor
mance of semantic segmentation models since it accounts for the class 
imbalance issue. As demonstrated by Eq. (9), IoU provides the similarity 
between the predicted area and the ground-truth region for an object. 
mIoU denotes the average IoU value of all classes, which refers to PV and 
background in this study. In the equation, intersection refers to the point 
where the ground truth and prediction area intersect, and the union is 
the union of the ground truth with the forecast region. Here, TP, FP, and 
FN denote true-positive pixels, false-positive pixels, and false-negative 
pixels, respectively. Meanwhile, Accuracy, Precision, Recall, and F1- 
score are calculated based on Eqs. (10)–(13). 

IoU =
intersection

union
=

TP
FN + TP + FP

(9)  

Accuracy =
TN + TP

FN + TP + FP + TN
(10)  

Precision =
TP

TP + FP
(11)  

Recall =
TP

TP + FN
(12)  

F1 − score = 2
Precision × Recall
Precision + Recall

(13)  

3. Empirical evaluation 

3.1. Data preprocessing 

Fig. 6 demonstrates the dataset preprocessing steps. To start with, 
rooftop polygons and labels of the PV areas are combined to create 
masks for identifying environmental backgrounds from satellite images. 
All satellite images and binarized labels are cropped sequentially into 
512 × 512 patch images. Because of the unbalanced distribution of PV 
panels, many patch images do not contain PV labels, which are thus 
filtered out. The remaining pairs of images and labels are separated into 
three parts for training (3345 patches), validation (372 patches), and 
testing (295 patches), with a 11.34 to 1.26 and to 1. 

3.2. Training strategies 

Transferring weights trained by other datasets at the start of training 
can enhance the performance of a deep neural network compared to 
randomly initializing the network’s parameters, which has been 
frequently utilized as a training approach to improve training outcomes 
(Zhuang et al., 2020). Thus, transfer learning is employed in this study. 
The weights of backbones pre-trained using Cityscapes datasets are 
imported into the models at the beginning of training (Cordts et al., 
2016). 

3.3. Experiment environments 

Experiments were conducted using MMSegmentation (MMS 2022), 
an open-source semantic segmentation toolkit based on PyTorch. Details 
of the experiment and the hyperparameter settings are given in Table 1. 

4. Results 

4.1. Selection of the backbone 

DeepLabv3 + using ResNetV1c and ResNeSt as the backbone was 
trained and validated independently for 100 epochs, and the experi
ments were repeated for three times. Based on the trained models, the 
prediction accuracy metrics based on the test dataset are summarized in 
Table 2. It shows that ResNeSt obtained slightly higher accuracy than 
ResNetV1c regarding the means of IoU, Accuracy, F1-score, and Recall 
for PV segmentation. Thus, ResNeSt is employed in the following ex
periments as getting a higher PV segmentation accuracy is the main 
objective of this study. 

4.2. Integration of the DAM or PRM 

Then, the Dual Attention Module (DAM) was integrated into Deep
Labv3 + using ResNeSt, which resulted in the production of four 
different models with various connections between ASPP and DAM. By 
repeating the same training and validation experiments for three times, 
this study also obtained robustly trained models. The results of the four 
models are presented in Table 3. All the models containing DAM obtain 
increased PV mean IoU, F1-score, and Precision compared to the 
benchmark using ResNetV1c without DAM (Table 2). In detail, the 
modified model structured with SC DAM-ASPP shows better perfor
mance than the other three ones, with PV mean IoU equaling 80.68 % for 
PV segmentation. Fig. 7 compares PV segmentation results obtained 
from different models, which demonstrates that integrating DAM into 
Deeplabv3 + enhances feature extraction of PV modules even PV area is 
significantly small and there are strong obstacles from surrounding 
environments. 

Table 3 and Fig. 7 also present the PV segmentation metrics by using 
ResNeSt integrated with PRM. It shows that the mean and max IoU are 
81.59 % and 82.28 %, respectively, which obtains a 1.91 % and 2.11 % 
increase compared to the benchmark using ResNetV1c. This means that 
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there is a notable improvement in PV segmentation when PV areas are 
significantly small and imbalanced to negative ones. For instance, small 
PV areas that are easily influenced by rooftops with similar textures are 
successfully identified and extracted from images by the model having 
PRM (Fig. 7). Moreover, Table 3 reveals that the model integrating PRM 
obtains better performance than that containing DAM in terms of PV the 
mean IoU, F1-score, and Precision. Considering that DAM is used to 

exploit the context while PRM is used to acquire crisp edges of fore
grounds, the results imply that improving the prediction of PV bound
aries might play a more important role in enhancing the performance of 
PV segmentation. 

4.3. Integration of DAM and PRM 

The above experiments illustrate that respectively integrating DAM 
or PRM into Deeplabv3 + with the backbone of ResNeSt can obtain 
increased accuracy on PV segmentation compared to the benchmark. In 
this section, DAM and PRM will be integrated into DeepLabv3 +
simultaneously for further investigation. By repeating the experiments 
for three times, it shows that all four networks containing DAM and PRM 
can compete with the benchmark (Table 2) and the networks only 
integrating DAM (Table 4) based on the mean and max IoU for 
segmented PV areas. 

Specifically, the network utilizing ResNeSt and incorporating PCC 
ASPP-DAM & PRM performs the best with the mean and max IoU 
equaling 82.87 % and 83.48 %, which also outperformed the network 
with PRM alone (Table 4). Also, both the mean and max F1-score are 
larger than 90 % for PCC ASPP-DAM & PRM, which suggests a 

Fig. 6. Procedure for creating datasets.  

Table 1 
Details of the experimental environment setting.  

Category Item Configuration 

Hardware Cloud Platform AutoDL 
GPU RTX 3090 × 2 
CPU Intel(R) Xeon(R) Gold 6330 CPU @ 

2.00 GHz 
Environment PyTorch 1.9.0 

Python 3.8 
Cuda 11.1 
MMCV 1.3.9 
MMSegmentation 0.15.0+

Hyperparameters Batch size 4 
Optimizer AdamW 
Learning rate 0.01 
Weight decay 0.001 
Learning rate 
scheduler 

Polynomial (power = 0.9, minimum 
lr = 0.0001) 

Loss function Dice loss (when hybrid loss is 
undefined)  

Table 2 
Evaluation of segmented PV areas using different backbones (%).  

Backbone Category IoU Accuracy F1-score Precision Recall 

ResNetV1c Mean  79.68  87.91  88.69  89.49  87.91 
Max  80.17  88.65  88.99  89.95  88.65 

ResNeSt Mean  79.72  88.40  88.71  89.03  88.40 
Max  80.17  88.91  88.99  90.16  88.91  

Table 3 
Evaluation of the modified models respectively with DAM and PRM (%).  

Structure Category IoU Accuracy F1- 
score 

Precision Recall 

PCS ASPP- 
DAM 

Mean  79.71  87.82  88.71  89.63  87.82 
Max  79.83  88.13  88.79  90.14  88.13 

PCC ASPP- 
DAM 

Mean  80.33  87.70  89.09  90.53  87.80 
Max  81.52  88.38  89.82  91.31  88.38 

SC ASPP- 
DAM 

Mean  80.57  88.61  89.24  89.87  88.61 
Max  81.41  89.01  89.75  90.51  89.01 

SC DAM- 
ASPP 

Mean  80.68  88.89  89.31  89.72  88.89 
Max  81.42  89.21  89.76  90.32  89.21 

PRM Mean  81.59  87.76  89.86  92.07  87.76 
Max  82.28  88.68  90.28  92.82  88.68  
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satisfactory balance between Precision and Recall and indicates highly 
accurate PV segmentation when PV area and background objects have 
an uneven class distribution. This means that the most effective network 
structure, as shown in Fig. 8, is derived at this stage based on the default 
Dice loss function. It is also noticeable that SC ASPP-DAM & PRM, a 

different type of connection between ASPP and DAM, also get the mean 
and max IoU larger than 82 % and F1-score larger than 90 %, suggesting 
an improved PV segmentation. 

4.4. Integration of hybrid loss functions 

The previous section demonstrates that PCC ASPP-DAM & PRM 
aligns optimally with the Dice loss function. Therefore, this structure is 
used to explore whether PV segmentation can be further enhanced by 
applying hybrid loss functions. By integrating a hybrid loss function into 
the deep learning network composed by the PCC ASPP-DAM & PRM 
structure, this study repeated the training and validation experiments 
over 100 epochs for three times. Results with the proposed hybrid loss 
functions are presented in Table 5. It shows that the means of IoU are 
82.36 %, 82.81 %, 82.12 %, and 82.61 % for CDl, FDl, wCDl, and CDhl, 
respectively, all of which are slightly lower than that integrates the Dice 
loss function having the mean IoU equaling 82.87 %. This means that the 
Dice loss function is effective to solve the prediction challenges when 
positive samples are significantly smaller than the background samples. 

Fig. 7. Segmented PV areas in the red colour obtained from different models.  

Table 4 
Evaluation of the models with the integration of both DAM and PRM (%).  

Structure Category IoU Accuracy F1- 
score 

Precision Recall 

PCS ASPP- 
DAM & 
PRM 

Mean  81.58  88.74  89.85  91.01  88.74 
Max  82.52  90.36  90.42  92.05  90.36 

PCC ASPP- 
DAM & 
PRM 

Mean  82.87  89.40  90.63  91.90  89.40 
Max  83.48  89.65  90.99  92.44  89.65 

SC ASPP-DAM 
& PRM 

Mean  82.49  89.30  90.40  91.56  89.30 
Max  82.94  89.85  90.68  93.14  89.85 

SC DAM-ASPP 
& PRM 

Mean  81.44  88.60  89.77  90.97  88.60 
Max  82.11  89.02  90.18  91.62  89.02  

Fig. 8. The architecture of the optimal network.  
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It is also found that PCC ASPP-DAM & PRM with CDhl obtained the 
max IoU equaling 83.62 % out of the three experiments (Table 5), which 
got the best PV segmentation performance compared to all other net
works either with- or without hybrid loss functions. Moreover, the 
network has Accuracy, F1-score, Precision, and Recall equaling 89.83 %, 
91.08 %, 93.27 %, and 89.83 %, respectively (Table 5), all of which are 
higher than the same deep learning structure using the Dice loss function 
(Table 4). The results suggest that CDhl can help get the largest IoU and 
has a high capability to further enhance the PV segmentation accuracy, 
although the mean IoU is slightly lower. This is because CDhl assigning 
increased weights on Cross-entropy loss, Dice loss, and IoU loss func
tions cannot only pay the most important attention on getting a large 
IoU but also tackle inaccurate predictions along the PV boundary areas, 
using a negative log function that identifies significantly imbalanced 
classes with improved PV area segmentation. 

4.5. Comparison with the state-of-the-art deep learning networks 

The latest deep learning methods have been proposed for the se
mantic segmentation task, such as DNLNet (Yin et al., 2020), UPerNet 
(Huang et al., 2020), U-Net (Bradbury et al., 2016), DMNet (Li et al., 
2020), and PSPNet (Zhao et al., 2017). The results for testing the pro
posed detail-oriented network and comparing with these networks using 
a different dataset, as introduced in Sections 2.1 and 3.1, are presented 
in Table 6. By repeating the experiments for three times, these networks 
achieve the PV mean IoU at 72.16 %, 78.28 %, 80.20 %, 82.65 %, and 
82.71 %, respectively. In comparison, our network (ResNeSt & PCC 
ASPP-DAM & PRM & Dice) has the PV mean IoU equaling 83.34 %, 
getting IoU increased by 11.18 %, 5.06 %, 3.14 %, 0.69 %, and 0.63 % 
and F1-score increased by 7.08 %, 3.09 %, 1.90 %, 0.41 %, and 0.37 %, 
respectively. Compared to the basic DeepLabv3+ (ResNetV1c & ASPP & 
Dice), our network increases PV IoU by 4.55 %, Accuracy by 2.30 %, F1- 
score by 2.71 %, Precision by 3.19 %, and Recall by 2.30 %. 

Fig. 9 visualizes the segmented PV areas obtained from the proposed 
detail-oriented network and the labelled PV areas used as the ground 
truth. Compared to previously developed models, it shows that our 
model can (i) sensitively identify bright PV areas caused by solar 
reflection (in the first and second columns); (ii) successfully exclude 
negative and confusable pixels and segment the PV area with a regular 
boundary, most similar to the labelled PV area (in the third column); (iii) 
exclude fibreglass roof that is pretty similar to but essentially not PV 
areas (in the fourth column); (iv) successfully detect all small and 
distributed PV modules (in the fifth column); (v) segment all PV arrays 

with clear boundaries (in the sixth column). 
Lastly, to investigate the generalization capability of the proposed 

network, this study utilized another independent PV dataset for testing. 
The dataset has been published by Jiang et al. (2021), which contains a 
set of satellite images at the 0.1-m resolution, pretty like ours at 0.15-m, 
and the PV areas were well-labelled in Jiangsu province, China. The 
results show that our network achieves an overall IoU equaling 85.30 % 
(Table 7), higher than others by 0.18–6.99 % except for U-Net. This 
suggests that our network has a favourable generalization ability. It is 
also noted that the IoU is even higher than that obtained from our 
dataset, implying a high quality of the dataset and few confusable geo- 
objects that leads to an easy segmentation. 

5. Discussion and conclusion 

This study proposes a detail-oriented semantic segmentation 
network to accurately segment PV areas from satellite images. By 
coupling with transfer learning, a synthetic strategy that systematically 
refines a deep learning network structure and optimizes the loss func
tion, and a series of well-designed ablation experiments, the optimal 
network is obtained that exceeds DeepLabv3 + in terms of PV mean IoU, 
Accuracy, F1-score, Precision, and Recall by 5 %, 2 %, 3 %, 3 %, and 2 %, 
respectively. The developed network remains competitive compared to 
the most advanced semantic segmentation models developed in recent 
years. These improvements mainly come from the successful identifi
cation of hard and positive PV samples, which demonstrates an impor
tant contribution to accurately segmenting small and distributed PV 
areas. 

Three important findings are revealed from this study. First, it is 
useful to include a Split-Attention Network to leverage the success in 
capturing cross-feature interactions and learning diverse representa
tions and integrate a Dual-Attention Network to enhance the spatial and 
channel attention. This is especially important for successfully extract
ing small PV areas that are influenced by surrounding geo-objects with 
similar feature characteristics. Second, integrating the PointRend Model 
into Decoder is useful to improve the prediction accuracy by accurately 
identifying positive and negative samples along the PV boundaries with 
the help of Multi-Layer Perceptron. Third, PCC ASPP-DAM is out
performed when using the Dice loss function, and it can also obtain the 
highest IoU when the hybrid loss function CDhl is used. It is because PCC 
ASPP-DAM maintains the features of ASPP and DAM well when they are 
processed by Concatenated convolution and up-sampling, which allows 
effective training with the combination of Cross-entropy loss, Dice loss, 
and IoU loss functions. 

This study is significant in three aspects. First, this study is innova
tive in accurate segmenting hard and small PV areas from images. The 
significant improvement in IoU suggests that the new network has a 
greater number of correctly classified positive samples than the original. 
Second, this study is vital for evaluating the economic and environ
mental impacts made by solar farming. With the increasing penetration 
of distributed PV systems, it is important to estimate the total amount of 
electricity generation and the consequent carbon reduction made by PV 
modules at a large geographical scale. Our network can help to achieve 
this by providing accurate statistics of the total PV installed capacity. 
Third, our trained model can be used for transfer learning, and the 
proposed model is effective for PV segmentation with an adaption of 
other satellite images with various spatial resolutions. Meanwhile, it is 
noted that the extracted rooftop PV size may deviate from the actual one 
because the tilted PV panels are projected onto the orthographical sat
ellite images. Nevertheless, the accuracy of the model will not be 
affected by this constraint as PV labels are manually created based on 
the same orthographical images. 

To conclude, this study proposes Deep Roof Refiner, an end-to-end 
and detail-oriented deep learning network, for accurate segmentation 
of PV areas from satellite imagery. The new network contributes to 
studies related to remote sensing image segmentation, deep learning 

Table 5 
Evaluation of PCC ASPP-DAM & PRM integrating four HLFs (%).  

HLFs Category IoU Accuracy F1-score Precision Recall 

CDl Mean  82.36  88.75  90.32  91.96  88.75 
Max  82.92  89.15  90.66  93.23  89.15 

CDhl Mean  82.61  88.32  90.47  92.75  88.32 
Max  83.62  89.83  91.08  93.27  89.83 

wCDl Mean  82.12  88.43  90.18  92.00  88.43 
Max  83.34  89.36  90.91  93.63  89.36 

FDl Mean  82.81  89.15  90.59  92.09  89.15 
Max  83.29  90.08  90.88  92.80  90.08  

Table 6 
Segmented PV area metrics using different networks (%).  

Models IoU Accuracy F1-score Precision Recall 

DNLNet  72.16  82.15  83.83  85.58  82.15 
UPerNet  78.28  82.76  87.82  93.54  82.76 
U-Net  80.20  85.76  89.01  92.53  85.76 
DMNet  82.65  88.12  90.50  92.95  88.18 
PSPNet  82.71  89.53  90.54  91.57  89.53 
Deeplabv3+ 78.79  85.85  88.20  90.67  85.85 
Detail-oriented network  83.34  88.15  90.91  93.86  88.15  
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refinement, and PV installed capacity estimation, which is also deliv
erable for other geo-object segmentation. Future work may predict the 
inclination and orientation of PV modules based on deep learning to 
estimate PV electricity generation. 
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Segmented PV area metrics using different networks and another dataset (%).  

Models IoU Accuracy F1-score Precision Recall 

DNLNet  83.37  96.36  90.93  86.08  96.36 
UPerNet  85.12  93.09  91.96  90.86  93.09 
U-Net  87.60  95.84  93.39  91.06  95.84 
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PSPNet  78.31  88.43  87.83  87.25  88.43 
Deeplabv3+ 81.53  96.82  89.82  83.77  96.82 
Detail-oriented network  85.30  94.77  92.06  89.51  94.77  
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