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A B S T R A C T   

Background: In response to COVID-19, Southeast Asian (SEA) countries had imposed stringent lockdowns and 
restrictions to mitigate the pandemic ever since 2019. Because of a gradually boosting vaccination rate along 
with a strong demand for economic recovery, many governments have shifted the intervention strategy from 
restrictions to “Living with COVID-19” where people gradually resumed their normal activities since the second 
half of the year 2021. Noticeably, timelines for enacting the loosened strategy varied across Southeast Asian 
countries, which resulted in different patterns of human mobility across space and time. This thus presents an 
opportunity to study the relationship between mobility and the number of infection cases across regions, which 
could provide support for ongoing interventions in terms of effectiveness. 
Objective: This study aimed to investigate the association between human mobility and COVID-19 infections 
across space and time during the transition period of shifting strategies from restrictions to normal living in 
Southeast Asia. Our research results have significant implications for evidence-based policymaking at the present 
of the COVID-19 pandemic and other public health issues. 
Methods: We aggregated weekly average human mobility data derived from the Facebook origin and destination 
Movement dataset. and weekly average new cases of COVID-19 at the district level from 01-Jun-2021 to 26-Dec- 
2021 (a total of 30 weeks). We mapped the spatiotemporal dynamics of human mobility and COVID-19 cases 
across countries in SEA. We further adopted the Geographically and Temporally Weighted Regression model to 
identify the spatiotemporal variations of the association between human mobility and COVID-19 infections over 
30 weeks. Our model also controls for socioeconomic status, vaccination, and stringency of intervention to better 
identify the impact of human mobility on COVID-19 spread. 
Results: The percentage of districts that presented a statistically significant association between human mobility 
and COVID-19 infections generally decreased from 96.15% in week 1 to 90.38% in week 30, indicating a gradual 
disconnection between human mobility and COVID-19 spread. Over the study period, the average coefficients in 
7 SEA countries increased, decreased, and finally kept stable. The association between human mobility and 
COVID-19 spread also presents spatial heterogeneity where higher coefficients were mainly concentrated in 
districts of Indonesia from week 1 to week 10 (ranging from 0.336 to 0.826), while lower coefficients were 
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mainly located in districts of Vietnam (ranging from 0.044 to 0.130). From week 10 to week 25, higher co-
efficients were mainly observed in Singapore, Malaysia, Brunei, north Indonesia, and several districts of the 
Philippines. Despite the association showing a general weakening trend over time, significant positive co-
efficients were observed in Singapore, Malaysia, western Indonesia, and the Philippines, with the relatively 
highest coefficients observed in the Philippines in week 30 (ranging from 0.101 to 0.139). 
Conclusions: The loosening interventions in response to COVID-19 in SEA countries during the second half of 
2021 led to diverse changes in human mobility over time, which may result in the COVID-19 infection dynamics. 
This study investigated the association between mobility and infections at the regional level during the special 
transitional period. Our study has important implications for public policy interventions, especially at the later 
stage of a public health crisis.   

1. Introduction 

COVID-19 is a highly contagious disease that has brought numerous 
challenges to our society. Ever since COVID-19 was first identified in 
Wuhan, China, it has spread rapidly worldwide and evolved as a global 
pandemic due to domestic and international population movements (Jia 
et al., 2020; Lemey et al., 2021). Many countries have struggled to 
prevent the importation and control the local transmission of the coro-
navirus by implementing lockdowns and social restrictions. These 
Non-Pharmacological Interventions (NPI) successfully reduced human 
mobility, which has been proven to limit the transmission of COVID-19 
at the early stage of the pandemic (Lai et al., 2020). However, the 
continuous restriction could have an adverse effect on the economy, 
education, and people’s mental well-being (Coccia, 2021; von Soest 
et al., 2022). Governments thus attempted to relax their restrictions to 
recover domestic socioeconomic development, while human activities 
resumed accordingly, and human contact would be more frequent. This 
would probably result in a long-term situation living with COVID-19 
considering that the virus has not been eliminated thoroughly (Yin 
et al., 2021). 

SEA is one of the most severe regions affected by COVID-19, with 
over sixty million confirmed cases to date (Nov-25, 2022) (World Health 
Organization, 2022). Noticeably, SEA experienced dramatically 
increasing infections and suffered from catastrophic damage in the 
second half year of 2021 due to rapid transmission of the Delta variant 
(Jaya et al., 2022). The situation varied due to the existing disparities in 
socioeconomic development and health resources among countries (Chu 
et al., 2022). For instance, the death rate was low in Singapore, whereas 
it was substantially higher in Malaysia, Brunei, and Indonesia. To 
mitigate the pandemic, countries in SEA had imposed various re-
strictions to reduce residents’ mobility and connectivity, which have 
proven to successfully control the spread of COVID-19 in certain areas 
over the period (Luo et al., 2022). Since July and August 2021, many 
countries in SEA have shifted their strategies to “living with COVID-19”, 
and people have begun to resume their normal mobility. For example, in 
2021, Malaysia relaxed the lockdown restriction in five states in July, 
the Philippines eased restrictions in the capital areas in August, and 
Singapore eased border restrictions in August (Southeast Asia Covid-19 
Tracker). Although vaccination is gradually progressing in all SEA 
countries, it is considered unwise to not implement any measures in 
response to the pandemic as the medical capacity is limited, especially 
for underdeveloped countries. Therefore, how to balance the restriction 
and corresponding costs thus became one of the major issues that gov-
ernments must consider when implementing interventions. To better 
understand such situations, tracking the dynamics of the relationship 
between human mobility and COVID-19 infections during the period 
transiting to “live with COVID-19” in space and time has become sig-
nificant for assessing the effectiveness of ongoing interventions. 

The association between human mobility and the transmission of 
COVID-19 has received extensive attention in the past three years (Hu 
et al., 2021; Zhang et al., 2022). Specifically, many studies found that 
human mobility declined substantially due to restrictions implemented 
by the government to control the prevalence of COVID-19 (Abu-Rayash 
and Dincer. 2020; Borkowski et al., 2021; Huang et al., 2022; Shepherd 

et al., 2021; Jusup et al., 2022). On the other hand, human mobility was 
identified as a significant driving factor that positively correlated with 
the incidence of COVID-19 infections (Alessandretti, 2022; Habib et al., 
2021; Kephart et al., 2021; Tokey, 2021; Zhu et al., 2022). Additionally, 
several studies further compared the association between human 
mobility and COVID-19 infections over the first two waves (Lison et al., 
2022; Nohara and Manabe, 2022), and simulated the pandemic situation 
based on different scenarios of mobility restrictions (Franks et al., 2022; 
Chang et al., 2021). However, most of the previous studies predomi-
nantly focused on the stage with relatively strict restrictions before the 
uncontrollable transmission of the Delta variant. Even though several 
studies have suggested COVID-19 cases saw a marked increase after 
reopening and loosening restrictions (Sobiech Pellegrini, 2022; Aiano 
et al., 2021), few studies discussed the exact relationship between 
human mobility and COVID-19 infections over the transitional period of 
gradually relaxing the restrictions in most countries in the second half 
year of 2021. Previous studies investigated more at a city scale and a 
country scale (Badr et al., 2020; Kraemer et al., 2020; Chagas et al., 
2021), but there is less attention focusing on such association over space 
and time at a regional scale in SEA. There are noticeable disparities in 
socioeconomic development and public health interventions across 
countries in SEA, which may lead to spatiotemporal heterogeneity of 
human mobility and the COVID-19 situation, especially during the 
transition period. Therefore, transregional analysis on the spatiotem-
poral association between human mobility and COVID-19 infections in 
SEA under the context of unrestricted mobility is warranted to be further 
examined. 

To fill the gaps, this study aimed to investigate the spatiotemporal 
association between human mobility and COVID-19 infections in SEA 
regions during the period of the Delta variant transmission. Specifically, 
we first visualize the spatiotemporal dynamics of human mobility and 
COVID-19 infections in SEA during the Delta period, after which the 
variation of associations between human mobility and COVID-19 in-
fections in space and time in SEA was identified. We aggregated weekly 
movement data and COVID-19 case data from June 2021 to December 
2021 and adopted the geographically and temporally weighted regres-
sion (GTWR) model to detect their spatiotemporal association for 30 
weeks across 207 districts within 7 countries. Our work shed light on 
understanding the impact of human mobility on COVID-19 infections in 
space and time during the transition period of shifting NPI from a 
regional perspective. Findings about the association between human 
mobility and COVID-19 infections over space and time will provide 
evidence and novel insights for researchers and public health authorities 
in public health policymaking. 

2. Methods 

2.1. Study areas and COVID-19 cases 

Our studies focused on the period from Jun-1-2021 to Dec-27-2021, 
which is approximately the time of the Delta variant transmission in 
SEA. Seven countries were included in this study, namely, Brunei, 
Indonesia, Malaysia, Singapore, Thailand, the Philippines, and Vietnam 
as only these countries publicized the daily confirmed cases data at the 
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district level. Noticeably, Indonesia was the earliest country that 
detected the Delta variant (March 2021), followed by Singapore and 
Vietnam, which detected the Delta variant in April 2021. Subsequently, 
Thailand, Malaysia, and the Philippines detected the Delta variant in 
May 2021, while Brunei was the latest country to detect the Delta 
variant (August 2021) (Luo et al., 2022). The Delta variant rapidly 
dominated mass infections in the next few months after first detection. 
Fig. 1 shows the temporal trend of daily confirmed cases in these 
countries during 2021. From June to December, the confirmed cases first 
increased and then decreased with fluctuations that might be attributed 
to the shift of different public health interventions. The confirmed 
COVID-19 case data at the district level were collected from various 
sources including the official websites of public health authorities of 
several countries and Johns Hopkins University’s Center for Systems 
Science and Engineering GIS dashboard (Table 1). We treated both 
Brunei and Singapore as analytical units at the same level as the 
administrative districts of other countries due to their small territorial 
areas. Therefore, a total of 208 analytical units were included in this 
study. 

2.2. Human mobility data 

Our data source of human mobility at the district level is the 
‘Movement between Tiles’ dataset at Facebook Data for Good Partner 
Portal. The dataset was produced as a part of the Facebook Disaster 
Maps for crisis response and recovery and detailed explanations and 
methodology were described in its technical document (Maas, 2019). In 
short, it provides information on the locations of active Facebook users 
at an 8-h interval (i.e., 0:00, 8:00, and 16:00). The data was collected by 
the Facebook app, which recorded the locations of active users who were 
granted access to location services. These locations were assigned to a 
number of tiles based on the Bing Map Tile system (Schwartz, 2022). 
Due to the constraints of data collation of vast users from different 
countries, the resolutions for our studied countries were different with 
tile sizes ranging from Bing Tile level 14 (higher resolution) to level 11 
(lower resolution). With this ‘Movement between Tiles’ dataset, we 
calculated the number of moved Facebook users at each tile per day and 
we interpolated the calculated data to respective Southeast Asia districts 
by taking the center coordinate of each Bing tile and matching it with the 
administrative region boundary in which it fell. The numbers of moved 
users at the centroids within each administrative region were aggre-
gated to obtain the total human mobility volume of respective Southeast 
Asia districts. 

2.3. Socioeconomic data and public health-related data 

In addition to human mobility, COVID-19 transmission could be 
influenced by socioeconomic status, public health interventions, and 

vaccination. Accordingly, we included population density (PD), gross 
domestic product per capita (PGDP), the proportion of elderly people 
(OLD), the poverty rate (PR), urbanization rate (UR), the number of 
hospitals per 10,000 people (HOS), and unemployment rate (UER) as 
control variables in the model because they were identified to be tightly 
related with the COVID-19 infections in previous studies (Grekousis 
et al., 2022; Mollalo et al., 2020). Besides, the Stringency index (SI) was 
included as an intervention-related variable since it represents the de-
gree of implementation regarding public health intervention, which 
influences the transmission of COVID-19 (Ma et al., 2021). Furthermore, 
we also added vaccination rate (VR) in the model because vaccination is 
a significant factor in mitigating COVID-19 infections (Chen et al., 
2022). Data on the socioeconomic variables were collected from statistic 
yearbooks in relevant countries, and the stringency index and vaccina-
tion data were derived from Our World Data (Table 2) (Department of 
Economic Planning and Statistics, Brunei, 2022; Department of Statistics 
Malaysia, 2022; Department of Statistics Singapore, 2022; General 
Statistics Office of Vietnam, 2022; National Statistical Office of 
Thailand, 2022; Philippine Statistics Authority, 2022). Considering the 
data availability, the socioeconomic data were all from 2020 to keep 
consistency. Noticeably, there were a few missing values in 2020 in 
several districts, which were supplemented by using linear interpolation 
according to the trend in previous years (Jang et al., 2021). Besides, due 
to the different units used to calculate the PGDP in different countries, 
we adjusted the value to US dollars using the exchange rate in 2020. All 
the socioeconomic variables were at district level static over time, while 
the SI and VR were time-variant variables at country level. 

2.4. Geographically and temporally weighted regression model 

The GTWR model is an extension of the GWR model, which considers 
both spatial and temporal non-stationary effects and thus improves the 
performance of the local regression model (Huang et al., 2010; Chu 
et al., 2015). Considering COVID-19 cases and human mobility are both 
sensitive in space and time (Chen et al., 2021), we employed the GTWR 
model to examine the spatiotemporal heterogeneity in the association 
between human mobility and COVID-19 cases across SEA regions at a 
weekly scale. The GTWR model is defined as: 

Yi = β0(ui, vi, ti) +
∑K

k=1
βk(ui, vi, ti)Xik + εi  

where Yi is the dependent variable of the ith observation, (ui, vi, ti) is the 
space-time coordinates of the ith observation; β0(ui, vi, ti) is the intercept; 
βk(ui, vi, ti) is the estimated coefficient of the independent variables Xik 
and εi is the residual error term. With the spread of COVID-19 over time, 
the effects (βk) of both time-variant independent variables (movement, 
SI, and VR) and time-invariant independent variables (socioeconomic 
indicators) on COVID-19 cases could be temporal dynamic (Fu and Zhai, 
2021). Specifically, the local coefficient of the kth independent variable 
of ith observation can be estimated as defined below (Wang et al., 2021): Fig. 1. Temporal trend of daily confirmed cases in SEA in 2021.  

Table 1 
Data source of COVID-19 cases.  

Country COVID-19 cases source 

Brunei Johns Hopkins University’s Center for Systems Science and 
Engineering COVID-19 data 

Indonesia KAWALCOVID19 and the National Board of Confirmed Case 
Development 

Malaysia Ministry of Health, Malaysia 
Singapore Ministry of Health, Singapore 
The 

Philippines 
Department of Health, the Philippines 

Thailand Ministry of Public Health, Department of Disease Control 
Situational Reports 

Vietnam Ministry of Health, Vietnam  
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Table 2 
Data source of independent variables.  

Country Human mobility Socioeconomic data Stringency index Vaccination 

Brunei Facebook Data for 
Good 

Department of Economic Planning 
and Statistic 

Oxford COVID-19 Government Response 
Tracker (Hale et al., 2021) 

Our World in Data: COVID-19 Vaccinations ( 
Mathieu et al., 2021) 

Indonesia Statistics Indonesia 
Malaysia Department of Statistics Malaysia 

Official Portal 
Singapore Department of Statistics Singapore 
The 

Philippines 
Philippine Statistics Authority 

Thailand National Statistical Office Thailand 
Vietnam General Statistic Office of Vietnam  

Fig. 2. Spatial distribution of weekly average human mobility volumes and COVID-19 cases ((a): week 1, (b): week 5, (c): week 10.  
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β̂(ui, vi, ti)=
[
XT WiX

]− 1XT WiY  

where X and Y denote matrices of the independent variables and the 
dependent variables, respectively; assuming that there are n observa-
tions, Wi is an n × n diagonal matrix of spatiotemporal weight, which 
can be calculated using a Gaussian kernel function (He and Huang, 
2018): 

wij = exp

⎛

⎜
⎝

λ
(

dS
ij

)2
+ μ

(
dT

ij

)2

h2
ST

⎞

⎟
⎠

where λ and μ respectively denote scale parameters in the spatial metric 
system and the temporal metric system; dS

ij and dT
ij denote spatial dis-

tance and temporal distance between object i and j; h2
ST denotes 

spatiotemporal bandwidth satisfying the following relationships with 
spatial bandwidth hS and temporal bandwidth hT: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
hS)2

= h2
ST
/

λ
(
hT)2

= h2
ST
/
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The period of our study is a total of 30 weeks from Jun-1, 2021 to 
Dec-27, 2021, during which we calculated the 7-day average movement 
accordingly as the key independent variable (human mobility). During 
the transition period, there were not only people infected by the Delta 
variant but also people infected by other variants. Given that the Delta 
variant of COVID-19 has an incubation period of approximately 2-7 days 
and the non-Delta variant of COVID-19 has an incubation period of 
around 2–10 days (Ogata et al., 2022; Liu et al., 2022; Grant et al., 
2022), we considered the 7-days lag of spatiotemporal correlation be-
tween COVID-19 infections and human mobility. Specifically, the 
dependent variable was defined as the average confirmed cases in the 
following week of recorded movement. Moreover, other variables 
related to socioeconomic status and public health were added to control 
the influence of socioeconomic development, vaccination status, as well 
as intervention dynamics. The GTWR model was conducted by using 
ArcMap add-in, and a totally of 208 districts over 30 weeks, that is, 6240 
samples, were included in the model fitting. Noticeably, we adjusted the 
local p-value to 0.047 to account for multiple local testing to maintain a 
global significance level of 5% (Oshan et al., 2019). 

3. Results 

3.1. Spatiotemporal dynamics of human mobility and COVID-19 
infections in SEA 

Fig. 2, Figure A1, and A2 visualized the average human mobility and 
COVID-19 cases on a weekly basis. The general volume of human 
mobility decreased first from week 1 (Jun-1 to Jun-7) to week 10 (Aug-3 
to Aug-9) in many districts, and it then gradually increased from week 
15 (Sep-7 to Sep-13) to week 30 (Dec-21 to Dec-27). Even though human 
mobility saw fluctuations during the transition period, its spatial pat-
terns were similar in each selected week. Specifically, the capital regions 
of 5 countries including Kuala Lumpur, Bangkok Metropolis, Ha Noi, 
Jakarta, and Manila witnessed a relatively high volume of human 
mobility from week 1 (Jun-1 to Jun-7) to week 30 (Dec-21 to Dec-27). 
Besides, Singapore also experienced a relatively high volume of 
human mobility, while Brunei saw a relatively low volume of human 
mobility. In addition to the capital regions of countries, some districts 
such as Jawa Barat in central Indonesia, Ho Chi Minh City in southern 
Vietnam, Region IV-A in the central Philippines, Chiang Mai in northern 
Thailand, Selangor in western Malaysia also presented continuously 
high volume of human mobility during the transition period. On the 
contrary, some districts maintained a relatively low volume of human 

mobility during the transition period, such as Mae Hong Son in the west 
of Thailand, Ha Giang in the north of Vietnam, Region IV-B in the west of 
the Philippines, and Kalimantan Utara in the north of Indonesia. 

In terms of COVID-19 infections, it presented noticeable spatiotem-
poral heterogeneity during the transition period. In week 1 (Jun-1 to 
Jun-7), relatively high COVID-19 infections (from 200 to 2066) were 
mainly concentrated in central Indonesia, the eastern coast and the west 
of Malaysia, capital regions in Thailand, and the Philippines, while most 
districts in Vietnam saw relatively low COVID-19 infections, with 
weekly average cases are close to 0. Even though the spatial pattern in 
week 5 (Jun-29 to Jul-5) was similar, COVID-19 infections experienced a 
dramatic increase in most districts, especially in northern Thailand. In 
week 10 (Aug-3 to Aug-9), COVID-19 infections in several districts in 
Indonesia experienced a significant decrease, for example, COVID-19 
infections in Jakarta decreased from 12223 in week 5 (Jun-29 to Jul- 
5) to 1247 in week 10 (Aug-3 to Aug-9); COVID-19 infections of Jawa 
Barat decreased from 7225 in week 5 to 2533 in week 10 (Aug-3 to Aug- 
9). From week 15 (Sep-7 to Sep-13) to week 20 (Oct-12 to Oct-18), the 
relatively high values were mainly distributed in Singapore, Malaysia, 
the Philippines, and several districts in Thailand and Vietnam (e.g., 
Bangkok Metropolis and Ho Chi Minh City). Nevertheless, some districts 
in Indonesia such as Sulawesi Selatan, Sumatera Selatan, and Lampung, 
which experienced relatively high movement levels in previous weeks 
saw relatively low values in this period. From then on, many districts in 
Indonesia became the low-value groups while several districts in Viet-
nam such as Ha Noi, Khanh Hoa, and Bac Lieu saw a rapid increase in 
COVID-19 infections. Besides, districts in eastern Malaysia, the capital 
region in the Philippines, and Singapore witnessed relatively high values 
of COVID-19 infections in week 30 (Dec-21 to Dec-27). 

In general, there were some similar patterns between human 
mobility and the number of infections. For instance, during the weeks, 
the Jawa island of Indonesia had relatively higher volumes of human 
mobility than other areas of the country. In comparison, higher numbers 
of COVID-19 infections were also observed on Jawa island in week 1 
(Jun-1 to Jun-7), week 5 (Jun-29 to Jul-5), and week 10 (Aug-3 to Aug- 
9). Additionally, the capital regions which had the highest mobility level 
within each country observed a substantially greater number of in-
fections than most of the other regions. For example, Bangkok Metrop-
olis saw relatively high levels of human mobility and relatively large 
numbers of COVID-19 infections in each selected week. Moreover, Ma-
nila experienced high mobility levels and saw high COVID-19 infections 
each week. Besides, Ha Noi, with average mobility values of 846872 and 
938290 in week 25 (Nov-16 to Nov-22) and week 30 (Dec-21 to Dec-27) 
respectively, observed weekly average COVID-19 cases of 295 and 1365 
accordingly. By contrast, some other districts including Phichit of 
Thailand, Kalimantan Utara of Indonesia, and Dien Bien of Vietnam 
observed relatively low human mobility and low COVID-19 infections 
during this period. 

3.2. Regression model results and comparison 

To assess the global spatial autocorrelation of the dependent variable 
(i.e., COVID-19 infections), we estimated the Moran’s I statistics for each 
week. Moran’s I estimates turned out to be positive and statistically 
significant at the 5% level for all weeks (Table A1), which indicates that 
COVID-19 infections tended to be spatially clustered during our study 
period, and spatially and temporally explicit models were needed. 
Before implementing the GTWR model, we first adopted the global or-
dinary least square (OLS) regression model to investigate the relation-
ship between COVID-19 cases and human mobility as a benchmark. The 
descriptive statistics of dependent and independent variables are shown 
in Table 3 and the OLS results are shown in Table A2. Given that the 
variance inflation factor (VIF) values of the independent variables were 
smaller than 5, the selected variables can avoid the issue of multi-
collinearity (Yellow Horse et al., 2022). From the global perspective, the 
coefficient of movement was 0.132 (p<0.001), indicating that a 
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100-unit increase in human mobility is associated with an increase of 13 
in COVID-19 infection cases while holding all the control variables 
constant during the transition period. Additionally, human mobility had 
the largest coefficient, indicating that it had the strongest association 
with COVID-19 infections. However, the global model can only show the 
average effects of human mobility on COVID-19 infections in the whole 
study area, while local the model (e.g., GTWR) is able to detect the 
spatiotemporal heterogeneity of such effects. This enables us to further 
understand the dynamics of the association between human mobility 
and COVID-19 infections over space and time. 

For comparison, the temporally weighted regression (TWR) model 
and the geographically weighted regression (GWR) model were also 
applied to the same dataset. As shown in Table 4, all the local regression 
models performed better than the OLS model as the temporal non- 
stationary effects and spatial non-stationary effects of the association 
between human mobility and COVID-19 infections are respectively 
considered in the TWR model and the GWR model. Among the local 
model, the GTWR exhibited the best performance as it simultaneously 
considers the spatial and temporal non-stationary effects of the afore-
mentioned association, with the highest adjusted R2, the lowest residual 
sum of square (RSS), and the lowest value of the Akaike information 
criterion with a correction (AICc). Specifically, the R2 of the GTWR 
model was 0.697, indicating that the GTWR can explain 65.1% of the 
total variation in the weekly average confirmed cases. Therefore, the 
GTWR model constitutes an appropriate method for investigating the 
spatiotemporal association between human mobility and COVID-19 in-
fections. The detailed results of GTWR including spatial bandwidth, 
temporal bandwidth, and estimated coefficients of each variable are 
presented in Table 5. Apart from the minimum value, the lower-quartile 
value, median value, upper-quartile value, and maximum value of the 
movement coefficient are positive, indicating the robust result of the 
positive association between human mobility and COVID-19 infections. 

3.3. Temporal variation of movement coefficients 

Our GTWR model could capture the spatiotemporal variation in the 
impact of mobility on infections over space and time. Fig. 3 presents the 
temporal variation of the average movement coefficient in each country. 
The average movement coefficient was calculated by taking an average 
of the statistically significant coefficients of all regions within a country. 
During the study period, the average coefficients of all 7 countries were 
positive, suggesting that human mobility positively influenced the 
number of infection cases. Among them, Indonesia, Brunei, the 
Philippines, and Singapore showed an overall higher coefficient (peaks 
from 0.408 to 0.609) than the other 3 countries, indicating a stronger 
impact of human mobility on COVID-19 infections. In comparison, 
Thailand (from 0.041 to 0.180), and Vietnam (from 0.025 to 0.126) 
observed a relatively lower coefficient, suggesting a relatively weaker 
correlation between movement with domestic infections. Nonetheless, 
the countries presented similar temporal variation patterns, that is, the 
movement coefficients for all the countries substantially increased 
before hitting their peak and decreased at the latter stage of the period 

Table 3 
Descriptive statistics of the dependent variable and independent variables.   

Observation Mean Std. dev Max Min Units 

Dependent Variable 
INFECTION 6240 224.91 633.39 12223.29 0.00 Persons 
Independent Variable 
MOVEb 6240 110230.30 182895.40 2221559.00 0.00 Persons 
PDc 6240 598.79 2021.83 21765.28 9.00 Person/km2 

PGDPd 6240 4925.45 5783.81 48455.97 434.71 USD/person 
OLDe 6240 8.57 3.26 16.76 1.73 % 
PRf 6240 9.47 8.63 50.20 0.00 % 
URg 6240 37.41 21.85 100.00 6.65 % 
SIh 6240 65.12 10.14 85.19 33.33 Scores 
VRi 6240 0.62 0.49 2.13 0.01 Doses 
HOSj 6240 1.61 0.63 3.50 0.35 Numbers 
UERk 6240 2.82 1.95 9.32 0.10 % 

a: Weekly cases per 100000 people. 
bWeekly movement. 
cPopulation density. 
dGross domestic product per capita. 
eProportion of elderly people. 
fPoverty rate. 
gUrbanization rate. 
hStringency index. 
iVaccination rate. 
jHospital per 10000 people. 
kUnemployment rate. 

Table 4 
Comparison of local model.   

Adj R2 RSS AICc 

TWR 0.426 9.608 − 22587.1 
GWR 0.439 9.387 − 22688.3 
GTWR 0.651 5.834 − 25469.0  

Table 5 
Estimate summaries of GTWR parameter.   

Minimum Lower 
Quartile 

Median Upper 
Quartile 

Maximum 

Intercept − 0.351 − 0.029 − 0.026 − 0.014 0.135 
MOVE − 0.022 0.049 0.082 0.141 0.826 
PD − 0.079 0.077 0.161 0.358 0.988 
PGDP − 0.663 − 0.055 0.018 0.040 0.264 
OLD − 0.162 − 0.036 − 0.016 − 0.007 0.308 
PR − 0.044 0.007 0.018 0.027 0.102 
UR − 0.118 0.022 0.043 0.068 0.190 
SI − 0.151 0.013 0.022 0.039 0.351 
VR − 0.537 0.019 0.037 0.155 1.443 
HOS − 0.191 − 0.017 − 0.008 0.015 0.120 
UER − 0.116 − 0.026 − 0.011 0.011 0.224 

Diagnostic information. 
Adj R2 = 0.651. 
RSS = 5.834. 
AICc = -25469.0. 
Temporal bandwidth = 0.119. 
Spatial bandwidth = 0.115. 
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Fig. 3. Temporal heterogeneity of movement coefficient and comparison with Infection cases in SEA countries ((a): Indonesia, (b): The Philippines, (c): Malaysia, (d): 
Thailand, (e): Brunei, (f): Singapore, (g): Vietnam). 
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even though the restrictions were eased. For instance, the movement 
coefficient of Indonesia increased constantly since week 1 (Jun-1 to Jun- 
7) and peaked at week 9 (Jul-27 to Aug-2). It then showed a rapid 
decrease and has been maintaining a low level (from 0.074 to 0.152) 
since week 20 (Oct 12 to Oct 18) despite Indonesia relaxing its restric-
tion since week 14 (Aug-31 to Sep-6). Apart from Indonesia, other 
countries except for Vietnam and the Philippines also present this 
pattern. The coefficient for Vietnam has been fluctuating at a relatively 
low level. It first decreased before week 5 (Jun-29 to Jul-5) and 
increased since week 7 (Jul-13 to Jul-19) despite the lockdown. It 
reached the peak of 0.126 in week 11 (Aug-24 to Aug-30) and then 
decreased before increasing again during week 17 (Sep-21 to Sep-27) 
and 19 (Oct-5 to Oct-11) when several provinces eased their 

restrictions. Thereafter, several domestic flight routes were resumed, 
and the movement coefficient maintained at the level of around 0.500, 
while the COVID-19 cases saw a dramatic increase. In terms of the 
Philippines, the coefficient increased first during week 1 and week 13, 
after which the coefficient saw a significant decrease from 0.440 in week 
13 to 0.065 in week 22. Noticeably, the movement coefficient subse-
quently increased from 0.670 in week 23 to 0.127 in week 30, indicating 
that the association between human mobility and COVID-19 infections 
slightly strengthened in the Philippines at the later stage of the transition 
period in spite of the fluctuation at the early stage. 

Interestingly, despite that the range of movement coefficients varies 
across SEA countries, their temporal trends were aligned with the 
number of cases to some extent in Indonesia, the Philippines, Malaysia, 

Fig. 4. Spatial heterogeneity of movement coefficient in SEA ((a): week 1, (b): week 5, (c): week 10, (d): week 15, (e): week 20, (f): week 25, (g): week 30).  
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and Thailand (Fig. 3(b), 3(c), 3(d)). This suggests that the more people 
were infected, the higher impact mobility could have in terms of facil-
itating disease transmission. In contrast, Singapore, Brunei, and Vietnam 
exhibited different patterns, showing the lags between movement co-
efficients and COVID-19 infection cases. For example, the trend of the 
coefficient in Brunei was partially consistent with the infection cases at 
the early stage of the period, after which the coefficient continuously 
declined despite the cases increasing with fluctuations. After tightening 
the restriction in week 19 (Oct-5 to Oct-11), the cases decreased mark-
edly followed with a slight decrease in coefficient. Likewise, the coef-
ficient in Singapore increased first then decreased after loosening the 
restrictions in week 10 (Aug-3 to Aug-9) and maintained at a relatively 
low level since week 17 (Sep-21 to Sep-27), while the COVID-19 cases 
maintained at a low level before week 10. However, the COVID-19 cases 
in Singapore markedly increased since week 12 (Aug-17 to Aug-23) and 
gradually decreased since week 21 (Oct-19 to Oct-25). These patterns 
indicated that the dynamics of COVID-19 infection cases were not al-
ways consistent with the temporal trends of human mobility for some 
countries over time during the transition period. The two noticeable 
outliners are Brunei and Singapore, partially attributed to their small 
sizes and a higher proportion of transnational human mobilities. 
Moreover, the coefficient of Vietnam was partially aligned with the 
COVID-19 infections from week 7 (Jul-13 to Jul-19) to week 17 (Sep-21 
to Sep-27), while the infection cases rose dramatically and decoupled 
with the movement coefficient since week 19 (Oct-5 to Oct-11). 

3.4. Spatial distribution of movement coefficients 

Fig. 4 presents the weekly spatial variation of movement coefficients 
in 7 selected weeks at a five-week interval. In week 1 (Jun-6 to Jun-7), 
the relatively high coefficients were mainly located in Indonesia, 
ranging from 0.183 to 0.441. By contrast, the relatively low coefficients 
were mainly seen in the north of Vietnam, with values ranging from 
0.044 to 0.070. Specifically, Sulawesi Selatan in Indonesia saw the 
highest coefficient with a value of 0.441, while Cao Bang in Vietnam 
witnessed the lowest coefficient with a value of 0.044. Additionally, a 
total of 8 districts (3.85%) showed insignificant results (p>0.047), 
which were mainly located in the eastern Philippines and eastern 
Indonesia (e.g., Maluku, Papua, Region V, Region VIII, etc.), which 
indicated that there were no statistically significant associations be-
tween human mobility and COVID-19 infections in these areas. 

In week 5 (Jun-29 to Jul-5), despite the general increase of co-
efficients seen in most districts of SEA, the coefficients of most districts 
in Indonesia kept relatively high levels, ranging from 0.329 to 0.682. 
Specifically, some districts in the south of SEA showed a relatively sig-
nificant increase in coefficients from week 1 to week 5 such as Riau 
(from 0.150 to 0.283), Jawa Timur (from 0.238 to 0.403), Brunei (from 
0.123 to 0.213), and Sarawak (from 0.146 to 0269). Nevertheless, dis-
tricts in northern Thailand and Vietnam kept relatively low coefficients 
in week 5, ranging from 0.030 to 0.098, which indicates the associations 
between human mobility and COVID-19 infections were relatively weak 
in these areas. Moreover, several districts in the Philippines showing an 
insignificant association between human mobility and COVID-19 in-
fections presented significant coefficients in week 5, that is, Region V 
(0.085), Region VIII (0.102), Region XI (0.148), and Region XIII (0.135). 
However, some districts in western Indonesia showing insignificant re-
sults in week 1 such as Maluku, Maluku Utara, Papua, and Papua Barat 
still witnessed insignificant results in week 5 (p>0.047). 

In week 10 (Aug-3 to Aug-9), 98.56% of the districts showed a sig-
nificant correlation between human mobility and COVID-19 infections 
and the correlation continuously strengthened compared to week 5. The 
extremely high coefficients (from 0.539 to 0.826) were mainly seen in 
Indonesia, and the moderately high coefficient (from 0.376 to 0.538) 
were mainly located in Singapore, Brunei, Malaysia, and the southern 
Philippines. In contrast, the relatively low coefficients (from 0.059 to 
0.130) were mainly located in eastern Thailand and central and 

northern Vietnam. Specifically, the highest coefficient was located in 
Gorontalo of Indonesia (0.826), indicating that mobility had the stron-
gest positive impact on COVID-19 infections in this district. On the 
contrary, the lowest coefficient was seen in Da Nang of Vietnam (0.059), 
indicating the weakest association. 

Despite the general decline of the coefficients, various spatial pat-
terns were presented in week 15 (Sep-7 to Sep-13). The relatively high 
coefficients were mainly concentrated in the Philippines (from 0.326 to 
0.521) and dispersedly distributed in Sulawesi Utara of Indonesia 
(0.387), Gorontalo of Indonesia (0.398), Kalimantan Utara of Indonesia 
(0.361), and Sabah of Malaysia (0.425). Interestingly, some districts in 
central Vietnam presented a statistically insignificant correlation 
(p>0.047) between human mobility and COVID-19 infections (i.e., 
Quang Tri, Thua Thien Hue, Da Nang, Quang Ngai, Quang Nam, Kon 
Tum, Gia Lai, and Binh Dinh). Likewise, Jawa Tinur and Bali in 
Indonesia also presented insignificant results in week 15. 

A total of 14 districts showed an insignificant association (p>0.047) 
between human mobility and COVID-19 infections in week 20 (Oct-12 to 
Oct-18), with the proportion increasing from 3.85% in week 1 to 6.73% 
in week 20. These districts were mainly located in Indonesia, some of 
which relatively high coefficients were seen from week 1 to week 10. 
Besides, the relatively high coefficients (from 0.111 to 0.184) were 
mainly distributed in southern and eastern Malaysia, Singapore, western 
Indonesia, the southern Philippines, and Brunei, while the relatively low 
coefficients (from 0.019 to 0.033) were also mainly distributed in 
eastern Thailand and central Vietnam. A similar pattern was seen in 
week 25 (Nov-16 to Nov-22) despite the proportion of districts showing 
insignificant association (p>0.047) between human mobility and 
COVID-19 infections continuously increased to 8.17%. In week 30 (Dec- 
21 to Dec-27), an increasing proportion of districts (9.62%) presented 
insignificant relation (p>0.047) between human mobility and COVID- 
19 infections, which indicated a disconnection between human 
mobility and COVID-19 infections in these regions (Fig. 4 (g)). Besides, 
coefficients in most districts decreased to a relatively low level (under 
0.100) in week 30, indicating that the associations between human 
mobility and COVID-19 infections in many districts weakened. The 
relatively high significant coefficients were mainly located in the 
Philippines (from 0.101 to 0.139), while the relatively low significant 
coefficients were also seen in Thailand (from 0.041 to 0.045) and 
southern Vietnam. 

4. Discussion 

4.1. Principal findings 

In this study, we visualized the spatiotemporal dynamics of COVID- 
19 infections and volumes of human mobility in 7 SEA countries at the 
district level, and further adopted the GTWR model to identify the 
varying associations between human mobility and COVID-19 infections 
across space and time during the period of transitioning to “living with 
COVID-19” in 2021. Our initial visualization showed that patterns of 
human mobility were somewhat aligned with those of COVID-19 in-
fections. By constructing the GTWR model, we found that mobility had a 
considerable impact on infections, especially during the middle of the 
transition period. The movement coefficients for all countries increased 
substantially at the beginning of the transition period. Coefficients in 
countries peaked at a high level (exceeded 0.400), except for Thailand 
and Vietnam which peaked at 0.180 and 0.126, respectively. Nonethe-
less, the coefficients dropped at the later stage of the transition period 
and maintained a relatively low level (around 0.100) thereafter. The 
aligned variation trend of coefficient and cases in some countries (e.g., 
Indonesia, the Philippines, Malaysia, and Thailand) suggests that the 
impact of human mobility on COVID-19 spread was related to the local 
infection context. However, at the latter stage of the transition, mobility 
did not possess a significant contribution to the pandemic, presumably 
due to relatively low-level infections in these countries. Similarly, even 

W. Luo et al.                                                                                                                                                                                                                                     



Health and Place 81 (2023) 103000

10

though there was an increasing number of cases in Singapore and 
Vietnam, the association between human mobility and COVID-19 in-
fections maintained at a low level. 

Further inspecting the coefficients at a regional level, we found that 
the correlation between human mobility and COVID-19 infections in an 
increasing number of districts gradually became insignificant (from 
3.85% in week 1 to 9.62% in week 30), and the coefficients in many 
districts continuously declined. To detect the similar temporal dynamics 
of movement coefficients in SEA, K-means clustering analysis was con-
ducted to identify potential clusters in the data (Figure A3) (Li et al., 
2020). The movement coefficients show relatively high value and 
sharper fluctuation over time in districts of central Indonesia (cluster 1 
and cluster 2). The moderate value and temporal fluctuation were 
mainly seen in districts of southern and eastern Malaysia, Singapore, 
Brunei, and the southern Philippines (cluster 3 and cluster 4). By com-
parison, districts in Thailand and Vietnam (cluster 5 and cluster 6) 
experienced relatively low levels and slight fluctuation of movement 
coefficient. Despite the spatiotemporal variations in the movement co-
efficients of clusters, the movement coefficient of each cluster increased 
before decreasing and maintained at a relatively low level over time. 
This indicates that movement disconnected from the infections after the 
transition in many regions. The abovementioned patterns were probably 
attributed to fewer susceptible individuals because of immunity after 
recovering from infections and more people were vaccinated, especially 
with booster doses (Gupta and Topol, 2021; Krause et al., 2021). To 
further verify the hypothesis, we calculated the Pearson correlation 
coefficients between average movement coefficients and the vaccination 
rates in each country respectively (Table A3). The results show that the 
movement coefficient is negatively associated with the vaccination rate 
in the whole SEA (coefficient = -0.188, p = 0.006). In terms of the 
specific countries, all the countries except for the Philippines saw sig-
nificant negative correlations between vaccination rate and movement 
coefficient, while the Philippines witnessed insignificant negative cor-
relations (coefficient = -0.260, p = 0.165). This indicates that vaccina-
tion may weaken the association between human mobility and 
COVID-19 infections in SEA to some extent following the populariza-
tion of vaccination. 

Based on our findings of the positive association between human 
mobility and COVID-19 infections, reduction of human mobility might 
be an effective way to control the transmission of the infectious diseases, 
especially at the early stage of the pandemic (Zhou et al., 2020; Askitas 
et al., 2021). For example, COVID-19 infections in Indonesia, the 
Philippines, and Thailand saw a noticeable decline after these 3 coun-
tries implemented restrictions in week 6, week 15, and week 11, 
respectively. However, followed by the reduction of socioeconomic ac-
tivities, economic development, and human well-being suffered from 
substantial challenges, because of which governments would have to 
resume normal activities and re-open society (Zu et al., 2021; Franks 
et al., 2022). According to our findings, gradual and appropriate 
adjustment of movement restrictions would limit the number of in-
fections during the transition period back to normal activities. This 
could prevent the health system from reaching its maximum capacity, 
especially for those severe COVID-19 patients that were in need of 
medical support. With a gradually established herd immunity after in-
fections and vaccinations, countries would need to consider the resto-
ration of the economy. Meanwhile, we suggest that the government 
should pay more attention to the reasonable allocation of healthcare 
resources and vaccination popularization, rather than only controlling 
human activities. 

Moreover, we identified those living in vulnerable districts such as 
districts with high population density, high poverty people, and lower 
hospital resources were somewhat at higher risk of epidemic infections. 
Based on the GTWR result, more than 75% of the significant observa-
tions showed that COVID-19 infections were positively correlated to 
population density (lower quartile coefficient = 0.077) and poverty rate 
(lower quartile coefficient = 0.007), while more than half of the 

significant observations saw a negative association between hospitals 
per 10000 people and COVID-19 infections (median coefficient =
-0.008). This suggested that it is important to allocate healthcare re-
sources preferentially to those vulnerable areas after easing the re-
strictions as they are at the highest risk of COVID-19 outbreaks. (Stok 
et al., 2021). To further help those who are living in disadvantaged areas 
reduce the relatively high risk of infections during a public health crisis, 
regional collaboration should be important to realize the effective and 
equal allocation of healthcare resources such as vaccines and essential 
medicine (Jit et al., 2021). 

Overall, apart from the control of human mobility, many efforts need 
to be made in different aspects to ensure that society could recover in the 
post-pandemic era, especially for those regions with issues of socio-
economic inequality. For example, China is experiencing a transition 
period and gradually relaxing the social restrictions from the strict zero 
COVID policy. Given that China has complicated and unequal resources 
and hospital ICU distributions, the popularization of vaccination, 
stocking up on antiviral drugs, and expanding healthcare facilities 
should be essential ways for Chinese society to avoid a wave of deaths 
(Mallapaty, 2022). Most importantly, there was a significant spatio-
temporal heterogeneity related to effects of socioeconomic status and 
human mobility on regional infections according to our findings and 
previous research (Fu and Zhai, 2021; Maiti et al., 2021). Even though 
the effects of human mobility on infections in most areas gradually 
weakened, we suggest the relevant authorities continue to pay attention 
to equal allocation of health resources and active regional collaboration 
during the transitional period of such a public-health crisis, enabling 
effective recovery of normal life. 

4.2. Comparison with prior work 

To the best of our knowledge, this is the first attempt to conduct a 
cross-regional study to investigate the spatiotemporal associations be-
tween human mobility and COVID-19 infections in SEA during the 
transition period of “living with COVID-19”. Our findings identified that 
human mobility is positively associated with COVID-19 infections in 
SEA, which is partially consistent with previous studies by Xiong et al., 
(2020), showing there was a positive correlation between mobility 
inflow and the number of COVID-19 infections in the US. Our study also 
showed that many districts gradually observed insignificant or weak 
associations between human mobility and COVID-19 infections at the 
later stage of the transition period. This is aligned with a study by 
Nouvellet et al. (2021), indicating that there was a decoupling rela-
tionship between human mobility and COVID-19 infections associated 
with lower transmission rates after a relaxation of intervention. 

Even though prior studies have provided extensive evidence that the 
reduction of human mobility was effective in mitigating COVID-19 
transmission (Wang et al., 2020; Abulibdeh and Mansour, 2022; 
Nohara and Manabe, 2022; Fang et al., 2020), people gradually resume 
their normal activities during the transition period of “living with 
COVID-19”, which resulted in an increase in human mobility. Our study 
thus identified the fluctuations in human mobility and COVID-19 in-
fections over time in many districts of SEA countries during this special 
period. As shown in Fig. 2, for example, human mobility decreased first 
in most districts and increased later, which was probably due to the 
adjustment of health interventions. Accordingly, the COVID-19 in-
fections in most districts increased first and then decreased later, while 
many districts in Vietnam and the Philippines saw increasing COVID-19 
infections in week 30. The interesting dynamics did result in the 
spatiotemporal variation of the association between human mobility 
and COVID-19 infections during the transition period, which has not 
been discussed in previous studies. The findings in our study provided 
evidence for the researcher or policymakers to better understand the 
complicated association between human mobility and COVID-19 in-
fections during the transition period and accumulate experience of 
recovering from the public health crisis at a later stage. 
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Moreover, this study shed light on the spatiotemporal association 
between human mobility and COVID-19 infections in the cross-region 
context in the understudied SEA countries, while existing studies 
mainly focused on other single countries such as the USA and China 
(Hou et al., 2021; Xu et al., 2022; Chen et al., 2022). Moreover, only a 
handful of existing studies considered the different socioeconomic 
development and public health interventions across regions (Sannigrahi 
et al., 2020). Therefore, our work contributes to cross-regional studies 
based on the hypothesis of the abovementioned transregional differ-
ences which might lead to various associations between human mobility 
and COVID-19 infections. Considering noticeable differences among 
countries in SEA (Chongsuvivatwong et al., 2011; Deutsch et al., 2020), 
our work identified the spatiotemporal association between human 
mobility and COVID-19 infections at a finer spatial scale (the first 
administrative district), which provided new insights for the relevant 
authorities to seek the regional collaboration of crisis responding and 
policy adjusting (Oka et al., 2021). On one hand, the restriction of 
human mobility across regions could play an important role in miti-
gating the transmission of COVID-19. On the other hand, local govern-
ments should make efforts to timely share surveillance information, 
healthcare resources, and vaccine allocation to balance unequal situa-
tion related to diverse implementations of public health interventions 
across regions, which has been proven to be effective in regional pre-
vention of the pandemic (Flaxman et al., 2020). 

4.3. Limitations 

Some limitations in our work can be improved in future studies. First, 
7 out of 12 countries of SEA were examined in this study because only 
these countries provided relevant data at the first administrative level. 
Nevertheless, we do note that the population of the 7 countries under 
study accounted for 88.3% of the total population in SEA. Second, due to 
data unavailability, control variables in this study were limited, which 
was insufficient to control the influence of other relevant factors 
including environmental and meteorological factors (Han et al., 2021; 
Yuan et al., 2021; Poirier et al., 2020). Besides, socioeconomic variables 
used in the regression calculations were at a district level and 
health-related variables were only at a national level. This inconsistent 
resolution might result in unavoidable bias. We strongly encourage the 
relevant authorities of all SEA countries to release data at a finer scale so 
that researchers can conduct more comprehensive studies related to 
public health, which is valuable for preventing and responding to the 
future public health crisis in SEA where the development has been un-
equal. Third, although the COVID-19 infections data were derived from 
the official website of the corresponding countries, the number of cases 
was probably underreported because of limited testing capacity in some 
regions and varied screening rates across regions (Chookajorn et al., 
2021). Moreover, it was unnecessary for self-tested people with positive 
results to report to the government during the transition period, which 
might also lead to underreported cases. 

In addition, the resolution of mobility data derived from Facebook 
was inconsistent, for example, the data resolution of Indonesia was 
relatively low while the data resolution of Brunei and Singapore was 
relatively high, which may result in an inaccurate estimate of human 
mobility. Moreover, the Facebook data only covered Facebook users, 

which means people who did not use Facebook were not included in the 
calculation of human mobility, resulting in an underestimation of actual 
human mobility. According to the Facebook Advertise Platform. There 
were approximately 469.2 million active Facebook users in Southeast 
Asia, taking up about 69 percent of SEA population (Maas et al., 2019). 
Nonetheless, movement data from Facebook was the most appropriate 
dataset with the finest resolution that we can access for cross-region 
analysis in Southeast Asia, and it has been widely used as a proxy of 
human mobility in previous studies (Ilin et al., 2021; Beria and Lunkar, 
2021; Cowley et al., 2021; Reiner et al., 2021). In comparison with other 
mobility datasets (e.g., Google Mobility), the Facebook movement pre-
sents not only the temporal variation compared to the baseline, but also 
the actual number of moved Facebook users at a certain timestamp in a 
rather high spatial resolution. If there is sufficient data with higher ac-
curacy (e.g., mobile phone data) in the future, the results of the 
cross-region analysis could be improved. 

Lastly, previous studies indicated that the local epidemiological sit-
uation might influence the dynamics of human mobility, which was 
known as reverse causality (Boto- García, 2023; Glaeser et al., 2020; 
Mangrum and Niekamp, 2022). However, no extra instruments were 
built in this study to estimate the reverse causality between human 
mobility and COVID-19 infections as this is beyond the scope of our 
study. Our findings provided a whole picture of understanding the po-
tential spatiotemporal dynamics of linkage between human mobility 
and COVID-19 infections during the transition period and should not be 
interpreted as pure causality between human mobility and COVID-19 
infections. We also recommend future studies to detect the pure cau-
sality between human mobility and the spread of epidemic diseases over 
space and time by building more rigorous instruments to reduce bias. 

5. Conclusion 

There were significant spatiotemporal dynamics of human mobility 
and COVID-19 infections in SEA countries during the transition period of 
“living with COVID-19” in 2021. The GTWR model identified that the 
associations between human mobility and COVID-19 infections exhibi-
ted spatiotemporal heterogeneity. The associations in many regions 
strengthened over time at the early stage of the transition period, 
whereas gradually weakened and even became insignificant at the later 
stage of this period. Our work provided a comprehensive understanding 
of how human mobility was associated with COVID-19 infections over 
time and across space in SEA during the transition period. This inspires 
policymakers for adjusting interventions scientifically at the later stage 
of an analogous public health crisis and calls for local governments to 
collaborate to effectively respond to public health crises in the future. 
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Data and code can be downloaded at https://github. 
com/GeoSpatialX/SEAsia_COVID_Mobility 
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Appendix  

Table A1 
Summary of Moran’s I test   

Moran’s Index z-score p-value 

WEEK1 0.3735 16.4942 0.0000 
WEEK2 0.3524 17.1027 0.0000 
WEEK3 0.3371 18.3826 0.0000 

(continued on next page) 
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Table A1 (continued )  

Moran’s Index z-score p-value 

WEEK4 0.3428 18.5625 0.0000 
WEEK5 0.3549 18.9385 0.0000 
WEEK6 0.4953 22.9001 0.0000 
WEEK7 0.4050 17.9291 0.0000 
WEEK8 0.3626 15.8996 0.0000 
WEEK9 0.2879 12.8158 0.0000 
WEEK10 0.2528 11.1714 0.0000 
WEEK11 0.1939 8.5945 0.0000 
WEEK12 0.1637 7.2147 0.0000 
WEEK13 0.2030 8.9849 0.0000 
WEEK14 0.1879 8.4081 0.0000 
WEEK15 0.2094 9.3244 0.0000 
WEEK16 0.1987 8.8924 0.0000 
WEEK17 0.2213 9.6673 0.0000 
WEEK18 0.2118 9.7227 0.0000 
WEEK19 0.1981 9.5047 0.0000 
WEEK20 0.1319 7.3125 0.0000 
WEEK21 0.1198 6.7871 0.0000 
WEEK22 0.1300 6.6274 0.0000 
WEEK23 0.1827 8.8270 0.0000 
WEEK24 0.2253 10.2356 0.0000 
WEEK25 0.3116 13.5273 0.0000 
WEEK26 0.3522 15.1097 0.0000 
WEEK27 0.4065 17.2301 0.0000 
WEEK28 0.3597 15.3005 0.0000 
WEEK29 0.2667 11.5843 0.0000 
WEEK30 0.2205 13.7028 0.0000   

Table A2 
Summary of the OLS result   

Coefficient p-value VIF 

Intercept − 0.042 0.000***  
Explanatory variable: 
MOVE 0.132 0.000*** 1.437 
Control variables: 
PD 0.084 0.000*** 1.324 
PGDP − 0.003 0.667 1.602 
OLD 0.013 0.002*** 2.338 
PR 0.013 0.001*** 1.363 
UR 0.052 0.000*** 2.763 
SI 0.039 0.000*** 1.879 
VR 0.004 0.216 1.514 
HOS − 0.003 0.370 1.605 
UER 0.010 0.009*** 1.888 
Adj R2 = 0.236 AICc = -20900   

Table A3 
Summary of Pearson correlation results  

Country Coefficient Significance (P-value) 

Brunei − 0.546** 0.002 
Indonesia − 0.841** 0.000 
Malaysia − 0.475** 0.008 
The Philippines − 0.260 0.165 
Singapore − 0.378* 0.040 
Thailand − 0.770** 0.000 
Vietnam − 0.463* 0.010 
7 countries in SEA − 0.188** 0.006   
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Figure A1. Spatial distribution of weekly average human mobility volumes and COVID-19 cases ((a): week 15, (b): week 20.  

Figure A2. Spatial distribution of weekly average human mobility volumes and COVID-19 cases ((a): week 25, (c): week 30.   
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Figure A3. 6 Clusters of movement coefficient in Southeast Asia  
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