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A B S T R A C T   

Road noise barriers (RNBs) are important urban infrastructures to relieve the harm of traffic noise pollution for 
citizens. Therefore, obtaining the spatial distribution characteristics of RNBs, such as precise positions and 
mileage, can be of great help for obtaining more accurate urban noise maps and assessing the quality of the urban 
living environment for sustainable urban development. However, an effective and efficient method for identi
fying RNBs and acquiring their attributes in large areas is scarce. This study constructs an ensemble classification 
model (ECM) to automatically identify RNBs at the city level based on Baidu Street View (BSV). Firstly, the 
bootstrap sampling method is proposed to build a street view image-based train set, where the effect of 
imbalanced categories of samples was reduced by adding confusing negative samples. Secondly, two state-of-the- 
art deep learning models, ResNet and DenseNet, are ensembled to construct an ECM based on the bagging 
framework. Finally, a post-processing method has been proposed based on geospatial analysis to eliminate street 
view images (SVIs) that are misclassified as RNBs. This study takes Suzhou, China as the study area to validate 
the proposed method. The model achieved an accuracy and F1-score of 0.98 and 0.90, respectively. The total 
mileage of the RNBs in Suzhou was 178,919 m. The results demonstrated the performance of the proposed RNBs 
identification framework. The significance of obtaining RNBs attributes for accelerating sustainable urban 
development has been demonstrated through the case of photovoltaic noise barriers (PVNBs).   

1. Introduction 

Road noise barriers (RNBs) are generally stetted between roads and 
buildings that are usually residential, educational, and medical areas. 
Construction of RNBs is an effective way to reduce traffic noise, which 
will adversely affect the health of residents living around highways and 
main roads (Dumbrava & Miah, 2016). RNBs can also be an indirect 
index for assessing the sustainable development degree by influencing 
the residential environmental quality and city landscape forms. Addi
tionally, RNBs are promising locations that can be installed in distri
bution photovoltaic systems. Photovoltaic noise barriers (PVNBs) as a 
new form of solar energy utilized in urban areas can provide clear en
ergy and optimization of the energy constitution. Therefore, RNBs as 

sustainable transport infrastructure, make it scientific planning and 
construction can effectively promote the green and sustainable devel
opment of the cities (Song, Thatcher, Li, McHugh, & Wu, 2021). 

With the continuous process of urbanization, the construction of 
urban road networks and the demand for traffic continue to increase, 
leading to more urgent requirements for setting RNBs (Liu et al., 2020). 
At the same time, grasping and mapping the spatial distribution of 
existing RNBs is a prerequisite for RNBs planning and construction at the 
city scale. In addition, the attribute information of RNBs, such as their 
positions and mileages, is important fundamental data for related 
research, such as simulating and evaluating road traffic noise pollution 
(Wang & Wang, 2021; Zhao et al., 2017), assessing the impact of RNBs 
on vehicle exhaust fluidity (Wang & Wang, 2019), and calculating the 
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solar radiation potential of PVNBs ( Zimmerman, Panda, & Bulović, 
2020). 

However, the precise positions and mileages of RNBs in large areas 
are difficult to collect. Because the data are usually managed by various 
local governments, making it time consuming to obtain authorized data. 
In addition, such data created by different entities have different data 
structures and formats, making them even difficult to use effectively. 
Although the precise position and milage of an RNB can be collected by 
field measures (Potvin, Apparicio, & Séguin, 2019), this approach is not 
feasible for large geographical scales. Some researchers have deduced 
the RNBs mileage of the entire country based on the ratio of RNB 
mileage to roads in a given area (Wadhawan & Pearce, 2017). However, 
this result may still be very different from the actual RNB distribution 
characteristics in derivation areas. Therefore, it is necessary to explore 
feasible methods to collect the precise positions and mileages of RNBs at 
the city or larger scales. 

Fortunately, the combination of deep learning methods and street 
view imaging services, e.g., Google Street View (GSV) and Baidu Street 
View (BSV), provide the possibility of identifying and extracting ground 
features efficiently and conveniently, such as urban forms, street canyon 
compositions (Middel, Lukasczyk, Zakrzewski, Arnold, & Maciejewski, 
2019) and urban commerce distributions (Ye, Wang, Kita, Xie, & Cai, 
2019). In light of the extraordinary performance of deep learning 
methods when combined with BSV, this study employs ensemble 
learning (Krawczyk, Minku, Gama, Stefanowski, & Woźniak, 2017) to 
construct an ensemble classification model (ECM) for automatically 
identifying RNBs in street views at the city scale. Ensemble learning aims 
to integrate data fusion, data modeling and data mining into a unified 
framework. The core of ensemble learning is to integrate multiple base 
algorithms’ weak prediction results to obtain higher prediction perfor
mance on classification, detection, or segmentation tasks (Dong, Yu, 
Cao, Shi, & Ma, 2020). Although ensemble learning has proven its 
excellent performance in various fields (Pham, Kim, Park, & Choi, 
2021), there is no relevant research exploring the applicability of this 
algorithm in RNBs identification. 

Thus, this study combines ensemble learning with street view images 
(SVIs) to explore a quick, convenient, and low-cost method for identi
fying RNBs at the city scale. Compared with a previous study that 
focused on a single model (Zhong et al., 2021a), this study integrated 
various state-of-the-art deep convolutional neural networks (DCNNs) 
based on the bagging ensemble strategy. The performance of the RNB 
identifying model was significantly improved by taking advantage of 
each model. Additionally, this study reduces the effect of imbalanced 
categories of SVIs by adding confusing negative samples, which enables 
our model to pay more attention to feature mining of hard RNB samples 
to enhance the performance of RNB identification. Finally, a post
processing method based on geospatial analysis in this study has been 
proposed to eliminate misclassified SVIs, in which the recall and preci
sion indicators can be improved efficiently, and the identification results 
are more consistent with the real situation. The remainder of this study 
is structured as follows. Section 2 describes the background of RNB and 
its collection methods. Section 3 describes the study area, data collec
tion, and details of the proposed method. Section 4 presents the result of 
RNB identification and the RNBs spatial distribution in Suzhou. Section 
5 demonstrates the importance of acquiring RNBs’ attributes through an 
application case. The discussion and conclusion are presented in Section 
6. 

2. Literature review 

2.1. Characteristics of RNBs 

The precise positions, azimuths, and mileages of RNBs are the most 
commonly used attributes in related research. Since RNBs are installed 
on either one or two sides of the road, the precise position of RNBs are 
useful to determine the roadside equipped with the RNB and map the 

linear distribution of RNBs along with the road networks. For example, 
only by obtaining the precise positions of RNBs can an accurate 3D noise 
map be created, and the severity of the road noise pollution of an area 
with or without RNBs can be visually displayed (Alam, Ahmad, Afsar, & 
Akhtar, 2020). Only by clarifying the installation positions of RNBs can 
the diffusion modes of automobile exhaust be accurately simulated and 
more accurate air quality evaluation results be obtained for nearby roads 
(Yang et al., 2020a). The spatial distribution of the existing RNBs indi
rectly reflects the gap between rich and poor people and environmental 
equality (Potvin, Apparicio, & Séguin, 2019). In the other aspect, the 
mileage of an RNB is the distance from the start and end points of the 
RNBs along with the road. Mileage is also important for estimating solar 
PV potential on PVNBs (Schepper, Van, Manca, & Thewys, 2012) 
because the solar energy received by the RNB is significantly affected by 
its azimuth, size, and geographic position. 

In addition, the heights, shapes, and materials of RNBs are also 
important attributes that have great influences on the reduction of noise 
pollution (Reiter, Wehr, & Ziegelwanger, 2017). Many studies have 
focused on comparing the performance of RNBs with different heights, 
shapes, and materials to effectively mitigate the hazard of traffic noise 
pollution for urban residents (Liu, Chen, Zhao, & Chen, 2017; Redondo 
et al., 2021). However, these studies have often concentrated on very 
small areas because the prevention and control effects of RNBs with 
different heights, shapes, and materials need to be tested in many po
sitions. Recording traffic noise through devices in large areas consumes 
considerable time and manpower. It is unnecessary to collect the 
heights, shapes, and materials of RNBs in every field site because these 
attributes are determined by the type of RNBs, which usually do not 
change much on a certain road inside the city. These attributes can be 
collected by setting sampling points for field measurements or marking 
the RNBs with GSV images or BSV images after obtaining their precise 
positions and mileages. 

In summary, the mileages and precise positions of RNBs are very 
important and are the most widely used data in various fields. Although 
the heights, shapes, and materials of RNBs are also important data for 
related studies, they can be acquired at a lower cost when the precise 
positions and mileages of the RNBs have been collected. Therefore, ac
ademic research and practical application related to RNBs will be greatly 
enhanced if RNBs can be collected automatically through convenient, 
efficient, and low-cost methods with accurate position and mileage in
formation. These efforts will ultimately have a positive impact on sus
tainable urban development. 

2.2. Traditional methods for obtaining RNBs attributes 

At present, there are four main approaches for collecting the precise 
positions and mileages of RNBs. The first approach is to make field 
measurements in areas with RNBs. The second approach is to use GSV to 
manually mark the RNB positions and thenalidate the marked results 
with a vehicle (Potvin, Apparicio, & Séguin, 2019; Ranasinghe et al., 
2019). These two approaches may be feasible ways to collect RNBs 
positions at the microscale, but they are not feasible at the macroscale 
because these methods consume considerable manpower and material 
resources. The third approach is to evaluate RNBs mileage through 
assumption or hypothesis methods at a national scale, but this method 
inevitably induces accumulated uncertainty in the final result. 

The fourth approach is to apply RNB data from a government agency. 
Although some agencies, such as the Federal Highway Administration 
(U. S. Department of Transportation Federal Highway Administration, 
2019) and the Government of South Australia Department for Infra
structure and Transport (Government of South Australia Department for 
Infrastructure and Transport, 2013), provide RNB statistics or sample 
data, their data merely record mileages, materials, and attributed 
administrative regions or cover only a small area. Users still cannot 
acquire the precise positions of RNBs in large areas. In addition, most 
cities have not yet released RNB data. Applicants must go through a 
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complicated application process required by the government to obtain 
such data for different purposes. There are still two more problems to 
constrain the practicability of these RNB data. First, the construction 
time of set RNB times in different sections of a city may not be the same, 
causing the storage formats of the RNB engineering data to be different, 

such as paper records and shapefiles. Second, the state of the RNB 
dataset managed and maintained by the government is not always 
updated promptly, which may affect the completeness of the collected 
RNB information. Therefore, it is still difficult to use RNB data managed 
by the local government in related research for large areas. 

Fig. 1. Study area and experimental data. (a), (b) and (c) indicate the position of the study area, and (d) is the enlarged area corresponding to the marked box in (c), 
which is used to display the experimental data more clearly. 
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2.3. Deep learning combined with street view imagery for ground feature 
detection 

In recent years, deep learning has exhibited extraordinary perfor
mance in the image, speech, and natural language processing fields and 
has gradually been applied to city planning (Zhou, He, Cai, Wang, & Su, 
2019), economic geography (Yeh et al., 2020), modern agriculture 
(Maimaitijiang et al., 2020) and other fields (Kang, Zhang, Gao, Lin, & 
Liu, 2020; Zhang, Wu, Zhu, & Liu, 2019; Zhong et al., 2021b). Image 
classification, object detection, and semantic segmentation models in 
the deep learning field combined with high-resolution remote sensing 
images, street view imagery, or other graphics are promising ways to 
address some data mining tasks (Li et al., 2021; Zhu, Shang, Hu, Yu, & 
Zhong, 2021). For example, the view factors of street canyons can be 
calculated through SVIs and semantic segmentation models (Du, Ning & 
Yan, 2020). Building type classification (Hoffmann, Wang, Werner, 
Kang, & Zhu, 2019), urban canyon geometry classification (Hu, Zhang, 
Gong, Ratti, & Li, 2020), crop type mapping (Yan & Ryu, 2021), urban 
function recognition (Ye, Zhang, Mu, Gao, & Liu, 2021), and even 
neighborhood demographic makeup estimation (Gebru et al., 2017) can 
also be implemented based on SVIs and classification, semantic seg
mentation, or object detection models. 

However, for complex classification problems or massive data min
ing tasks, a single classifier that may not achieve optimal performance 
has been demonstrated by many studies (Chang, Abimannan, Chiao, Lin, 
& Huang, 2020). For example, amid air pollution forecasting, re
searchers contrasted the performance of hybrid models based on 
ensemble learning and single models (Verma, Ahuja, Meisheri & Dey, 
2018). In the rockburst prediction study, the author constructed four 
single classical models and four ensemble models based on four single 
classic models pairwise ensemble, the result suggests four ensemble 
models had the better prediction performance than the other four single 
models (Yin et al., 2021). Many researchers think the reason that a single 
model has lower performance in data mining tasks is the imbalance of 
the samples, so that a single model cannot capture the object charac
teristics of minority classes (Díez-Pastor, Rodríguez, García-Osorio, & 
Kuncheva, 2015; Yuan, Xie, & Abouelenien, 2018). 

It can be seen from the former literature that the lower performance 
of the single model in complicated classification tasks can complement 
rely on ensemble learning. Its main idea is to integrate the advantages of 

multiple individual classifiers to improve the overall performance of the 
machine learning in classification or data mining tasks (Wang, Wang, & 
Srinivasan, 2018). In the classification task, researchers used an 
ensemble model to propose a Weibo sentiment classification method, 
and they achieved higher accuracy and recall rates than the traditional 
model (Yang, Yuan & Wang, 2020). Other studies have also utilized 
decision tree-based ensemble learning and medical images to distinguish 
between malignant and benign tumors (Ghiasi & Zendehboudi, 2021). 

Inspired by these studies, this study integrates the concept of 
ensemble learning into the task of RNBs recognition and builds an ECM 
to improve the accuracy and efficiency of RNBs recognition. Meanwhile, 
added the confusing negative samples when training the individual 
classifiers to alleviate the effect of imbalanced categories of samples to 
further improve the performance of the model. According to the 
described literature review, this research explores a convenient and 
time-saving method for identifying city-scale RNBs based on ECM and 
BSV images. The proposed method can efficiently overcome the problem 
regarding the lack of exhaustive and precise RNB data at the city scale, 
and the method can be extended to other regions based on the concept of 
transfer learning. 

3. Material and methods 

3.1 Study area 

This paper takes Suzhou, Chinese as the study area to validate the 
reliability and performance of the proposed method for identifying 
RNBs. Suzhou is one of the central cities of the Yangtze River Delta 
(Fig. 1) and is also a national high-tech industry base in China. Suzhou 
has a resident population of 10.74 million and an urbanization rate of 
77%, and it ranks the 6th in terms of the gross domestic product (GDP) in 
China in 2019 in 2019 (National Bureau of Statistics of China, 2020). 
With an increasing rate of urbanization in Suzhou, the city has become 
an important engine for the integrated and coordinated development of 
the Yangtze River Delta. Thus, analyzing the spatial distribution of RNBs 
in Suzhou is of great significance for urban noise pollution assessment 
and PVNBs solar energy potential assessment and application. 

Fig. 2. Street view collection diagram. (a) indicates the sampling point position of BSV images, (b), (c), (d), and (e) illustrate the scene in four horizontal viewing 
angles of the BSV images. 
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3.2 Experimental data collection 

The road network data in Suzhou are downloaded from the open- 
sourced crowdsourcing OpenStreetMap (OSM). The attributes of the 
road network are well organized into 10 categories, such as highways, 
trunk roads, primary roads, and secondary roads. Based on our rigorous 
survey, RNBs are constructed along highways and trunk roads in urban 
areas. Therefore, this study only retrieves highways and trunk roads 
from the OSM road network. 

This study creates a series of SVI sampling points on highways and 
trunk roads in Suzhou with 20 m constant intervals based on OSM road 
network data. Our pilot study has suggested that the generation of 
sampling points with 20 m intervals is a feasible strategy because it not 
only makes the scene for the continuity of the BSV images between 
adjacent sampling points but also decreases the storage space and the 
collection time required for the BSV images. According to the co
ordinates of the created sampling points, the BSV images are automat
ically collected from the Baidu API through a Python script. The Baidu 
Panorama Static Image API service provides complete documentation 
that allows a set of customized parameters for retrieving BSV images, 
including the width, height, position, heading, and collection time of 
each BSV image (Baidu Map Open Platform, 2021). 

Highways and trunk roads are bidirectional, and RNBs are generally 
built along the two sides of the road. Therefore, to match noise barriers 
to the corresponding roadside correctly when using ECM, this study 
acquires BSV images with 90◦ viewing angles along the direction of the 
road. As shown in Fig. 2, if a BSV image with a viewing angle of 270◦ to 
the direction of the road is collected at sampling point B, then the BSV 
images at sampling point B will be misidentified as RNBs. The 270◦

viewing angle of sampling point B is consistent with the SVI collected at 
the 90◦ viewing angle of sampling point A. In this study, the information 
about each acquired BSV image is as follows: the size is 500×400 pixels, 
the heading (horizontal angle) is 90◦, and the field of view (FOV) 
(horizontal range) is 90◦. 

When collecting the BSV images, it is found that in the viaduct areas, 
the BSV images on and under the bridge were collected at different time 
periods. However, RNBs are often installed on the bridges of viaduct 
areas. Therefore, collecting BSV images for only one period is likely to 
lead to unrecognized RNBs in the viaduct area due to the lack of BSV 
images collected at the viaduct. In addition, some BSV images are 
missing on a few road segments in a certain year. These missing images 
are likely to be supplemented in other years. For this reason, this study 
collected all the SVIs of Suzhou City from 2014 to 2020, yearly. That is, 
if there are SVIs of different years at the sampling point, then collect all 
the SVIs of these different years. As a result, a total of 148,336 sampling 
points are generated based on highways and trunk roads, and a total of 

287,714 BSV images in Suzhou are acquired according to the designated 
plan of BSV image collection. 

3.3 Building of ECM 

The method proposed in this study consists of the following steps. 
First, BSV images are collected from a BSV image repository and sam
pling points are generated from a complete set of road networks. Then, 
the positive and negative samples in the collected BSV images are 
selected and marked. Furthermore, a group of state-of-the-art deep 
convolutional nerual networks are trained and integrated into an ECM 
through snapshot ensemble and voting. Finally, in the study area, RNBs 
are identified and mapped through the trained ECM. Fig. 3 shows the 
overall flowchart of this study. 

3.3.1. Base classifiers 
A classifier is a general term for sample classification methods in data 

mining, including algorithms such as decision trees, logistic regression, 
naive Bayes, and neural networks. Residual neural networks (ResNets) 
and dense convolutional networks (DenseNets) are state-of-the-art net
works based on convolutional neural networks (CNNs). Generally, the 
more layers of the network, the richer the feature information extraction 
of the dataset. However, with the increasing number of network layers, 
accuracy becomes saturated and then degrades rapidly, model perfor
mance does not increase but decreases, this phenomenon is also called 
the degradation of networks (He, Zhang, Ren & Sun, 2015). The main 
contribution of a ResNet is to address the problem by which the network 
accuracy decreases rapidly as the number of network layers deepens by 
optimizing the structure of the network (He et al., 2015). Therefore, 
ResNet is considered one of the best CNN models for classification. 
ResNet101and ResNet152 have good effects on fusion, and they have 
excellent performance. They have the same network constructures, and 
the only difference is different layers of networks (Ibrahim et al., 2020). 

DenseNet is a brand new network that designs dense blocks to create 
a narrower network, and this new network enhances the propagation of 
features between each hierarchy network and drastically reduces the 
required number of parameters, thereby making the network easier to 
train (Huang et al., 2016a) . DnseNet improved network performance by 
alleviating the degradation phenomenon and strengthening the trans
mission of features between layers in the networks. DenseNet161 and 
DenseNet201 are demonstrated to have excellent performance 
compared to other layers of DenseNet on detection, segmentation, and 
classification tasks (Alawi, Anaam, & Al-sohbani, 2021). Similar to 
ResNet, DenseNet161 and DenseNet201 also have the same network 
constructures, the only difference is that they have different layers of 
networks. 

Fig. 3. Research flowchart of PNB identification based on the ECM and SVI.  
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Therefore, this study integrates four state-of-the-art classifiers, 
ResNet101, ResNet152, DenseNet161, and DenseNet201, to identify 
RNBs in SVIs. The ResNet and DenseNet network structures are shown in 
Fig. 4. In ResNet and DenseNet network structures, the layers between 
two adjacent blocks are referred to as transition layers and change 
feature-map sizes via convolution and pooling (Huang et al., 2016a). 
The SoftMax layer turns the original classification score of the object 
into a positive normalized value for the model to judge. The main 
function of Res Block is to pass the residual function directly to the next 
layer when the feature information has been well characterized, 
simplifying the difficulty of model training. The main character of Dense 

Block is the input of each layer comes from the output of all the previous 
layers. So, Dense Block connects more paths between the fore and back 
feature maps and retains more information to the new feature maps 
through residual connection. 

3.3.2. Ensemble frame 
Bagging is one of the mainstream ensemble frames, and it operates 

based on parallel strategies to construct an ensemble model. The pre
diction results of each base classifier are aggregated rely on the voting 
method. The bagging frame utilizes the boosting sampling method to 
construct the base classifier’s training dataset (Suthar & He, 2021). 

Fig. 4. ResNet and DenseNet network structure.  

Fig. 5. ECM construction and evaluation framework .  

Fig. 6. Positive RNB samples (a-e) and partial classical negative samples that are easily recognized as RNBs: (f) billboard, (g) inner wall of a tunnel, (h) truck, (i) 
guardrail, (j) building fence. 
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Boosting-based sampling is a method that utilizes sampling with 
replacement or repeated sampling to create a sample dataset. The aim of 
boosting-based sampling is to create a training dataset that has the same 
size as the original sample dataset through repeated sampling, approx
imately 36.8% of the original samples are not extracted to the training 
dataset (Silva, Ribeiro, Moreno, Mariani, & Coelho, 2021). Then, the 
remaining samples are regarded as validation datasets to optimize the 
individual classifiers. These base classifiers are trained based on the 
existing training dataset. 

Snapshot ensembles can generate a set of accurate and diverse 
models from one training session. When training a neural network 
model, it is generally necessary to set different learning rates to conduct 
a sensitivity analysis. However, this process requires hundreds or even 
thousands of epochs to complete, which means that model training will 
take a significantly long time. Snapshot ensembles can rely on the cosine 
annealing algorithm to force the model to fall into the local optimum 
quickly by setting different learning rates and then conserving the 
optimal models obtained under this learning rate (Huang et al., 2017). 
After that, the learning rate enters the next annealing cycle, the model 
escapes the current local optimal point, and the model continues to find 
a new optimal point. Because the models with different local optimal are 
stored with greater diversity, a more robust model will be established 
after the snapshot procedure. 

The voting method integrates the prediction results of the four base 
classifiers for the same BSV image and votes according to the principle of 
the minority obeying the majority to finally determine the class of the 
BSV image. The classification principle of the ECM is presented in the 
following equation: 

ŷensemble = sign

(
∑n

m=1
ŷm −

n
2

)

ŷensemble is the final classification result of the ECM. ŷm is the classifica
tion result of the m − th classifier. The values of ŷensemble and ŷm are 0 or 
1, representing negative and positive samples, respectively, n is the 
number of the classifiers. 

3.3.3. Training and building of the ECM 
The ensemble model construction process is shown in Fig. 5.  

1) First, four training subdatasets, A, B, C, and D, are extracted by 
boosting-based sampling from the 4000 original samples. These four 
training subdatasets contain 2000 positive samples and 2000 nega
tive samples. The positive and negative samples in the original 
training set that are not selected for the training subsets are used as 
the model validation set. According to the pre-experimental results 
of this study, some objects, such as road guardrails, billboards, the 
inner walls of tunnels, and trucks, are easily identified as RNBs. 
Therefore, the BSV images with these objects are added to the 
negative sample dataset to improve the performance of the ECM. The 
positive and partial classical negative samples are shown in Fig. 6.  

2) Second, the ResNet101, ResNet152, DenseNet 161, and DenseNet 
201 classifiers are used to train the sample data and validate the 
prediction by extracting the corresponding subtraining and valida
tion datasets.  

3) Finally, these four trained classifiers are integrated into an ECM 
through the snapshot ensemble and voting method. 

3.3.4. ECM performance evaluation 
It is an indispensable step to utilize the test dataset to evaluate the 

performance of the trained ensemble model. This study also utilizes 
multiple test sets to test the performance of the ECM. As shown in Fig. 5, 
this study extracts four test sets, A, B, C, and D, from all BSV images in 
Suzhou. The number of BSV images in each test set is 2000, and then 
each BSV image is manually marked when it contains RNBs. Then, the 
ECM receives the test dataset as input and generates the output for 
further analysis. Generally, the confusion matrix and four deduced in
dexes based on this matrix were used to evaluate the performance in the 
classification model. For a binary classification model, the classification 
result of the model will generate four categories after manual validation: 
true positive (TP), true negative (TN), false positive (FP), and false 
negative (FN). Table 1 shows the form and index definition of the 
confusion matrix. 

The accuracy, precision, recall, and F1-score of four indexes calcu
lated by TP, TN, FP, and FN are utilized to assess the performance of the 
ECM. The specific definitions of these indexes are shown in Table 2. The 
value ranges of accuracy, precision, recall, and F1-score are [0,1] after 
standardization. Among them, the F1-score is a weighted average of 
recall and precision. The value of these indexes closer to 1, means the 
better performance of the model. 

Since this study uses multiple test sets to evaluate the ECM perfor
mance, the values of these evaluation indicators are in an interval. The 
performance of the ResNet and DenseNet base classifiers is also evalu
ated using these four indexes and then compared by the ECM. Under a 
learning rate of 0.001, the performance of the ECM and the four base 
classifiers in recognizing RNBs is listed in Table 3. 

Table 3 shows the performance comparison results of the base clas
sifiers and the ECM. Although the accuracy and recall of the ECM have 
not improved compared with these four base classifiers, the precision 
and F1-score of the ECM have obviously improved. The precision rep
resents the ratio of the number of BSV images with RNB that have been 
correctly classified by the ECM to the number of total BSV images with 
RNB. The F1-score is the weighted average of recall and accuracy and is 
an evaluation index for the comprehensive performance of the model. 
Therefore, the precision and F1-score of the ECM improved, which in
dicates that the proposed approach has achieved a better performance 
than the conventional models. 

Table 1 
The form and index definition of the confusion matrix.  

Realistic 
situation 

Classification result  

Positive examples Negative examples 

Positive 
examples 

TP (Positive samples predicted 
as positive by the model) 

FP (Negative samples predicted 
as positive by the model) 

Negative 
examples 

FN (Positive samples predicted 
as negative by the model) 

TN (Negative samples predicted 
as negative by the model)  

Table 2 
The formula and specific definition of assessment indexes.  

Formula Meaning 

Accuraacy =

TP + TN
TP + TN + FP + FN  

The ratio of the numbers of with RNBs and without 
RNBs BSV images that correct classified by the ECM 
to the total BSV images 

Precion =
TP

TP + FP  
The ratio of the number of BSV images with RNBs in 
realistic situation to the numbers of BSV images with 
RNBs that classified by the ECM 

Recall =
TP

TP + FN  
The ratio of the number of BSV images with RNBs in 
realistic situation to the numbers of correct classified 
BSV images by ECM 

F1 − score =

2 × Precision × Recall
Precision + Recall  

A comprehensive evaluation of the recall and 
precision of ECM result  

Table 3 
Performance of the ensemble model and the four base classifiers .  

Classifier Accuracy Recall Precision F1-score 

ResNet101 0.98 (± 0.00) 0.97 (± 0.02) 0.79 (± 0.02) 0.87 (± 0.02) 
ResNet152 0.98 (± 0.00) 0.97 (± 0.01) 0.78 (± 0.01) 0.86 (± 0.02) 
DenseNet161 0.98 (± 0.00) 0.97 (± 0.02) 0.81 (± 0.01) 0.88 (± 0.02) 
DenseNet201 0.98 (± 0.00) 0.97 (± 0.01) 0.81 (± 0.02) 0.88 (± 0.02) 
ECM 0.98 (± 0.00) 0.97 (± 0.02) 0.83 (± 0.02) 0.90 (± 0.02)  

K. Zhang et al.                                                                                                                                                                                                                                   



Sustainable Cities and Society 78 (2022) 103598

8

3.4. Post-process method based on geospatial analysis 

All BSV images collected are input into the constructed ECM for RNB 
identification, and the set of BSV images with RNBs are regarded as the 
results of the ECM. However, the required mileage and precise position 
information of RNBs still cannot be acquired from the BSV images 
directly. To tackle this problem, this study matches BSV images with 
RNBs to a digital map, which is a vector map layer, and can characterize 
the precise positions and mileages of RNBs based on their latitude and 
longitude information in ArcGIS. However, even on digital maps, these 
BSV images with RNB are also presented in the form of points that need to 
be continuously processed based on collective principles of BSV images. 

3.4.1. Eliminate of misclassified BSV images based on DBSCAN 
Additionally, some isolated points are found when checking the BSV 

image points with RNBs displayed on the digital map. These isolated 
points are recognized as RNB, but within a few hundred meters or even 
thousands of meters around them, only one or two or none of them are 
recognized as RNB sampling points. The results show that these isolated 
points are misclassified as RNB when locating these points and the 
corresponding BSV image for artificial identification. Therefore, it is 
necessary to eliminate these isolated points. After these points are 
eliminated, the accuracy of RNB recognition will be further improved, 
and the distribution characteristics of RNB closer to the real urban 
environment will be obtained. 

In this study, density-based spatial clustering of applications with 
noise (DBSCAN) is used to strike out the isolated RNB points. Clustering is 
the process of dividing samples based on the similarity between samples. 
DBSCAN can divide samples with a sufficient density into clusters and 
delete noise points that cannot be divided into a cluster. Compared with 
other existing clustering algorithms, DBSCAN is advanced at identifying 
clusters of any shape and without predetermining the number of clusters 
(Wang, Wang, Han, & Zhou, 2021). In addition, because the RNB points 
are evenly distributed along the road, the distance-based clustering al
gorithm is not suitable for excluding isolated points. Therefore, based on 
DBSCAN, these isolated points can be distinguished from the RNB points 
that exhibit linear clustering in a certain area to remove the misidentified 
RNB points, by which the performance of the ECM can be improved 
efficiently, and the identification results are more consistent with the 
characteristics of real RNBs. 

DBSCAN divides original data into 3 sorts based on a threshold for 
the number of neighbors (Schubert, Sander, Ester, Kriegel, & Xu, 2017), 
minPts, within the radius r (with an arbitrary distance measure):  

a) Core point: if sample xi contains at least minPts samples within radius 
r, then sample point xi is called the core point.  

b) Border Point: if the sample xi contains fewer than minPts samples 
within the radius r but is in the neighbor of other core points, then 
the sample point xi is called the boundary point.  

c) Noise point: a point that is neither a core point nor a boundary point 
is generally isolated outside the cluster, which is called an isolated 
point within this study. 

There are some important concepts that need to be explained (Chen 
et al., 2021):  

a) Directly density-reachable: a point p is directly density-reachable 
from a point q with respect to {Eps, MinPts} if p ∈ NEps(q) and q is a 
core point.  

b) Density-reachable: a point p is density-reachable from a point q with 
respect to {Eps, MinPts} if there is a chain of points p1, p2, pn, with 
p1 = q and pn = p such that pi+1 is directly density-reachable from pi.  

c) Density-connected: a point p is density-reachable from a point q with 
respect to {Eps, MinPts} if there is a sample point o, and the density 
of both p and q can be reached from the sample point o. 

Where Eps(r) represents the radius, and the operating principle of 
DNSCAN is to determine all the core points in a given point set according 
to the set neighborhood parameters Eps(r) and minPts. Then, starting 
from the core point, find the cluster formed by all samples with the 
density of the core point. Finally, this step is repeated until all core 
points are processed. Finally, points that are not included in any cluster 
are misidentified as RNBs, and these points need to be excluded to obtain 
higher recognition accuracy. The algorithm principle of DBSCAN is 
illustrated in Fig. 7. 

3.4.2. Continuous processing of RNBs points 
To acquire the measurable mileage and position of RNB, this study 

constructs a series of continuous line segments based on two consecutive 
RNB points. According to the collection rule of the BSV images, if the 
distance between two adjacent RNB points is less than or equal to 20 m, 

Fig. 7. Illustration of the DBSCAN cluster algorithm.  

Table 4 
RNBs identification results for Suzhou city.  

BSV images in Suzhou With RNBs without RNBs Isolated BSV images 

287,714 24,505 261,673 202  
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then they will be converted to a continuous line that represents the real 
distribution of the RNBs. However, when collecting BSV images, the 
sampling point coordinates need to be converted from World Geodetic 
System 1984 (WGS 84) to the BD09 coordinate system. The WGS84 is a 
coordinate system established for the use of the GPS global positioning 
system. The BD09 is generated by implementing a double encryption 
algorithm based on the WGS 84 coordinate system. In addition, the 
distance between these sampling points will slightly deviate due to the 
transformation of the projection coordinates. Therefore, this study 
decided that if the distance between two adjacent RNB points is less than 
or equal to 21 m, they will be connected to a line that represents the real 
distribution of the RNBs. 

4. Experiments results and analysis 

4.1. The identification result of RNBs for Suzhou 

As a case study in Suzhou, this study demonstrates a method that can 
accurately identify and match RNBs onto topological road networks for 
straightforward visualization and is associated with a series of thematic 
attributes for geospatial analysis. A total of 287,714 BSV images were 
collected from 2014 to 2020 in Suzhou. The identified results of the 
RNBs are shown in Table 4 and Fig. 8. 

Overall, the constructed ECM identifies 24,505 images with RNBs and 
261,673 images without RNBs and misidentifies 202 images. Fig. 8(d) 

illustrates the spatial distribution of the misidentified RNB points. We can 
intuitively observe that these misidentified points are generally scattered 
along the roads, which does not fit the general distribution situation of 
the RNBs. According to previous research (Zhang, 2018) , to build RNBs 
with a length of less than 20 m on a certain road section alone, the costs of 
construction and maintenance are higher. In fact, most of these isolated 
points are demonstrated as misclassified RNBs with manual validation. 
Therefore, according to the method described in Section 3.4, these iso
lated points were removed. After deleting the isolated points, this study 
visualizes the remaining BSV images with RNBs onto the map. 

As described in Section 3.4, the BSV images with RNBs and points 
intervals less than or equal to 21 m are connected by a linear distribution 
of RNBs. The lines represent the real RNB distribution of Suzhou. The 
results shown in Fig. 9 are the final RNB identification results after 
completing the ECM experiment and postprocessing based on geospatial 
analysis. 

Fig. 9 shows that the existing RNBs are mainly distributed along the 
trunk roads in Suzhou. It is reasonable to explain that residential com
munities, educational facilities, and offices are mostly near the trunk 
roads of the city for fast and short commuting. This urban-function driven 
design also has a drawback, i.e., continuous noise made by traffic affects 
public health in several aspects (Begou, Kassomenos, & Kelessis, 2020). 
To significantly reduce the noise level, it is imperative to construct RNBs 
along the trunk road. In comparison, highways are constructed in suburbs 
far away from the core urban areas with a low-density population, and 

Fig. 8. The RNBs identification results of the ECM of Suzhou. (a) indicates the spatial distribution of the BSV images with RNBs and isolated RNBs points, (b), (c), and 
(d) are the enlarged areas corresponding to the marked boxes in (a), respectively. 
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thus, there are fewer areas that need to be deployed with RNBs. The re
sults show that the total mileage of the RNBs in Suzhou is 178,919 m. 
After a statistical analysis, the RNB mileages distributed along the 
highway and truck road are 38,863 m and 140,056 m, respectively. 

To explore the limitation of the proposed approach of automatically 
identifying RNBs at city scales, we intend to compare the final identi
fication results of the proposed method with the real distribution of 
RNBs in Suzhou. First, the total mileage of the RNBs identified by the 
ECM is statistically analyzed through the OSM ID attributes of the road 
data and used to make a sequence. Then, the first 3 roads in the sequence 
are selected to manually measure the positions and mileages of the 

existing RNBs with the help of BSV. Because the precise position of each 
RNB is not easy to identify and relies only on visual judgment, this study 
selects road intersections as the statistical start and endpoints. Finally, 
the ECM identification results and BSV measurement results of all road 
RNBs are separately counted. The selected road information and 
contrastive results are shown in Table 5. 

Table 5 shows that the ECM achieves satisfactory performance 
regarding the identification of RNBs along the Central North Line and 
Chang Tai Highway, but on the South Ring East Road, the ECM identi
fication results are still far from the actual distribution of the existing 
RNBs. After manually locating BSV images belonging to the Nanhuan 
East Road, the author found that there were many vehicles in the BSV 
images. It is very likely that the vehicles in the BSV images blocked the 
RNB, which caused the poor performance of the RNB identification 
approach proposed in this study for the Nanhuan East Road. 

4.2. The limitation of RNBs identification based on SVI and deep learning 

The results obtained from this study confirm that ensemble learning 
and BSV have promising potential to automatically identify RNBs along 
road networks in a city. The accuracy and F1-score of the ECM RNB 
identification results were 0.98 (± 0.00) and 0.90 (± 0.02), respectively. 
This suggests that RNBs identification results have a high degree of 

Fig. 9. The spatial distribution of the identified RNBs in Suzhou. (a) indicates the spatial distribution of the RNB, (b), (c), and (d) are the enlarged areas corre
sponding to the marked boxes in (a), respectively. 

Table 5 
Conformity between the identification results of Suzhou RNBs and the manually 
marked results.  

Road Name Start Point End Point ECM 
(m) 

Manual 
(m) 

Conformity 
(%) 

Central Circle 
North Line 

Lv Shan 
Road 

Nan Sha 
Road 

805 760 94% 

Chang Tai 
Highway 

Xing Hang 
Road 

Suhong 
West Road 

802 802 100% 

Nanhuan East 
Road 

South Loop 
Elevated 

Ren Min 
Road 

851 1190 72%  
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conformity with the marked RNBs at most road segments. However, the 
results displayed on the map still exhibit slight deviations from the real 
distribution of the existing RNB on some road segments. By carefully 
analyzing all the processes and results, we suggest that some objective 
factors are regarded as causing unconformity between the identified and 
marked distributions of RNBs on some roads. The reasons are discussed 
as follows: 1) Although this study collected all BSV images from 2014 to 
2020 in Suzhou, some SVIs were not obtained at some sampling points. 
This is due to the incompetence of the original SVI data, some of which 

were not collected by the operator. 2) Some road segments are fulfilled 
by different types of vehicles, which blocks the RNBs in the BSV images 
and then causes difficulty in identifying the RNBs. 3) A few BSV images 
with RNBs are misclassified by the ECM because they do not contain 
RNBs. Therefore, these misclassified BSV images will not be displayed on 
the digital map and will cause the linear distribution of RNBs to be 
interrupted at these misclassified BSV image points. This shortcoming 
also suggests that the proposed geospatial analysis method needs to be 
improved further. 

5. RNBs application case 

The distribution characteristics of RNBs can be applied in many 
areas. For example, the number of people who are protected by the RNBs 
can be statistics based on the impact distance of the traffic noise 
(Abo-Qudais & Alhiary, 2004). In recent years, RNBs have been regar
ded as promising locations that can be combined with distributed 
photovoltaic systems to utilize solar energy. However, there is a chal
lenge in that it is unknown whether the deployment of PVNBs in large 

Fig. 10. The spatial distribution of the solar energy potential of RNBs in Suzhou. (a) The solar energy potential of RNBs, (b), (c), and (d) are the enlarged areas 
corresponding to the marked boxes in (a), respectively. 

Table 6 
Capacity and electricity power output results of PVNBs in Suzhou.  

Road 
level 

Areas of 
RNBs (m2) 

Rated power of 
PVNBs (W/m2) 

Capacity 
(MW) 

Power output 
(MW h) 

Highway 116,589 200 23.3 7022 
Truck 

road 
420,358 200 84.1 26,306 

Total 536,947 — 107.4 33,328  
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areas can benefit. The solar potential of PVNBs needs to be assessed to 
acquire the precise position and areas of RNBs (Zhong et al., 2021a). In 
this study, the precise position and mileage of RNBs have already been 
collected by ECM and postprocessing based on the geospatial method. 
According to our former research, the height of the RNBs assumed is 3 m. 
Then, the area of RNBs can be calculated. 

In Suzhou city, the distribution, mileage, and areas of RNBs have 
already been acquired and deduced. The method of RNBs radiation 
evaluation can be found in related research (Raptis et al., 2017). Then, a 
high spatial resolution (10 km) surface solar radiation dataset can be 
collected from the National Tibetan Plateau Data Center (Feng & Wang, 
2021). Since the radiation data are only updated to 2017, in order to be 
able to characterize the radiation situation in 2020, we have performed 
a 10-year average of the collected radiation data from 2009 to 2017. 
Therefore, the 2020 solar energy potential of PVNBs in Suzhou city can 
be assessed based on the above method and data, and the assessment 
result is shown in Fig. 10. 

The 2020 solar energy potential of RNBs in Suzhou is 208,301MW h 
based on statistics. The solar energy potentials of highways and trunk 
roads are 44,062 MW h and 164,239 MW h, respectively. In addition, the 
capacity and power generated of PVNBs in Suzhou can also be calculated 
by referring to the parameters of mainstream photovoltaic systems at 
current markets or related research (Qi, Jiang, Lv, & Yan, 2020). Table 6 
illustrates the calculated capacity and power generated for Suzhou’s 
PVNBs. 

According to the assessment results of RNBs, combined with the total 
costs of RNBs and the market price of traditional energy, an economic 
feasibility assessment of RNBs can be conducted. This will greatly help 
promote and develop PVNBs. It will accelerate the transformation and 
upgrading of the urban energy structure, and further promote the sus
tainable development of urban. 

6. Discussion and conclusion 

6.1 Discussion 

RNBs are important infrastructures in urban areas and are closely 
related to the planning of urban function districts, assessment of citizen 
residential environment quality, and exact mapping of urban traffic 
noise pollution. Additionally, the spatial distribution of RNBs can indi
rectly reflect some social regulars and patterns of urban areas (e.g., the 
urban resident’s distribution characteristics of rich and poor). Combined 
with the spatial distribution of RNBs and the footprint of urban build
ings, the policy markers and planners can utilize these data to 
acknowledge which places need to be built RNBs but have not yet been 
built. The governance of urban road noise is also an important part of the 
assessment of urban sustainable development. Digitizing the precise 
position and mileage of existing RNBs and integrating them into the 
city’s digital management platform, it will be profound for smart cities 
construct. Besides, in the context of the peak carbon and carbon neutral 
policy in China, PVNBs are a promising approach to help achieve the 
goal. Therefore, scientific and reasonable planning and improvement of 
urban road noise barriers will have a positive impact on the improve
ment of the urban living environment, the well-being of residents’ lives, 
and sustainable urban development. 

6.3. Conclusion 

This study proposes a method that utilizes SVIs and ensemble 
learning to obtain the precise positions and mileages of RNBs. The 
proposed method has been validated by use Suzhou city. The results 
show that the accuracy of the constructed ECM is 0.98 (±0.00), and the 
F1-score is 0.90 (±0.02), demonstrating that this approach is feasible for 
conveniently and quickly identifying RNBs at the city scale. This method 
can effectively compensate for the shortcomings of the precise positions 
and mileages of RNBs that cannot be easily obtained at the city scale. 

Then, this study uses this application case study that assessed the solar 
energy potential and electricity output of PVNBs to illustrate the 
importance of RNBs at the urban scale. Since the RNBs and the urban 
landscape are quite similar in different Chinese cities, the deep learning- 
based RNBs identification method proposed in this study can be applied 
in other Chinese cities, indicating a promising opportunity to reveal the 
spatial distribution patterns of RNBs over a large geographical extent. 

Our future study plans to improve the accuracy of RNB identifica
tion, make the identification results consistent with the real distribution 
of urban RNBs and make the RNB measurable so that vital attributes, 
such as the height and type of RNBs, are based on SVIs. To lay the 
foundation for a more precise assessment of the solar energy potential of 
PVNBs and finer mapping of the noise map in the cites. 
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