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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• HG-LSTM was formed by integrating 
spatial autocorrelation with encoder- 
decoder LSTM. 

• HG-LSTM performs better than other 
models in year-based and site-based CV 
tests. 

• Estimated results are consistent with in- 
situ measurements, with an R2 of 0.88. 

• Hourly PM2.5 values were generated 
with 2-km resolution seamlessly and 
accurately.  
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A B S T R A C T   

PM2.5 as a primary air pollutant has adverse effects on the environment and public health. The air quality 
monitoring stations are distributed sparsely and unevenly, making it difficult to provide continuous and precise 
regional measurements, which can be supplemented by satellite observations. However, most satellite-based 
approaches for air pollution estimation are difficult to extract the spatio-temporal dependencies effectively, 
leading to lower accuracy in long-term prediction and assessment of episodic changes. To fill this gap, a hier-
archical geospatial long short-term memory method (HG-LSTM) by considering the geospatial autocorrelation 
was proposed for hourly PM2.5 estimation with 2-km spatial resolution in Yangtze River Delta (YRD) urban 
agglomeration. The superior accuracy of the HG-LSTM is compared with other models via the site-based and 
year-based cross-validation (CV) tests, indicating geospatial autocorrelation exerts non-negligible impacts on the 
PM2.5 estimation. The estimations are consistent with the in-situ observations with site-based CV R2 of 0.88. The 
deviations less than 10 μ g/m3 account for over 80%. The PM2.5 spatiotemporal characteristics in the YRD reveal 
that PM2.5 concentrations are higher in the morning and decline significantly in the afternoon. As well, elevated 
PM2.5 values are accumulated in the northern regions of the study area. Although the prediction accuracy de-
creases as the augment of prediction timesteps, the results can still be useful to detect air pollution changes in the 
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near future. Overall, the HG-LSTM model can estimate hourly PM2.5 concentrations accurately and seamlessly, 
which is beneficial for air pollution monitoring and environmental protection strategy formation.   

1. Introduction 

PM2.5 particles having a diameter of 2.5 μm or less constitute a major 
air pollutant in China, which is associated with various adverse impacts 
on human health (Raaschou-Nielsen et al., 2013; Kampa and Castanas, 
2008). The air pollution study has attracted increasing attention, and it 
has also become popular to study how to improve the efficiency of air 
pollutants estimation and study the diffusion trend of air pollution as 
well as take effective environmental pollution control in advance to 
prevent serious air pollution incidents. High-resolution and 
wide-coverage PM2.5 data enable epidemiologists to analyze the PM2.5 
impacts on human health more effectively (Di et al., 2019). Numerous 
ground-level monitoring stations were constructed to measure the air 
pollution concentrations, and the observations are generally regarded as 
the most reliable and precise concentrations of air pollutants at ground 
level (Huang et al., 2021). Nevertheless, air quality monitoring stations 
are sparsely and unevenly distributed, making it difficult to provide 
continuous and precise measurements at a large scale. By contrast, 
satellite-based remote sensing datasets provide spatially continuous 
observations, which can complement ground-level measurements (Lee 
et al., 2012). Therefore, satellite observations can be integrated with 
ground-level measurements, making full use of their advantages to ac-
quire accurate air pollution estimation with high spatio-temporal reso-
lution (Wong et al., 2011; Wei et al., 2019). 

To date, PM2.5 concentration prediction methods based on satellite 
observations are categorized into data-driven models and chemical 
transmission models. For chemical transmission models, the air pollu-
tion concentrations can be estimated by simulating the transit, emission, 
deposition, and various chemicals undergoing chemical trans-
formations, including the Weather Research and Forecasting – Chemis-
try model (Sha et al., 2022), Community Multiscale Air Quality model 
(Wang et al., 2015) and the Goddard Earth Observing System chemical 
transport model (Li et al., 2020). For regions without in-situ air pollution 
measuring stations, chemical transmission models are frequently uti-
lized to estimate the concentrations of air pollutants based on emission 
inventories and environmental conditions. Generally, a large amount of 
calculation is carried out based on certain theoretical assumptions and 
prior knowledge to derive the final predicted pollutant concentration. 
Moreover, the estimation accuracy is likely to hinge on the accuracy of 
emission inventories, while it is difficult to obtain accurate and timely 
emission inventories, may be resulting in deviations from the actual 
concentrations (Han et al., 2008; Isukapalli, 1999; Sun et al., 2013). 
Since data from various sensors are becoming increasingly available, 
estimating air pollution concentrations based on data-driven models has 
become a popular trend (Li and Cheng, 2021; Zang et al., 2021). For 
estimating PM2.5 concentrations, non-linear and linear regression 
models were adopted for exploring the associations of the independent 
variables with air pollutants in earlier studies, including multivariate 
linear regression (MLR, Vlachogianni et al., 2011) and autoregressive 
integrated moving average models (ARIMA, Pozza et al., 2010). These 
methods have been widely used because of the interpretability of esti-
mated parameters based on some prior assumptions and complex 
calculation processes. Whereas it is difficult to use environmental big 
data efficiently and investigate specific associations of air pollution with 
the impact factors. More importantly, these methods are more likely to 
result in loss of important features and accumulation of redundant in-
formation, leading to poor estimations if the environmental conditions 
have changed. 

Recently, data derived from geospatial sources are being analyzed 
increasingly using deep learning and machine learning approaches for 
further untangling earth system problems (Reichstein et al., 2019). 

Satellite-derived aerosol optical depth (AOD) is commonly used for the 
estimations of particulate matter values (Guo et al., 2017; Hu et al., 
2014). For instance, a neural network was employed to predict daily 
PM2.5 concentrations based on aerosol optical depth (AOD) products by 
Di et al. (2016). Decision tree methods were also widely adopted to 
process air pollution problems. Random Forest (RF) was employed to 
explore the PM10 and PM2.5 spatiotemporal distribution at a national 
scale, based on AOD data and other auxiliary datasets (Chen et al., 2018; 
F. Jiang et al., 2021). The RF approach for PM2.5 estimation with a 
spatial resolution of 0.01◦, and further quantified the associations of 
PM2.5 with the impact factors in the study of Liu et al. (2018). Fan et al. 
(2020) developed a spatially local extreme gradient boosting for air 
pollutant estimation at urban scale. However, AOD products usually 
have a considerable amount of missing data due to cloud contamination 
and algorithm limitations, which tend to limit the prediction accuracy of 
PM2.5. Li et al. (2022) used the multimodal AOD data fusion method to 
fill the missing values in the AOD product, allowing to derive near 
real-time PM2.5 and PM10 estimation. Generally, extensive data pre-
processing of the multi-source AOD product integration are required. 
Previous studies suggest that Top of atmosphere (TOA) reflectance has a 
significant correlation with AOD, and it is widely adopted to retrieve 
AOD (Torres et al., 2002). Some researchers have also demonstrated that 
it is feasible and reliable to predict PM2.5 concentrations based on TOA 
reflectance (Shen et al., 2018; Yang et al., 2020). Additionally, the TOA 
reflectance generally has a higher spatial resolution than AOD products, 
thereby more detailed information of derived PM2.5 concentrations at 
higher spatial resolution can be presented. Similarly, deep learning 
methods for air pollution estimation are extensively used. Xing et al. 
(2021) proposed temperature-based deep belief networks to predict 
daily concentrations with better performance. Wang et al. (2021a) used 
a long short-term memory (LSTM) method for capturing the PM2.5 
temporal dependencies, generating national PM2.5 spatial distribution 
maps. However, spatiotemporal air pollution sequence estimation based 
on classic deep learning methods has to make improvements since the 
spatial information cannot be fully used. LSTM, which shows better 
performance in the estimation of time series sequence data than other 
deep learning algorithms, still lacks an understanding of geographical 
distance and spatial autocorrelation effects. The effectiveness of inte-
grating spatial characteristics of PM2.5 with LSTM for seamless and ac-
curate PM2.5 estimation has been presented by Wang et al. (2021b). 
Therefore, it is necessary to develop an air pollution estimation model 
that can automatically capture the representative spatial and temporal 
characteristics of air pollutants, to derive accurate and continuous 
regional air pollution estimations in a high spatiotemporal resolution. 

To tackle these problems, this study aims to develop a hierarchical 
geospatial LSTM (HG-LSTM) model for PM2.5 concentration estimation 
by synergistic data fusion of satellite datasets and ground-level mea-
surements based on deep learning algorithms. The HG-LSTM was con-
structed by incorporating the geospatial autocorrelation factor in LSTM, 
by stacking LSTM layers according to the encoder-decoder structure, 
making up for the inherent defects of LSTM and enhancing the spatio-
temporal sequence-to-sequence prediction capability. Comparative tests 
were designed following the year-based and site-based cross-validation 
(CV) schemes, and several popular models were also adopted to compare 
and assess the HG-LSTM performance. Results elucidate geospatial 
autocorrelation shows an important impact on PM2.5 concentration 
estimation. The HG-LSTM can fully learn and explore the representative 
spatiotemporal features from the input sequences, and generate 
continuous and reliable spatiotemporal PM2.5 distribution maps. 
Furthermore, our proposed model is capable of performing a multi-step 
prediction, which is beneficial to the government and relevant institutes 
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for formulating environmental protection regulations. 

2. Study area and data collection 

2.1. Study area 

This study focuses on estimating hourly PM2.5 concentrations over 
the Yangtze River Delta (YRD) region, where is a key economic zone 
with dense population and a large urban agglomeration in China. The 
boundary of the YRD region includes the mega-city Shanghai and 25 
other well-industrialized and urbanized cities of more than 211,000 
square kilometers. In this study, an expanded YRD urban agglomeration 
was defined by including Shanghai, and three provinces of Zhejiang, 
Jiangsu and Anhui (Fig. 1). Because of the rapid development of trans-
portation, industry and urbanization in this region, air quality issues 
have attracted great concerns. Even though the air quality has been 
significantly improved in recent years as related regulations were 
introduced by the government and institutes, the recommended level of 
the World Health Organization (WHO) in most cities still cannot be 
satisfied. 

2.2. Data collection 

2.2.1. In-situ PM2.5 observations 
In our study, hourly PM2.5 observations at ground level within the 

expanded YRD area in 2018 and 2019 can be downloaded from the 
China National Environmental Monitoring Center (CNEMC, http://www 
.cnemc.cn) and deemed as the ground truths. Fig. 1 depicted the 
geographical distribution of air pollutant measuring stations. Due to 
weather conditions or malfunction of monitoring devices, missing 
values of measurements are inescapable. Data from stations which 
missing records account for at least 30% of a year were removed. In 
terms of the missing values at remaining stations, linear interpolation 
method as a commonly used interpolation method for air pollution data 
(Zhao et al., 2019; Lu et al., 2021), was adopted to convert the missing 
data to expected values. After data preprocessing, more than 200 in-situ 
stations remained in the study area to provide ground truths. 

2.2.2. Top of atmosphere (TOA) reflectance from AHI 
The main predictor that can affect the accuracy of PM2.5 estimation 

was TOA reflectance measured by the Advanced Himawari Imager 
(AHI), which helps observing the environment of the earth and 
providing rainstorm, typhoon and weather prediction, and other related 

applications. Generally, reflectance records from band 1 (0.46 μm), band 
3 (0.64 μm) and band 6 (2.3 μm) are used to retrieve the AOD. In this 
study, the hourly reflectance measurements of band 1, band 3 and band 
6 with 2-km spatial resolution were selected and acquired from the 
Japan Aerospace Exploration Agency Monitor P-Tree system (htt 
ps://www.eorc.jaxa.jp/ptree/). Besides, solar azimuth angle (SOA), 
solar zenith angle (SOZ), satellite azimuth angle (SAA), satellite zenith 
angle (SAZ), these four observation angles were also taken into 
consideration since these parameters play important roles in retrieving 
AOD. The records of these variables were concatenated and deemed as 
main predictors in our study. The TOA reflectance data were collected 
under all-sky conditions. Since there are some missing values in cloud- 
removed reflectance, which may also affect the continuity of the 
regional estimated PM2.5. Additionally, as suggested by previous studies, 
using original TOA reflectance to estimate PM2.5 concentrations is a 
better option for non-linear deep learning and machine learning models, 
since they are capable of learning complex relationships between 
dependent and independent variables. In addition, better accuracy can 
be achieved when using original TOA reflectance for PM2.5 estimation 
than cloud-removed TOA reflectance (Wang et al., 2021b; Yang et al., 
2022). It should be noted that the AHI is a geostationary satellite and the 
coverage of the observation area varies in the time domain, resulting in 
non-negligible missing values. Therefore, the observations from 08:00 to 
17:00 local time (UTC+8) were selected, corresponding to the daytime 
over the study region. 

2.2.3. Auxiliary datasets 
In addition to TOA reflectance from the AHI, other influencing fac-

tors like meteorological information, normalized difference vegetation 
index (NDVI), digital elevation model (DEM), and socio-demographic 
factors (i.e., population density and road density) were also included 
to improve the PM2.5 estimation accuracy. The meteorological records 
can be acquired from the ERA-5 land, which is a reanalysis dataset (https 
://cds.climate.copernicus.eu/). Boundary layer height (BLH), surface 
pressure (SP), 2-m temperature (T2M), specific humidity (SH), 10-m 
east and north wind speed (U10M, V10M) with 0.25◦ × 0.25◦ spatial 
resolution and hourly temporal resolution. DEM data can be obtained at 
the Shuttle Radar Topography Mission (SRTM) (https://srtm.csi.cgiar. 
org/srtmdata/), which is a public and popular dataset with a 90-m 
spatial resolution and global coverage. The NDVI records were extrac-
ted from the MODIS product (MOD13A1, https://search.earthdata.nasa. 
gov/search). The spatial resolution is 500 m and the temporal resolution 
is 16 days. The population density was obtained based on the LandScan 

Fig. 1. Geographical distribution of air pollution monitoring stations and study region. The background maps display the elevation of the study area. Green dots 
denote the geospatial location of air pollution monitoring stations. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 
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global grid population distribution dataset (https://landscan.ornl.go 
v/landscan-datasets), and The road density was derived from road 
vector data provided by Open Street Map (https://www.openstreetmap. 
org/). Road density data were defined according to the total length of 
roads within each grid and the area of the grid. 

2.3. Data preprocessing 

As aforementioned, the auxiliary datasets extracted from satellite 
observations were from different sources, thereby resampling was 
indispensable to ensure consistency. The datasets were predefined to the 
same spatiotemporal resolution as that of the TOA reflectance by the 
bilinear interpolation approach. Subsequently, the whole study area was 
in geographic grids of about 2-km spatial resolution. Afterwards, the 
geospatial autocorrelation can be calculated grid by grid. Overall, the 
expanded YRD urban agglomeration in this study consists of 83,742 
independent 0.02◦ grid cells. For each grid, all datasets were concate-
nated to estimate the surface PM2.5, including TOA reflectance, meteo-
rological variables, geographical data, socio-demographic factors, 
geospatial autocorrelation. The grid-based datasets were matched with 
the ground-level PM2.5 measurements spatially and temporally. If there 
are several monitoring stations within a grid, the averaged in-situ PM2.5 
measurements were calculated and matched with other observations in 
the grid. The grids with air pollution measuring stations were extracted 
and employed for training and evaluating the estimated models. 

3. Methodology 

3.1. Long short-term memory 

LSTM, which stems from the recurrent neural network (RNN), was 
further developed by Hochreiter and Schmidhuber (1997) to rectify the 

vanishing gradient problem. Different from common feedforward neural 
networks (i.e., Artificial Neural Network), LSTM has a set of recurrently 
connected blocks, which not only be used to process single input data 
but also sequences of data, like time-series datasets and video. A stan-
dard LSTM structure is composed of three gates, namely a forget gate, an 
output gate and an input gate (Fig. 2a). The forget gate (ft) is used to 
decide whether to throw away unnecessary information. Then the input 
gate (it) is designed for updating the important values by a sigmoid 
function, and a hyperbolic tangent function is used for generating a new 
candidate values vector and storing them in the current cell state. 
Finally, filtering the output information by the output gate (ot), simul-
taneously, the value was reshaped in the range of − 1–1, then multiplied 
by the sigmoid function output via a hyperbolic tangent function. The 
expected output is finally obtained. The specific processes can be 
explained: 

ft = σ
(
Wf ⋅ [ht− 1, xt] + bf

)
(1)  

it = σ(Wi ⋅ [ht− 1, xt] + bi) (2)  

C̃t = tanh(WC ⋅ [ht− 1, xt] + bC) (3)  

Ct = ft*Ct− 1 + it*C̃t (4)  

ot = σ(Wo ⋅ [ht− 1, xt] + bo) (5)  

ht = ot*tanh(Ct) (6)  

where ot it, and ft, represent the output gate layer, the input gate layer 
and the forget gate layer respectively; The input values at the tth timestep 
was represented by xt; ht− 1 and ht denote the output values at the t − 1th 

and tth timestep; σ( ⋅) and tanh( ⋅) are sigmoid and hyperbolic tangent 

Fig. 2. (a) The architecture of an LSTM cell; (b) Encoder-decoder LSTM network structure; (c) The framework of HG-LSTM for the estimation of PM2.5 
concentrations. 
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function; W and b denote the weights and offsets of the corresponding 
layer; C̃t and Ct are candidate values stored to cell state at the tth time-
step and cell state. Thanks to the special architecture, it is beneficial for 
learning the long-term dependencies from the input sequences. 

3.2. Construction of the hierarchical geospatial long short-term memory 

It is customary to note that the distribution pattern of PM2.5 values 
has noticeable spatiotemporal dependencies. Specifically, at a given 
location and time step, PM2.5 values of surrounding areas and mea-
surements in the past hours or days at the same area tend to have a 
similar distribution pattern (Wang et al., 2021b; Li et al., 2017). LSTM 
has a prominent performance in processing time-series data because of 
its specialized structure. Nonetheless, spatial dependence is commonly 
ignored to some extent. Therefore, geospatial autocorrelation was 
considered to be introduced when training the LSTM for estimating air 
pollution. For each grid at a given timestep, the geospatial autocorre-
lation can be represented as: 

GA=

∑n
i=1wi,jPM2.5,i
∑n

i=1wi,j
(7)  

wi,j =
1

d2
i,j

(8)  

where GA denotes geospatial autocorrelation. It is used as an input 
variable and concatenated with other predictors to estimate hourly 
PM2.5 values. i means the grid with PM2.5 monitoring stations. wi,j is the 
inverse distance squared weight matrix for calculating the geospatial 
autocorrelation, which was constructed based on the distance between 
air pollution monitoring stations. PM2.5,i is the ground-level observa-
tions. di,j is the spatial distance between grid i where a monitoring sta-
tion exists and target grid j. n refers to the number of nearby stations to 
be considered when estimating the geospatial autocorrelation that was 
set to 7 according to the experiment results shown in Table S1. The 
optimal input variable selection scheme was also implemented and more 
details are discussed in the supplementary material (Table S2). 

Additionally, in this study, LSTM layers were stacked according to 
the encoder-decoder structure, which is capable of providing sequence- 
to-sequence accurate prediction results (Lyu et al., 2020). The 
perspective of the encoder-decoder model construction is to create a 
vector of fixed length by encoding the input sequence, learning effective 
features from the input sequence, then decode the fix-length vector and 
get the corresponding predicted sequence. It is worthy mentioning that 
the length of the input sequence can be different from that of the output 
sequence, which can be applied to address multi-step prediction prob-
lems. In this study, a hierarchical geospatial long short-term memory 
(HG-LSTM) can be developed based on considering geospatial autocor-
relation and stacking LSTM based on encoder-decoder architecture to 
predict PM2.5 concentration in the following timestep. As shown in 
Fig. 2b, the encoder-decoder structure has an encoder network and a 
decoder network. The encoder network is implemented to learn the 
representative features from the input sequence. For the decoder 
network, which is constructed to generate the forecasted PM2.5 values at 
the next timestep sequentially. The overall HG-LSTM model structure for 
PM2.5 concentration prediction is displayed in Fig. 2c. The model con-
sists of an input sequence layer and the size is the same as the di-
mensions of inputs. Then the encoder-decoder network follows and it 
comprises two LSTM layers, which have 200 cells and Rectified Linear 
Unit (ReLU) is the activation function. Finally, the first dense layer’s cell 
size sets to 100 and the size of the last one is the same as the dimension of 
outputs for the two fully connected layers. A dropout layer is involved 
with a dropout rate of 0.3. 

3.3. Evaluation criteria of HG-LSTM performance 

To assess the effectiveness and reliability of the HG-LSTM model, two 
different cross-validation schemes were presented to assess the HG- 
LSTM performance, namely year-based and site-based CV (Liu et al., 
2020). The datasets were separated into two groups by the calendar year 
in the year-based CV scheme. Samples in the first group and last group 
were used for training and testing, respectively. The training process was 
repeated two times to ensure each of the two groups was used exactly 
once as testing data. It means that the datasets in 2018 and 2019 were 
alternately used as the training and testing set to avoid breaking the time 
continuity and long-term features, because the HG-LSTM estimation 
accuracy is contingent upon learning long-term features from 
time-series datasets. Besides, to reveal the HG-LSTM spatial perfor-
mance, the site-based CV method was included, and the 10-fold CV was 
employed to assess the performance of HG-LSTM, which is also benefi-
cial for avoiding overfitting. To be specific, the datasets were ordered 
chronologically and divided into ten equal-sized subsamples based on 
the station locations. A single subsample was retained for testing and 
other sub-groups were for training. This training and testing process was 
repeated 10 times to guarantee that every sub-group was adopted once 
for testing during the processing period. 

With regard to implementing a comprehensive evaluation of the HG- 
LSTM performance, contrast tests were constructed for evaluating the 
HG-LSTM effectiveness by comparing with several popular models 
which were widely adopted in air pollution estimation, including RF, 
Extreme Gradient Boosting (XGBoost), and Artificial Neural Network 
(ANN) (Zamani Joharestani et al., 2019; Maleki et al., 2019; Stafoggia 
et al., 2019). Random search hyperparameter optimization scheme was 
used to tune the contrast model hyperparameters, and detailed setups of 
the model hyperparameters can be found in Table S3. Additionally, 
multivariate linear regression (MLR) was also employed to provide a 
baseline reference. In addition, traditional LSTM without considering 
geospatial autocorrelation and encoder-decoder structure was also 
involved. The coefficient of determination R-squared (R2), mean abso-
lute error (MAE), absolute error (AE) and root-mean-square error 
(RMSE) were used to assess and compare the estimation accuracy be-
tween different models. Accuracy evaluation criteria can be defined as 
the following formulas: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(yi − ŷi)
2

n

√

(9)  

MAE=

∑n
i=1|yi − ŷi|

n
(10)  

R2 = 1 −

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (11)  

AE= |ŷi − yi| (12)  

where ŷi and yi denote estimated results and ground-level PM2.5 ob-
servations, respectively; The total number of samples is denoted by n; yi 
represents averaged PM2.5 measurements at ground level. 

4. Results and discussion 

4.1. Evaluation of the HG-LSTM performance for PM2.5 estimation 

To verify the HG-LSTM performance, contrast tests were imple-
mented to compare the estimation accuracy of the HG-LSTM and other 
popular algorithms based on site-based and year-based CV tests. Table 1 
shows the estimated results of different algorithms. As demonstrated, on 
account of the monotonous structure and limited learning capability, 
MLR elucidates the lowest accuracy with an R2 of around 0.2. ANN 
performs better with a year-based CV R2 of 0.26, RMSE of 29.02 μg/m3, 
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and MAE of 19.93 μg/m3 and RMSE of 27.11 μg/m3, MAE of 19.06 μg/ 
m3, and site-based CV R2 of 0.31. RF and XGBoost have comparable 
estimation results of year-based contrast tests, while RF demonstrates 
better performance in site-based validation tests, which tends to be 
attributed to the similar structure constructed based on decision-tree 
ensemble machine learning algorithms. Traditional LSTM presents 
much better accuracy of PM2.5 concentration estimation with RMSE of 
17.26 μg/m3, site-based CV R2 of 0.69 and MAE of 13.53 μg/m3, indi-
cating that LSTM is capable of processing time series datasets with better 
accuracy. The estimation results based on HG-LSTM are superior to 
other models, with RMSE of 11.34 μg/m3site-based CV, R2 of 0.88, and 
MAE of 7.31 μg/m3. The results imply that taking the geospatial auto-
correlation of PM2.5 concentrations into consideration and stacking the 
encoder-decoder structure can ameliorate the estimation accuracy, as 
well as affirm the effectiveness and feasibility of our proposed model. 

It can also be found that for all models, the estimation accuracy of 
site-based CV tests is higher than that of year-based CV tests, except 
XGBoost. Two possible reasons are accounting for the issue. One of the 
possible reasons is the discrepancy in the amount of training and testing 
datasets between year-based and site-based CV contrast tests. In addi-
tion, for year-based CV tests, as the training datasets are completely 
independent of the testing datasets, adequate features cannot be 
explored, which was also suggested by other researchers (Wang et al., 
2021b; Wei et al., 2019). Furthermore, ANN, RF and XGBoost are clas-
sical machine learning methods, whereas LSTM and HG-LSTM can be 
classified as deep learning algorithms. Comparing the estimation results 
of all models, the PM2.5 concentrations estimated by machine learning 
algorithms exhibit worse estimation accuracy than deep learning 
methods. The possible reason is that traditional machine learning 
models are confined to processing massive amounts of data and time 
series datasets. In contrast, LSTM and HG-LSTM can learn representative 

features from sequence inputs and acquire expected outputs. Addition-
ally, after integrating the geospatial autocorrelation with LSTM, our 
proposed model can both explore and analyze the spatial and temporal 
features from the time series sequence, thereby the estimation accuracy 
can be substantially enhanced. Overall, the estimation results demon-
strate that the geospatial autocorrelation makes paramount contribu-
tions to promoting hourly PM2.5 estimation accuracy. 

To provide a comprehensive and quantitative assessment, the dis-
crepancies between ground-level measurements and estimated results 
based on different models in year-based and site-based CV tests were 
calculated. The values of AE were divided into eight classes, namely [0, 
10], (10, 20], (20, 40], (40, 60], (60, 80], (80, 100], (100, 200] and 
(200, 300]. The frequencies of AE were plotted and displayed in Fig. 3. 
The latter three classes account for a small percentage for all models and 
are difficult to distinguish in the figure, thereby the values have been 
labeled for better comparison. As depicted, the majority of the de-
viations between in-situ measurements and estimated results are smaller 
than 10 μg/m3 for the two CV tests, taking up from around 30%–80%. 
Especially for the HG-LSTM model, the error in the first range makes up 
around 80% of the total. Followed by the second class (10, 20] and the 
third class (20, 40], the results estimated by different models constitute 
from around 10% to nearly 30%, except HG-LSTM, whose errors located 
in the third range are less than 5%. For biases larger than 40 μg/m3 but 
smaller than 60 μg/m3 between ground truth and estimations derived by 
MLR and the machine learning models, the percentages exceed 5%. In 
terms of LSTM and HG-LSTM, the errors in this range are just small 
fractions, accounting for about 2% and 1%, respectively. Analogously, 
the percentages of the discrepancies in the range from 60 to 80 μg/m3 

are around 2% for MLR and the machine learning models, but for LSTM 
and HG-LSTM, they are less than 1%. Other than MLR in the site-based 
CV tests, the percentages of errors in the sixth and seventh classes are 
below 1% for all models. For all models, the percentages of the biases 
greater than 200 μg/m3 but smaller than 300 μg/m3 are under 0.1%, for 
LSTM and HG-LSTM, the numbers of the errors account for less than 
0.01%. By comparing the AE distributions of LSTM and HG-LSTM 
models, it is obvious that the percentage of errors less than 10 μg/m3 

increases and the proportion of other classes decreases after considering 
the effects of geospatial autocorrelation. It demonstrates that on the 
basis of the temporal dependence, introducing geospatial autocorrela-
tion is beneficial for improving the estimation accuracy. As shown in 
Fig. 3, the errors of site-based and year-based CV tests are comparable, 
but slight differences can be found in the estimations of the machine 
learning models. In conclusion, HG-LSTM and LSTM have better 

Table 1 
Contrast test results based on different models.  

Model Year-based CV (N = 781,100) Site-based CV (N = 153,300) 

RMSE MAE R2 RMSE MAE R2 

MLR 31.71 22.13 0.221 28.30 20.49 0.228 
ANN 29.02 19.93 0.264 27.11 19.06 0.312 
RF 24.83 17.76 0.384 24.06 16.29 0.438 
XGBoost 24.14 17.51 0.417 24.89 17.84 0.379 
LSTM 19.62 15.38 0.583 17.26 13.53 0.686 
HG-LSTM 11.85 7.67 0.867 11.34 7.31 0.878  

Fig. 3. Comparison of AE distribution frequencies between HG-LSTM and other models based on (a) year-based CV test results; (b) site-based CV test results.  
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performance for processing time series prediction. In addition, a large 
proportion of the deviations of the HG-LSTM are less than 10 μg/m3, and 
a small portion of the errors are greater than 40 μg/m3. The results 
illustrate that geospatial autocorrelation carries much weight in the 
PM2.5 estimation. Additionally, integrating geospatial autocorrelation 
with LSTM can compensate for the inherent shortcomings of LSTM in air 
pollution estimation, which can enhance the accuracy and reliability by 
taking into account both adjacency effects and temporal dependence. 

4.2. Comparison between the estimations of the HG-LSTM performance 
and in-situ measurements 

Apart from the estimation of hourly PM2.5 concentrations, different 
temporal scales including daily and monthly average estimations of the 
HG-LSTM model and the ground-level measurements, were calculated 
and analyzed to make a comprehensive understanding of the HG-LSTM 
model estimation performance. The density scatter plots of three tem-
poral scales were displayed in Fig. 4. As depicted, the daily average 
estimation results of year-based CV tests derived by the HG-LSTM model 
show a better consistency than hourly estimation, with MAE of 3.89 μg/ 
m3, RMSE of 5.61 μg/m3 and R2 of 0.94. A higher R2 and lower errors 
can be observed in the monthly mean estimated PM2.5 values in Fig. 4c. 
Fig. 4d and e are the scatter plots of the estimated results based on site- 
based CV tests, and the accuracy of site-based CV contrast tests is better 
than that of year-based CV. RMSE, R2and MAE of site-based CV at daily 
temporal resolution are 4.65 μg/m3, 0.96 and 3.22 μg/m3, respectively. 
Monthly average estimations of site-based CV have the best accuracy 
with MAE of 1.89 μg/m3, RMSE of 2.30 μg/m3 and R2 of 0.98. 

It can be found that for both year-based and site-based CV tests, the 
daily and monthly average PM2.5 estimations have much better accuracy 
than hourly estimations. It in turn means the HG-LSTM shows a better 
accuracy at a coarser temporal resolution as averaged values can 
effectively remove random errors to improve the estimation accuracy 
(Wang et al., 2021b). Notably, the monthly average PM2.5 estimations of 
site-based CV tests are extremely consistent with the observations at 
ground level (R2 = 0.98). The results further validate the reliability of 
the HG-LSTM approach for PM2.5 estimation at multiple temporal 
resolutions. 

Additionally, the scatter plots of hourly PM2.5 values derived from 

the contrast models were also displayed in Figures S1 – 2. The slopes of 
the linear fit in MLR, ANN, RF and XGBoost are smaller than 0.5, sug-
gesting that the higher values (>100 μg/m3) estimated by these models 
were significantly underestimated and lower values (<20 μg/m3) were 
overestimated. Compared to the statistical and machine learning-based 
models, LSTM has better performance, while the remarked underesti-
mation and overestimation still can be observed. The possible reason for 
the underestimation or overestimation may be due to inadequate sam-
ples of higher or lower PM2.5 values, thereby the estimated models 
cannot fully learn and capture the representative features from the in-
puts. In addition, the biases between ground-level measurements and 
satellite-based observations also contribute to the estimated errors 
(Wang et al., 2021b). After considering geospatial autocorrelation, the 
underestimation and overestimation can be mitigated effectively, and 
the estimated results are more consistent with the ground truth. 

Furthermore, the comparison between in-situ measurements and 
estimated results of the HG-LSTM model at a daily resolution for several 
typical stations in 2019 was plotted and displayed in Fig. 5. The selected 
stations are located in the megacity Shanghai, provincial capitals, 
boundary areas, suburban cities, well-industrialized and urbanized cit-
ies, as well, the coordinates of the stations have been added in Fig. 5. As 
depicted, the estimations are in overall remarkable agreement with the 
ground truths, specifically, RMSE, R2 and MAE values vary in the range 
of 3.73–7.93 μg/m3, 0.85–0.97 and 2.76–6.65 μg/m3. Pronounced dis-
crepancies can be found when higher or lower values exist in the time- 
series measurements, which is also suggested by other researchers (Tian 
et al., 2021; Wang et al., 2021b). As shown in Fig. 5, the values of PM2.5 
larger than 400 μg/m3 can be observed usually at the beginning or end of 
the year. Whereas in the middle of the year, PM2.5 concentrations are 
generally lower with fewer fluctuations commonly below 100 μg/m3, 
where the HG-LSTM model exhibits larger prediction errors. Moreover, 
the maximum daily average PM2.5 concentrations for most stations are 
under 300 μg/m3, except a few stations located in well-industrialized 
areas. It implies that PM2.5 concentrations have a significant geo-
spatial autocorrelation. In summary, the estimations of the HG-LSTM 
model exhibit a prominent consistency with the ground-level 
measurements. 

Fig. 4. The scatter plots of PM2.5 concentrations estimated by the HG-LSTM based on year-based (2019) and site-based CV (2018–2019) tests. (a) Hourly, (b) Daily 
average, (c) Monthly average PM2.5 concentrations of the year-based CV; (d) Hourly, (e) Daily average, (f) Monthly PM2.5 concentrations of the site-based CV. 
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4.3. Estimated PM2.5 spatiotemporal distribution patterns 

In addition to statistical estimation indicators, the spatial and tem-
poral distribution patterns should be analyzed and discussed. The 
geographical distribution of mean estimated PM2.5 values for each hour 
(00:00 UTC ~ 09:00 UTC, 08:00–17:00 local time correspondingly) in 
2019 was displayed in Fig. 6. In the early morning, the highest estimated 
PM2.5 values were observed and the lowest estimations are at 16:00 local 
time. The possible reason is that PM2.5 concentrations from vehicles are 
greater in the morning peak hours. On account of the dissipation and 
diffusion characteristics, the PM2.5 concentrations decrease gradually in 
the afternoon. As depicted, the polluted areas are in the northern regions 
of the YRD where the peaked concentrations are more than 70 μg/m3. 
After that, there is a significant decline in the afternoon. The lowest 
hourly mean PM2.5 values are in the southern area, and the city of Lishui 
in Zhejiang province with estimated PM2.5 values of less than 10 μg/m3. 
Lower PM2.5 values can be discovered in the coastal regions, which is 
likely caused by the meteorological effects and geographical conditions 
(Xu et al., 2020). 

To further display the predictability of the HG-LSTM model, the 
seasonal and annual average PM2.5 concentrations distribution maps 
were derived (Fig. 7). Using a coarser time scale is beneficial to 
analyzing and exploring the spatio-temporal characteristics of PM2.5 

concentrations because there are more distinct spatiotemporal distri-
bution patterns. From a temporal perspective, the most polluted season 
is winter, and summer has the cleanest air quality. In addition to the 
effects of vehicle emission and biomass burning, the changes in mete-
orological conditions between different seasons contribute to the 
distinct differences in the four seasons (Qiu et al., 2013; Hou and Wu, 
2016). As shown in Fig. 7e, the annual mean PM2.5 concentrations are 
smaller than 50 μg/m3 in most regions. From a spatial perspective, 
similar to the hourly average PM2.5 spatial distribution (Fig. 6), esti-
mations of the northern regions at lower elevations are higher than those 
in the southern areas at higher elevations. High PM2.5 concentration 
clusters can be observed in Fuyang, Bozhou, Huaibei, Suzhou and Xuz-
hou cities, as well. The elevated concentrations seem to extend to the 
surrounding cities in Anhui and Jiangsu province in winter. Significantly 
low-concentration clusters can be found in southern coastal cities and 
western areas with mountains in the study area. 

According to the spatiotemporal PM2.5 estimations, some policy 
implications and promotion for pollution control can be provided and 
discussed. First, public transportation and renewable energy should be 
encouraged with the purpose of reducing the air pollution especially in 
the morning peak hours. Analogously, anthropogenic biomass burning is 
supposed to be strictly controlled especially in the winter. It can be 
found that the northern regions of the YRD experienced severe PM2.5 

Fig. 5. Comparison of daily average PM2.5 concentrations between estimations of the HG-LSTM and ground-level measurements in 2019. Orange lines denote the 
estimated results and blue lines are the ground-level measurements. The y-axis and x-axis represent, respectively, PM2.5 concentrations, and the day of the year. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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pollution, thereby more efforts and rigorous pollution control policies 
should be implemented in these areas. Finally, closely cooperation be-
tween governments is also important for regional air pollution 
mitigation. 

4.4. Application of hourly PM2.5 estimations during a severe pollution 
episode 

The PM2.5 concentrations estimated by the HG-LSTM approach 
achieve a satisfactory accuracy with high spatial resolution. Therefore, 

based on the hourly PM2.5 estimations, the spatial evolution and trans-
portation of PM2.5 during a severe pollution event in the YRD region can 
be illustrated. The spatial distribution of the estimated PM2.5 on 25th 
January 2019 accompanied by the ground-level measurements was 
displayed in Fig. 8. This pollution event mainly erupted in the Anhui 
province and lasted throughout the morning. In the morning, extensive 
pollution can be observed in Fuyang, Bozhou, Huainan, Hefei and 
Chaohu cities due to the relatively high industrialization level. Higher 
PM2.5 values gradually spread to the surrounding cities, leading to an 
increase in the pollution event. The pollution then dissipated gradually 

Fig. 6. Geospatial distribution of the hourly mean PM2.5 concentrations in 2019 derived by the HG-LSTM. (a) ~ (j): 00:00–09:00 UTC.  
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in the northwestern regions of the YRD from 06:00–09:00 UTC. Another 
significant pollution can be found at the border of Hangzhou and 
Shaoxing cities, which evolved similarly with an increase in the morning 
but a decrease in the afternoon. An overall decline dominated in Jiangsu 
province, especially the eastern border cities. Lower PM2.5 values mainly 
accumulated in the southwestern cities of Zhejiang province, remaining 
at a stable level during the pollution event. The spatial distribution of 
estimated results shows a good agreement with that of ground-level 
measurements during the pollution period. As well, the estimated re-
sults can reveal the evolution of the pollution event more clearly than in- 
situ measurements. 

4.5. Multi-step prediction accuracy assessment 

As aforementioned, the HG-LSTM model exhibits satisfactory accu-
racy for one-step PM2.5 concentration prediction. To further evaluate the 
HG-LSTM performance, multi-step prediction tests of PM2.5 concentra-
tions were conducted. By virtue of the HG-LSTM structure, it can be 
applied for sequence-to-sequence prediction and the length of the input 
sequence can be different from that of the output sequence. The multi- 
step prediction tests were implemented based on five different 
schemes in which the values of independent variables of the current 
timestep were adopted for PM2.5 concentration prediction of the 
following three, five, seven, ten and twenty timesteps (t + n hours) ac-
cording to year-based and site-based CV tests in Section 4.1. RMSE, MAE 
and R2 were employed to evaluate the multi-step prediction perfor-
mance of HG-LSTM (Table 2). It can be found that the prediction ac-
curacy declines significantly when the prediction intervals become 
larger. RMSE, R2and MAE values vary in the range of 14.56–24.84 μg/ 
m3, 0.46–0.75, 10.42–18.11 μg/m3, respectively. Moreover, the esti-
mation accuracy of site-based CV tests is superior to that of year-based 
CV tests, except for the PM2.5 concentration prediction of the next 20 
h. It should be mentioned that the estimated results based on our pro-
posed model become less accurate and reliable when the number of 
timesteps increases, which is also presented by other researchers (Kow 
et al., 2020; Yang et al., 2019). The reasons could be attributed to the 

following points. Firstly, owing to the error accumulation issue, it is 
related to the prediction deviations with the augment of prediction 
timesteps (Hewamalage et al., 2021). Secondly, PM2.5 prediction is 
affected by various external factors (Ma et al., 2020; T. Jiang et al., 
2021). For instance, meteorological factors are regarded as commonly 
related external factors, which are difficult to estimate the unexpected 
changes, thereby becoming non-negligible obstacles for the long-term 
PM2.5 prediction. In conclusion, the HG-LSTM model can provide ac-
curate and reliable short-term PM2.5 predictions, and the long-term 
prediction results can be used as a reference for future changes of air 
pollutants and relevant policy formulation. 

5. Limitations and implications for future work 

HG-LSTM was developed by integrating geospatial autocorrelation 
with LSTM which can effectively enhance PM2.5 estimation accuracy. 
Hourly PM2.5 values with 2-km spatial resolution over the YRD can be 
generated accurately and seamlessly. Nevertheless, there are several 
limitations that need to be improved in our future work. First, linear 
interpolation was used to fill the missing values of ground-level PM2.5 
measurements in our study, aiming to ensure temporal continuity for 
HG-LSTM estimation. Bai et al. (2020) suggested that the statistical 
interpolation methods are difficult to accurately recover the missing 
PM2.5 values, which may induce certain biases of the predicted PM2.5 
values. Therefore, more reliable interpolation approaches should be 
developed and used to reduce the uncertainties of the final estimated 
results in our future work. As suggested by previous studies, the calcu-
lation strategies of geospatial autocorrelation and the density of in-situ 
monitoring stations are critical for air pollution estimations (Bai et al., 
2022; Wang et al., 2022). Although geospatial autocorrelation exerts 
vital impacts on improving PM2.5 estimated accuracy, there may be 
distortions in the spatial distribution of PM2.5 estimated results to some 
extent, especially in the regions with spare ground-level monitoring 
stations. Therefore, we will spare no effort working on exploring the 
optimal full-coverage PM2.5 mapping strategy based on spatiotemporal 
analysis, as well as multiscale and multisource data fusion. 

Fig. 7. Geospatial distribution of seasonal and yearly average PM2.5 concentrations in 2019 derived by the HG-LSTM. (a) MAM; (b) JJA; (c) SON; (d) DJF; (e) Annual.  
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6. Conclusion 

This study presents a multi-disciplinary approach for air pollution 
estimation. Because of the spatiotemporal autocorrelation of the PM2.5 
distribution pattern, this study proposes a hierarchical geospatial LSTM 
(HG-LSTM) model by adding geospatial autocorrelation to LSTM with 
the encoder-decoder structure for hourly PM2.5 concentration estima-
tion in the YRD region on the basis of in-situ measurements and satellite 
observations. Contrast tests were implemented according to year-based 
and site-based CV tests and the performance was evaluated by 
comparing with other popular models. The results imply the HG-LSTM 
can effectively capture the representative spatiotemporal features 
from time series datasets after considering the geospatial autocorrela-
tion effects, and the estimations are highly consistent with in-situ 
measurements for both year-based and site-based CV tests (R2 = 0.87). 
It implies that spatial autocorrelation is critical in estimating PM2.5 
values and improves the estimation accuracy. Additionally, the 

spatiotemporal distribution pattern in the YRD was explored and dis-
played. From the temporal perspective, higher concentrations can be 
observed in the early morning, a declining trend in the afternoon is 
followed. The variations of PM2.5 values in different seasons are signif-
icant. Winter has the highest levels followed by autumn and spring, 
whereas summer shows the best air quality. In terms of the spatial 
perspective, northern regions have larger estimated PM2.5 values than 
western and southern cities in the study area. Based on the multi-step 
prediction tests, it can be found that the HG-LSTM model can provide 
accurate and reliable short-term prediction results, as well as a reference 
for long-term air pollutant changes. In conclusion, the HG-LSTM method 
is capable of estimating regional PM2.5 values accurately and seamlessly 
with a high temporal and spatial resolution, and the results also illus-
trate the potential use for reliable estimations of other air pollutants and 
air quality, which is beneficial for obtaining a comprehensive under-
standing of air pollutant distribution and relevant policy formulation to 
abate the adverse effects of air pollution on human health and the 
environment. 
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Fig. 8. An example of PM2.5 spatial evolution during a severe pollution episode, 2019. (a)–(j): 00:00–09:00 UTC.  

Table 2 
Evaluation of multi-step prediction performance of HG-LSTM.  

timestep (n hours) Year-based CV Site-based CV 

RMSE MAE R2 RMSE MAE R2 

3 16.85 11.59 0.710 14.56 10.42 0.751 
5 19.24 12.16 0.646 18.96 11.93 0.685 
7 21.87 15.14 0.595 20.78 13.09 0.622 
10 23.31 16.31 0.536 22.32 15.64 0.557 
20 24.28 17.55 0.477 24.84 18.11 0.460  
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