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A B S T R A C T   

Solar irradiation maps are fundamental geospatial datasets that have been used in a variety of research fields. 
However, it is difficult to estimate the continuous distribution of solar irradiation over large areas accurately by 
using conventional interpolation or extrapolation methods based on only a few observation stations. To tackle 
this problem, this study proposed a method to estimate spatially continuous land surface solar irradiation based 
on four machine learning models, namely, Gradient Boosting Machine (GBM), Random Forest (RF), Support 
Vector Regression (SVR), and Multilayer Perceptron (MLP). Clear-sky solar irradiation data were computed based 
on time and location, cloud optical thickness (COT) and aerosol optical thickness (AOT) that significantly in-
fluence solar irradiation were retrieved from Himawari-8 meteorological satellite images, and land surface solar 
irradiation data were obtained from observation stations for training and evaluation. To explore the weather 
effects on land surface solar irradiation, air temperatures, humidity, wind, and atmospheric pressure were also 
quantified and integrated into the models. As a comparative study, this study collected six-year historical data 
and estimated solar distribution at a 5-km spatial resolution in Australia and China. Based on the coefficient of 
determination (R2), normalized Root Mean Square Error (nRMSE), normalized mean bias error (nMBE), and 
consumption of time (t), the results show that GBM achieved the highest accuracy with R2 

> 0.7 at all stations, 
followed by RF, SVR, and MLP. It suggests that the proposed method can provide an accurate and reliable 
estimation of land surface solar irradiation, compared with the theoretical solar irradiation without the obstacle 
of the atmosphere. The annual solar distribution maps created by the built methods indicate that the proposed 
method is simple and effective for large geographical regions and can be used worldwide when similar datasets 
are obtained.   

Introduction 

During the last few decades, the energy demand has increased by 
nearly 0.1789 quadrillion kWh with an average growth of 1.2% every 
year [1], and fossil fuels on the earth tend to be exhausted due to the 
over-exploitation and utilization of the energy [2]. Simultaneously, the 
emitted pollutants during the use of traditional energy harm the human 
living environment, leading to global climate warming and air pollution 
[3]. To mitigate these problems, the world has recently been focusing on 
alternative energy sources such as solar energy, wind energy, and tidal 
energy [4]. Compared to other renewable energy, solar energy is supe-
rior in terms of availability, cost-effectiveness, accessibility, capacity, 
and efficiency [5]. Furthermore, this energy is widely available across 
the globe, so it can be harvested and utilized in situ without remote 

transportation. To effectively harvest solar energy, spatio-temporal solar 
distribution data with accurate quantitative information is increasingly 
being used in various fields such as agriculture, meteorology, and power 
systems. For example, solar energy can be used in greenhouses or tunnel 
farming for the cultivation of crops and vegetables and solar dryers for 
drying agricultural products [6]. Thus, it is of great importance for the 
solar industry to estimate the high precision of solar distribution over a 
large region. 

Nowadays, using ground-based stations to observe and record solar 
irradiation is an effective way to obtain high-precision solar irradiation 
data. However, the scarcity and uneven distribution of solar irradiation 
observation stations make it challenging to obtain high precision and 
continuous solar irradiation data. Moreover, global solar irradiation on 
the land surface is mainly influenced by astronomical factors and 
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atmospheric factors such as clouds and aerosols [7]. However, it is 
difficult to obtain large-scale and continuous atmospheric data via at-
mospheric observation stations, which poses significant challenges for 
the estimation of high-precision and continuous solar irradiation over 
large regions. To tackle this problem, researchers have conducted a large 
number of studies on solar estimation and have made great achieve-
ments by developing solar irradiation estimation models over the past 
two decades [8]. Traditional solar irradiation estimation methods can be 
organized into three categories: empirical [9–11], physical [12–15], and 
machine learning models [16–18]. 

Several researchers employed the empirical model to estimate solar 
irradiation based on the data from meteorological stations, such as 
cloudiness-based models, sunshine-based models, temperature-based 
models, and meteorological parameters-based models [19–23]. How-
ever, these empirical models are also limited to a small region although 
using the empirical models for estimating solar irradiation is convenient. 
In other words, it is difficult to transform the same empirical model to 
other regions. 

Moreover, plenty of studies focused on physical models to estimate 
solar irradiation. Physical models commonly used in solar irradiation 
research include radiation transmission models and parameterized 
models, such as the METSTA model [24], Bird model [25], Yang model 
[26], and Page model [27]. Some researchers utilized data acquired 
from both meteorological stations and satellites [28–30]. Satellite im-
ages used in these models can provide large-scale and continuous spatial 
distribution information, while these models generally estimate low 
temporal-resolution solar radiation that cannot achieve near real-time 
monitoring. 

Since machine learning can be used in a variety of applications to 
achieve accurate prediction, various machine learning methods have 
been developed for estimating solar irradiation in recent years [16]. 
Generalized machine-learning models have three categories, namely, 
ANN-based [31–33], Kernel-based [34–36], and Tree-based [37–39]. 
Compared to physical and empirical models, machine learning models 
can produce moderate accuracy and wider application for solar 

irradiation prediction, so it has become one of the most widely used 
methods for solar estimation. 

Ramedani et al. [40] compared the performance of support vector 
regression (SVR) and fuzzy linear regression for global solar radiation 
prediction in Iran, in which SVR used the polynomial model (SVR_poly) 
and radial basis model (SVR_rbf) as the kernel function. The results show 
that the SVR_rbf model has a better performance than fuzzy linear 
regression. Srivastava et al. [41] compared the forecasting performance 
of the 1-day-ahead to 6-day-ahead hourly solar radiation using the 
Multivariate Adaptive Regression Spline (MARS), Classification and 
Regression Tree (CART), Piecewise Linear Functions of Regression Trees 
(M5), and Random Forest (RF) model in India. The result illustrates that 
the RF model outperformed the MARS, CART, and M5 models. Rabehe 
et al. [42] assessed the prediction performance of multi-layer perceptron 
(MLP), boosted decision tree, and a new combination of these models 
with linear regression for the daily global solar irradiation using a real 
dataset in the south of Algeria. The results show that the MLP model 
performs better than the other models. Urraca et al. [43] used the 
Gradient Boosting Machines (GBMs) to predict daily global horizontal 
irradiation using the data from 38 ground stations in Castilla-La Mancha 
with an average mean absolute error (MAE) of 1.63 MJ/m2 from 2001 to 
2013. The results suggest that this model had a good generalization 
capacity. However, all these studies were limited in available data 
sources and regions that cannot be solved with empirical models and 
physical models, so it becomes important for our study to estimate 
spatially continuous and quantitatively accurate land surface solar 
irradiation using four machine-learning models with limited datasets. 

In summary, although empirical methods for estimating solar irra-
diation have certain merits, they still have a weak capability to deal with 
a large geographical extent, such as an estimation covering the whole of 
China. Physical methods generally combine with satellite images to es-
timate large-scale solar irradiation, while these images have a relatively 
low temporal resolution. In this regard, this method is hard to meet the 
high accuracy requirement on solar irradiation estimation. In compari-
son, machine learning methods applied in the estimation of solar energy 
have merits on high prediction accuracy and fast computation. There-
fore, combining with the aforementioned reviews, we utilized four 
machine learning methods, i.e., Gradient Boosting Machine (GBM), 
Random Forest (RF), Support Vector Regression (SVR), and Multilayer 
Perceptron (MLP), to establish a robust relation between meteorological 
data, cloud optical thickness (COT), aerosol optical thickness (AOT), 
clear-sky radiation and land surface solar irradiation. This study used 
these data as the main input parameters based on the selected optimal 
model for estimating solar irradiation with high temporal-spatial reso-
lution over a large geographical extent. 

This paper is organized as follows. Section 2 presents a series of 
datasets used in this study. Section 3 introduces the machine learning- 
based framework for an accurate estimation of land surface solar irra-
diation. Section 4 presents estimated results in two countries and ana-
lyses influential factors in the results. Finally, Section 5 makes discussion 
and conclusion. 

Datasets 

This section introduces study areas and the corresponding datasets 
used as input and output parameters of the designated machine learning 
models for the estimation of surface solar irradiation. Since satellite 
images have several competitive advantages, such as continuity, large- 
scale coverage, and publicly available, this study used a geostationary 
satellite called Himawari-8 to collect AOT and COT data with an hourly 
updated temporal resolution. As meteorological data have a strong 
correlation with solar irradiation [44], meteorological data, i.e., the 
maximum temperature, minimum temperature, average humidity, 
average wind speed, and average atmosphere pressure, were used as the 
input parameters. To obtain high precision of estimation, solar irradia-
tion under the clear-sky condition was also calculated as an input 

Table 1 
Climates and ranges of observed solar irradiation of the 22 meteorological 
stations.  

Country Station Station Climate Range of 
observed  

Name ID  solar irradiation 
(kWh/m2)  

Adelaide S1 Mediterranean 0–1.38  
Alice Springs S2 Subtropical hot 

desert 
0–1.48  

Broome S3 Hot semi-arid 0–1.44  
Cape Grim S4 Temperate oceanic 0–1.31  

Cocos Island S5 Tropical rainforest 0–1.37  
Darwin S6 Tropical savanna 0–1.45 

Australia Geraldton S7 Mediterranean 0–1.44  
Kalgoorlie- 

Boulder 
S8 Semi-arid 0–1.39  

Learmonth S9 Hot semi-arid 0–1.36  
Melbourne S10 Temperate oceanic 0–1.41  

Rockhampton S11 Humid subtropical 0–1.51  
Townsville S12 Tropical savanna 0–1.57  

Wagga S13 Humid subtropical 0–1.43       

Beijing S1 Humid continental 0–9.66  
Guangzhou S2 Humid subtropical 0.24–7.81  

Harbin S3 Humid continental 0.13–12.13  
Kau Sai Chau S4 Humid subtropical 0–1.09  
King’s Park S5 Humid subtropical 0–1.08 

China Shanghai S6 Humid subtropical 0.16–8.65  
Urumqi S7 Continental cold 

semi-arid 
0–11.75  

Wenjiang S8 Humid subtropical 0.21–8.39  
Wuhan S9 Humid subtropical 0.14–8.40  
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parameter for training the machine learning models. 

Study areas 

To make a comprehensive evaluation of machine learning-based 
solar estimation, this study focused on two countries, i.e., Australia 
and China, that cover large geographical extents in the southern and 
northern hemispheres, respectively. Since the two countries cover a 
wide range of latitudes with various local climates (Table 1), it is helpful 
to validate the robustness and generalization of the method proposed in 
this study. There were 22 stations that contain the required datasets, 
covering six continuous years from 2015 to 2020. These stations con-
sisted of 13 stations in Australia (Fig. 1 and 9 stations in China (Fig. 1b), 
in which two are in the Hong Kong Special Administrative Region (SAR), 
namely, King’s Park station and Kau Sai Chau station. Table 1 shows the 
range of hourly observed solar irradiation in Australia and Hong Kong 
SAR and the range of daily observed solar irradiation in China. 

Himawari-8 satellite products 

Himawari-8 is a geostationary weather satellite operated by the 
Japan Meteorological Agency [45], which covers a large geographical 
extent in a range between 60◦S – 60◦N and 80◦E – 160◦W, including 
Oceania, Southeast Asia, and Western Pacific. Advanced Himawari 
Imager (AHI) aboard Himawari-8 provides AOT and COT data. The 
satellite images in the NetCDF format are freely available from the JAXA 
Himawari Monitor P-Tree System [46]. This study chose Himawari-8 
level-2 AOT and COT data with a temporal resolution of 10 min and a 
spatial resolution of 5 km from 2015 to 2020. Huang et al. evaluated the 
Himawari-8 cloud products and suggested that the data quality has high 
consistency, benefiting from the active Radar-LiDAR observations [47]. 
In addition, Gao et al. suggested that the Himawari-8 satellite can pro-
vide reliably aerosol products for environmental research [48]. 

Calculated hourly clear-sky solar irradiation 

Hourly clear-sky solar irradiation (CSI) in the 22 stations was 
calculated by using a Python online library called Pysolar [49], which 
was developed based on the Masters’ algorithm [50] for solar irradiation 
calculation and an algorithm proposed by Reda and Andreas [51] for 
solar position calculation in its performance. The algorithm utilizes 
longitude, latitude, and an instant of time on a specific day to calculate 
the corresponding Sun’s location in the sky, the solar irradiation in a 
clear-sky condition, and the irradiation reaching a horizontal or inclined 
surface on the ground [52,53]. The computed hourly clear-sky solar 
irradiation data set contained the same set of attributes for Australia and 
China, including the station name, time, and hourly clear-sky solar 
irradiation from 2015 to 2020. Since solar irradiation observed at Chi-
nese stations has a daily-based temporal resolution, the estimated hourly 
solar irradiation at each Chinese station was further accumulated daily 
for keeping consistency. 

Observed land surface solar irradiation 

Surface solar irradiation observed by these stations was used as the 
ground truth to evaluate machine learning models-based estimation. 
Solar irradiation in Australia was measured by 13 meteorological sta-
tions (Fig. 1a and Table 1), which were operated by the Australian 
Government Bureau of Meteorology [54]. Notably, the original data was 
updated every minute, and this study rescaled the temporal resolution to 
hourly-based updates for the constancy of other datasets. Solar irradi-
ation datasets in China had two independent categories, i.e., daily 
updated solar irradiation (Fig. 1b and Table 1), which is the highest 
temporal resolution that can be obtained from China National Meteo-
rological Information Center [55] and hourly updated solar irradiation 
obtained from the Hong Kong Observatory [56]. 

Meteorological data 

Table 2 suggests that meteorological data are commonly used as the 
input parameters to estimate solar irradiation. Therefore, we employed 
meteorological data as the input parameters, including the maximum 
temperature (MaxT), minimum temperature (MinT), average humidity 
(H), average wind speed (WS), and average atmosphere pressure (P). 
The hourly meteorological data in China and Australia are purchased 
from the OpenWeather website [61]. 

Construction of the datasets 

The dataset in each station consists of meteorological data, AOT, 
COT, CSI, and the observed land surface solar irradiation from 2015 to 
2020. The original AOT and COT data have a temporal resolution of 10 

Fig. 1. Distribution of the 22 stations represented in red stars. (a) Stations in Australia. (b) Stations in China.  

Table 2 
The meteorological data used for the estimation of solar irradiation. AT: average 
temperature; P: average atmosphere pressure; WS: wind speed; SD: sunshine 
duration; H: humidity; MaxT: maximum temperature; MinT: minimum tem-
perature; CC: cloud cover; WVP: water vapour pressure; ER: extraterrestrial 
radiation.  

Reference Parameters Model 

Dahmani et al. [57] AT, P, WS, SD, H MLP 
Biazar et al. [58] MaxT, WS, P, CC, H, SD SVM 
Zang et al. [59] MinT, MaxT, WS, H, SD BDN 
Deo et al. [60] MinT, SD, WVP, WS, P SVM 

Rabehi et al. [44] ER, AT, MaxT, MinT, SD MLP, BDT  
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min, whereas solar irradiation data is updated daily in China and hourly 
in Australia. To obtain the same resolution for building the machine 
learning models, all data in each country are aggregated to the same 
temporal resolution, with the lowest resolution serving as the bench-
mark, i.e., daily in China and hourly in Australia. 

Machine learning-based estimation of solar irradiation 

In this section, a machine learning framework was proposed to es-
timate hourly updated solar irradiation at the 22 stations (Fig. 2). There 
are three modules in the complete framework, i.e., machine learning 
datasets, machine learning models, and the estimation of the land sur-
face solar irradiation. First of all, this study created a machine learning 
data set using meteorological data, AOT, COT, CSI, and the solar irra-
diation measured from the stations in different regions. After that, four 
machine learning models were used for training and prediction, namely, 
MLP, RF, SVR, and GBM. Finally, the paper compared the training re-
sults to determine the optimal model based on four evaluation indicators 
(i.e., R2, nRMSE, nMBE, and t). When the optimal model was deter-
mined, land surface solar irradiation in Australia and China was esti-
mated using interpolated meteorological maps, Himawari-8 cloud and 
aerosol products. 

Data pre-processing 

Pre-processing operations have been conducted to train machine 
learning models. First, missing values and default values of all datasets 
have been checked and removed. In addition, due to the inconsistency of 
data sources between the two countries, solar irradiation was firstly 
transformed to the same unit (kWh/m2). Note that the temporal reso-
lution of solar irradiation in mainland China was daily updated while 
the data in Australia was hourly updated. Finally, in this study, the 
datasets were divided into training datasets and validation datasets by 
using K-fold cross validation [62]. Specifically, the original data set was 
randomly divided into K equal-sized sub-datasets. Of the K sub-datasets, 

a single sub-dataset was employed as the validation data to test the 
performance of machine learning, and the remaining K-1 sub-datasets 
were used as the training data. In this study, we set K equalling ten. 

Constructing machine-learning based estimation models 

Machine learning models are expected to be able to estimate solar 
irradiation accurately with high computational efficiency, while esti-
mation accuracy may be inconsistent when applying different methods 
in various regions. Therefore, this study adopted four different machine 
learning models to compare results comprehensively so that an optimal 
one could be identified to construct a reliable solar irradiation estima-
tion model. The Python IDE, PyCharm [63], was employed to perform 
all calculations. In particular, the sklearn package [64] was used to train 
the four machine learning models, and the scipy package [65] was used 
to perform the calculation of the estimation accuracy. The GridSearchCV 
[66] function in the sklearn package was used to search for the optimal 
parameters values for four models. 

Construction of the Support Vector Regression 
The SVR [67] is used to perform the regression to estimate the land 

surface solar irradiation. In our study, the process of SVR had the 
following steps. Meteorological data, AOT, COT, and CSI data were 
selected as dependent variables for inputting the model, and the solar 
irradiation data measured from the observation stations were used as 
label variables for outputting the model. Then training function was 
employed to train the regression model. After that, the expected result 
was obtained via adjusting different kernel functions, gamma values, 
and the parameter of C. The dataset was organized as 
{(Xi,Yi), i = 1,…, n}, where Xi is the vector of meteorological data, AOT, 
COT, and CSI data, Yi is corresponding solar irradiation of stations, and n 
denotes the number of the dataset. With an SVR, a linear function is 
defined as: 

f (x) = ω⋅x+ b (1) 

Fig. 2. The framework of the proposed methodology.  
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where ω is the weight vector and b is the constant. The coefficients ω and 
b are estimated by the minimization process: 

y = min
1
2
||ω||2 +C

∑n

i=1
(ξi + ξ*

i ) (2)  

s.t. 
⎧
⎪⎪⎨

⎪⎪⎩

yi − ω⋅xi − b⩽ω + ξi, i = 1, 2,…, n
ω⋅xi + b − yi⩽ω + ξ*

i , i = 1, 2,…, n
ξi, ξ*

i ⩾0, i = 1, 2,…, n
(3)  

where ξ and C are the prescribed parameters, and ξi and ξ*
i are positive 

slack variables. of the support vector regression-Kuhn-Tucher (KKT) 
optimizing conditions are applied in the linear regression function as 
presented below: 

f (x) =
∑

i∈SVs

(ai − a*
i )(xi, x)+ b (4)  

where ai and a*
i are Lagrangian multipliers. 

Construction of the Random Forest 
Random forest [68] is a flexible and easy ensemble learning method, 

which can usually obtain robust results for classification and regression 
tasks. Therefore, RF was employed to estimate the land surface solar 
irradiation. In this study, the input dataset was {Xi, i = 1,…,m} and the 
output dataset was {Yi, i = 1,…,m}, where Xi denotes the vector of 
meteorological data, AOT, COT and CSI data, Yi is the solar irradiation of 
stations, and m denotes the number of datasets. On this basis, this study 
performed the RF regression model with the following three steps.  

1. Bootstrap sample method was employed to generate a training 
dataset by randomly drawing with replacement m samples, where m 
is the size of the original training dataset.  

2. A multitude of decision trees was constructed at training time and 
outputting the class that is the mode of mean prediction of the in-
dividual trees.  

3. After repeating step (2) for n times, we can obtain a number of n 
regression trees to generate the random forest. For any regression 
tree, the mean error of all the regression trees can be calculated for 
obtaining an unbiased estimation of the random forest. The calcu-
lation formula is as follows: 

Y(xi) =
1
n

∑n

i=1
Tn(Xi), n = 1, 2,…, n (5)  

where Tn denotes a regression tree, and n is the number of regression 
trees. 

Construction of the multilayer perceptron 
Artificial Neural Networks (ANNs) are computing systems inspired 

by biological neural networks, which can learn from data relationships 
and generalize the laws of data to predict data development trends. As 
one of the most popular structures of ANNs, MLP [69] consists of three 
layers, i.e., an input layer containing the structured meteorological data, 
CSI, AOT, and COT, a hidden layer achieved by a Sigmoid function as the 
activation function, and an output layer providing estimated surface 
solar irradiation (Fig. 3). This study used MLP with a Back Propagation 
(BP) algorithm for training, which contains forward data flow calcula-
tion and backward error propagation. Particularly, the input layer 
received solar irradiation datasets, the hidden layer transmits and ad-
justs network weights for the regression model, and finally, the output 
layer stored the estimated irradiation data. If the result obtained from 
the output layer was not consistent with the ground truth, then weight 
adjustment would be conducted based on an error function achieved by 
a backward propagation algorithm. The neural network would be opti-
mized continuously by repeating the adjustment of the weight param-
eters until the error was lower than the established standard. 

Construction of the gradient boosting machine 
In this study, GBM [70] was used to estimate the land surface solar 

irradiation, which is one class of the Boosting algorithm for producing 
regression models. It is achieved by establishing an additive model that 
adds a new decision tree in each iterative step, leading to the minimized 
deviation in the loss function. The GBM model was performed as follows:  

1. Given a training dataset 
{(

xi, yi), i = 1,…, n
}

and the loss function 
L(y,F(x)), where xi was the vector of meteorological data, AOT, COT, 
and CSI data, yi is corresponding solar irradiation of stations, and n 
denotes the number of datasets. The model was initialized using the 
fixed value γ: 

F0(x) = argmin
γ

∑n

i=1
L(yi, γ) (6)    

2. Calculation pseudo-residuals rim, the formula is as follows: 

rim = [
∂L(yi,F(xi))

∂F(xi)
]F(x)=Fm− 1(x), (i = 1, 2, 3,…., n) (7)    

3. Calculation γm to solve the optimization problem: 

γm = argmin
γ

∑n

i=1
L(yi,Fm− 1(xi + γhm(xi))) (8)  

where hm(x) denotes pseudo-residuals for the decision tree, the for-
mula is as follows: 

Fm(x) = Fm− 1(x)+ γmhm(x) (9)   

Estimation surface solar irradiation based on the optimal model 

This study employed four evaluation indicators to evaluate the 
estimation accuracy of each model, namely a coefficient of determina-
tion (R2), normalized Root Mean Square Error (nRMSE), normalized 
mean bias error (nMBE), and consumption of time (t). Specifically, 
nRMSE and nMBE were calculated as follows: 

nRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(ŷi − yi)

2
√

1
n

∑n

i=1
yi

(10) 

Fig. 3. The architecture of MLP.  
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nMBE =

1
n

∑n

i=1
(ŷi − yi)

1
n

∑n

i=1
yi

(11)  

where n is the number of data, ŷi denotes estimation value, and yi is 
actual value. 

Results 

The four machine learning models were used to evaluate the esti-
mation accuracy at each station independently based on the four eval-
uation indicators. Through comprehensive comparison, the optimal 
machine learning model was selected for estimating surface solar irra-
diation in Australia and China. 

Accuracy assessment of the models 

Fig. 4 systematically compares the estimated accuracy based on R2, 
nRMSE, and nMBE in all the 22 stations. Overall, it is found that the four 
models have similar estimation performance. Specifically, all stations 
have R2⩾0.7 in both countries using the GBM model, and the pro-
portions of the stations are about 38% for Australia and about 22% for 
China when R2⩾0.8. Besides, the nMBE values are significantly low in all 
stations, and the nRMSE values are between 0.2 and 0.4 only. The results 

suggest that the estimation models are reliable with high estimation 
accuracy, which indicates that the proposed method can effectively es-
timate land surface solar irradiation over large regions. From the other 
perspective, Fig. 5 summarizes the computation time of the four ma-
chine learning models in each station, which presents that the GBM 
model achieves the shortest time consumption. This suggests that GBM 
is outperformed for the estimation accuracy and computational effi-
ciency, especially for extensive computation when there are a large 
number of stations confined in a small area. 

Feature importance analysis for the input parameters 

Furthermore, the feature importance analysis is conducted to eval-
uate the impacts of each parameter on the estimation models (Fig. 6). It 
shows that CSI is significantly larger than the second most important 
feature of H for estimating the solar irradiation in Australia, leaving the 
rest features almost ignorable. This indicates that Australia has stable 
and solar favourable meteorological conditions, which thus have weak 
impacts on the solar estimation. In contrast, the top three impact fea-
tures are H, CSI, and MaxT in China, suggesting that the land surface 
solar irradiation is comprehensively affected by the meteorological 
features. 

Generation of the land surface solar irradiation 

To create seasonal and annual land surface solar irradiation maps at 

Rockhampton Townsville Wagga

Darwin Geraldton Kalgoorlie−Boulder Learmonth Melbourne

Adelaide AliceSprings Broome CapeGrim CocosIsland

nMBE nRMSE R2 nMBE nRMSE R2 nMBE nRMSE R2

nMBE nRMSE R2 nMBE nRMSE R2

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

indicator

V
al

ue

Model
GBM
MLP
RF
SVR

a

Shanghai Urumqi Wenjiang Wuhan

Beijing Guangzhou Harbin Kau Sai Chau King's Park

nMBE nRMSE R2 nMBE nRMSE R2 nMBE nRMSE R2 nMBE nRMSE R2

nMBE nRMSE R2
0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

indicator

V
al

ue

Model
GBM
MLP
RF
SVR

b

Fig. 4. Estimation accuracy of the four machine learning models using R2, nRMSE, and nMBE in all stations. (a) Results in Australia. (b) Results in China.  
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a 5-km spatial resolution in the two countries in 2020, the GBM model is 
used because it has achieved the highest estimation accuracy in both 
countries. The meteorological, COT, AOT, and CSI images are well 
prepared and used as the input parameters of the trained model. In 
addition, a set of meteorological images are obtained by using the 
Kriging interpolation method. Since the trained GBM model based on 
each observation station has relatively high accuracy as presented in 
Fig. 4, this study used all the trained models to create the solar irradi-
ation maps over the whole territory of Australia and China. 

To systematically evaluate the accuracy of each created solar irra-
diation map, this study investigated the relative errors between the 
estimated values and correspondingly measured values located at all the 
stations in each solar irradiation map. Fig. 7 shows that the relative 
errors in all stations are between 0.1 and 0.2, which suggests that the 
estimation results in all stations are accurate. Therefore, the mean values 
of all estimation maps were calculated and used as the final estimated 
solar irradiation map in the two countries. To avoid extremely big data 
computation, the solar irradiation on the middle day of each month is 
considered as the daily mean irradiation of that month, so that the 
monthly, seasonal, and annual solar irradiation can be accumulated over 

the corresponding time interval in each country. 

Maximum and minimum monthly land surface solar irradiation 
Fig. 8 and Fig. 9 show the maximum and minimum horizontal sur-

face global solar irradiation in Australia and China, respectively. Over-
all, the solar distribution in January is significantly higher than that in 
August in Australia, whereas the maximum solar distribution is in 
August and the minimum solar distribution is in January in China. In 
Australia, solar irradiation gradually increases from the northwest re-
gion to the southeast region in August (Fig. 8a), with monthly values 
ranging from 171.78 to 76.08 kWh/m2, while the irradiation in the 
central region is lower than in the other regions in January, (Fig. 8b), 
with monthly values ranging from 200.18 to 95.12 kWh/m2. In China, 
solar irradiation in the southeast and central regions is lower than in 
other regions in January (from 69.88–147.98 kWh/m2). In contrast, the 
irradiation is overall high in the whole country in August, with only part 
of the central region relatively low (from 97.56–223.89 kWh/m2). 

Seasonal land surface solar irradiation 
Furthermore, seasonal land surface solar irradiation maps were 

Fig. 5. Computation time of the four machine learning in all stations. (a) Results in Australia. (b) Results in China.  
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created for Australia (Fig. 10) and China (Fig. 11). Overall, the highest 
solar irradiation values are in summer in the two countries, followed by 
those in spring, autumn, and winter.The solar irradiation values in all 
seasons in Australia exhibit the narrow distribution, whereas those in 
China give the wide distribution. Fig. 10 shows that Australia has an 
insignificant change in solar distribution during the four seasons, and 
most areas in Australia have a large amount of solar energy near 632 
kWh/m2. In China, solar irradiation in western and northeastern regions 
maintains a high level near 535 kWh/m2 all year round, whereas, for 
southeastern regions in spring and summer, it is higher than that in 
autumn and winter. 

Annual land surface solar irradiation 
Lastly, the annual land surface solar irradiation was estimated by 

accumulating four seasonal solar energy. Overall, the total irradiation in 
Australia (Fig. 12a) is higher than that in China (Fig. 12b). In detail, the 
vast majority of areas in Australia have abundant solar resources, sug-
gesting that Australia is feasible to promote solar energy in most areas. 
In comparison, the distribution of the annual irradiation in China pre-
sents a gradual decrease from the northeast to the southwest. This in-
dicates that southwest China has a relatively thick cloud cover that 
hinders the receiving of solar energy, meaning that latitude may not be a 
conclusive factor for using solar energy in large regions. In addition, 
heterogeneous distribution of solar energy is apparent in central China, 
which indicates that our model is also sensitive to depicting regional 
differences in solar distribution. It is found that our results are consistent 
with the published maps created by Solargis [71,72] when comparing 
the quantitative ranges and the distribution patterns of the solar irra-
diation maps. 

Discussion and conclusion 

This study developed a method by integrating the machine learning 

models and remote sensing technologies to estimate land surface solar 
irradiation at fine temporal resolutions (i.e., hourly to daily) over large 
geographical areas. Even though the study areas of Australia and China 
are two big countries that contain a variety of climate zones, the trained 
models based on only a few stations still achieved high prediction ac-
curacy with R2 > 0.7 for all the stations. By comparing the generated 
maps with the published maps in terms of the spatio-temporal distri-
butions and the quantitative ranges, it is found that our results are 
broadly in line with the published maps. This suggests that the estab-
lished models are accurate and reliable, and the proposed method can be 
used to estimate land surface solar irradiation in large-scale regions. In 
addition, the high availability of Himawari-8 satellite products with free 
licensed characteristics makes it possible to be widely used for an ac-
curate estimation of solar irradiation over large regions, which is espe-
cially important for nations that aim to promote using solar energy. 

This study used 22 datasets to train the machine learning models 
independently, which thus created a well-trained model for each of the 
22 solar observation stations. As all the trained models obtained high 
estimation accuracy, all the models were used to create solar irradiation 
maps to make full use of the currently available datasets. However, as 
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the solar observation stations have sparse distribution in each country, it 
is difficult to validate the prediction accuracy of each pixel value in the 
finally created solar irradiation maps. Alternatively, the observed solar 
irradiation data with determined geo-locations can be used as real 
samples to systematically investigate the final prediction accuracy. 

The Kriging interpolation method was used to generate the spatially 
continuous meteorological images, which were used as the input pa-
rameters for estimating solar irradiation. Although the analysis shows 
that the overall interpolation accuracy is significantly high, it is hard to 
make sure that the whole areas maintain the same high accuracy. 
Nevertheless, the comparison of the published maps and the relative 
error matrices help confirm that this method is feasible and the results 
are reliable. Meanwhile, this study conducted the importance-analysis 
for the input parameters and it was found that the impacts of these 
parameters on solar estimation are different between the two countries. 
While in the same country, the impacts of the parameters are consistent 
for different models. This implies the effectiveness of the selected pa-
rameters for the solar estimation. It is worth mentioning that meteoro-
logical conditions can affect land surface solar irradiation to some 
extent, in which the humidity makes a great contribution. 

The average values of a set of the estimated solar irradiation maps in 
the same spatial and temporal domains are used to create the final solar 
irradiation map because of two reasons. First, the estimation accuracies 
(R2) of all the models are basically consistent in a small range between 
0.7 and 0.9. Second, the relative error matrices (Fig. 7) between the 
estimated values and measured values are between 0.1 and 0.2 only. 
This demonstrates that the difference between each estimation solar 

irradiation map is rather small. Therefore, the estimated solar irradia-
tion maps can make an equal contribution to create the final solar map. 

To conclude, this study proposes a simple and effective method for 
the estimation of land surface solar irradiation based on machine 
learning models using meteorological data, Himawari-8 satellite cloud 
and aerosol products, and solar observation data in Australia and China. 
The estimation of solar irradiation based on four machine learning 
models, i.e., RF, SVR, MLP, and GBM, is effective and reliable, and GBM 
has achieved the best performance in terms of accuracy and computa-
tional efficiency. The estimation of seasonal and annual solar irradiation 
at nationwide levels is useful for planning solar-related applications. 
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Fig. 8. Distribution of the maximum and minimum horizontal surface global 
solar irradiation in Australia. (a) Distribution in August. (b) Distribution 
in January. 

Fig. 9. Distribution of the maximum and minimum horizontal surface global 
solar irradiation in China. (a) Distribution in January. (b) Distribution 
in August. 
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Fig. 10. Seasonal distribution of land horizontal surface global solar irradiation in Australia. (a) The irradiation in spring (September to November). (b) The 
irradiation in summer (December to February). (c) The irradiation in autumn (March to May). (d) The irradiation in winter (June to August). 

Fig. 11. Seasonal distribution of land horizontal surface global solar irradiation in China. (a) The irradiation in Spring (March to May). (b) The irradiation in Summer 
(June to August). (c) The irradiation in Autumn (September to November). (d) The irradiation in Winter (December to February). 
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