
Transportation Research Part E 165 (2022) 102867

1366-5545/© 2022 Elsevier Ltd. All rights reserved.

An integrated multi-objective model for disaster waste clean-up 
systems optimization 

Cheng Cheng a, Jia-Wei Lu b, Rui Zhu c,d, Zuopeng Xiao e,*, Alysson M. Costa f, 
Russell G. Thompson g 

a School of Transportation, Southeast University, Jiangsu, Nanjing 211189, China 
b South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China 
c Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China 
d Research Institute for Land and Space, The Hong Kong Polytechnic University, Hong Kong, China 
e School of Architecture, Harbin Institute of Technology, Shenzhen, China 
f School of Mathematics and Statistics, The University of Melbourne, VIC 3010, Australia 
g The Department of Infrastructure Engineering, The University of Melbourne, VIC 3010, Australia   

A R T I C L E  I N F O   

Keywords: 
Disaster waste management 
Heavy-duty vehicles 
Environmental emission 
Mixed integer programming 
Optimization 
Pareto frontier 

A B S T R A C T   

Post-disaster waste clean-up systems are complex and expensive operations that need to consider 
multiple stakeholders with different objectives. We propose a mixed-integer programming model 
that models the waste clean-up operations as a two-echelon system. The model decides on the 
location of waste processing facilities, the use of demolition resources, and the number and type 
of vehicles to be assigned to each echelon at each time slot of the planning horizon. The objectives 
considered in the model include minimizing environmental impacts, economic costs, and total 
time spent on the operations. Numerical results obtained on a case study based on the ’2009 
Victoria Black Saturday Bush-fires’ case and on synthetically generated instances are used to 
obtain Pareto frontiers. The research concludes that the three objectives considered are indeed 
conflictive, and the explicit consideration of each goal can help decision-makers find the best 
trade-off solutions.   

1. Introduction 

Waste removal is the first step in the recovery and reconstruction of areas affected by large-scale natural disasters. These debris 
removal operations are time-consuming, costly, and produce a considerable amount of air pollutants. Quantitative models that are able 
to simultaneously address these three aspects of the problem can guide decision-makers in the search for the best trade-off solutions 
during clean-up operations. 

Among the three objectives, logistic costs have been the most studied in the literature. They are responsible for a large share of the 
total cost, and their minimization is generally treated as the foremost goal (Sheu, 2007; Fetter and Rakes, 2012; Lorca et al., 2017; 
Habib et al., 2019; Hu et al., 2019). A common strategy to reduce logistic costs is the use of temporary disaster waste management sites 
(TDWMSs), where waste can be temporarily stored, sorted, reduced, and processed before final disposal (FEMA, 2007). TDWMSs can 
help shorten waste collection time by improving the flexibility of operations, facilitating recycling, and reducing waste. 
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Facilities such as TDWMSs divide the waste removal operations into two echelons: the wastes are collected from their origins and 
transported to a TDWMS, where the waste is stored, processed, and then transported to their final destinations (Alziari et al., 1981; 
Amato et al., 2020, 2019; Brown and Milke, 2016; Karunasena et al., 2012; Oh and Kang, 2013; Rafee et al., 2008). In this kind of 
setting, the main decisions are the selection of locations for the TDWMSs, the assignment of vehicles to each of the echelons at each 
period of the planning horizon and, in the case of large-scale disasters, the scheduling of demolition resources to make waste available 
for collection (Cheng et al., 2021a). 

During operations, a significant amount of air pollutants can be generated at landfills, recycling facilities and, mostly, due to the 
movement of a large number of heavy-duty vehicles. These emissions depend on the type of vehicles being used and the distances 
travelled, which are often neglected in the literature (see Section 2). Also, the rapid conclusion of waste operations is also an important 
goal to consider, as they allow the displaced communities to start returning to their homes and proceed with the recovery of the 
affected area. 

The three objectives are often conflictive and not clearly comparable in terms of their dollar-values. For this reason, we propose a 
multi-objective approach that is able to provide alternative solutions that can be further evaluated by decision-makers. Our approach 
relies on a mixed-integer programming model that includes decisions on the location of the TDWMSs, the use of demolition resources, 
and the number and type of vehicles assigned to each echelon at each timeslot of the planning horizon. 

The model proves to be effective to solve problems with up to 500 waste collection points and is used to obtain non-dominated 
solutions using a normalized normal constraint method (NNCM) (Messac et al., 2003; Sanchis et al., 2008). This approach facili-
tates the evaluation of solutions’ quality in terms of the three different dimensions of the problem, shedding light on urban reverse 
logistics with a focus on waste clean-up and providing policy-makers with quantitative information that can guide the selection of the 
best strategies according to the situation at hand. 

To analyze and illustrate the effectiveness of the proposed methodology, we present a case study based on the 2009 Black Saturday 

Table 1 
Summary of papers focus on the modeling of disaster waste management systems.  

Reference Research problems Model Objectives Solution method Problem size 
Main problem TDWMSs 

used 
Min 
cost 

Min 
time 

Min 
emissions 

Özdamar et al., 
2014 

Open blocked roads × × √ × Heuristic algorithm Two road networks with 
212 roads and 386 roads, 
respectively 

Pramudita et al., 
2014; 

Open blocked roads × √ × × Tabu search meta- 
heuristics 

25 to 100 customer 
nodes 

Sahin et al., 2016 Open blocked roads × × √ × Heuristic algorithm 45 customer nodes 
Çelik, Ergun, & 

Keskinocak, 
2015 

Open blocked roads × × × × Heuristic algorithm Up to 604 blocked roads 

Berktaş, Kara, & 
Karaşan, 
2016 

Open blocked roads × × √ × Heuristic algorithm Two case studies with 45 
and 73 customer nodes, 
respectively 

Onan et al., 2015 Select locations for TDWMSs √ √ × × NSGA-II 45 candidates 
Cheng and 

Thompson, 
2016 

Select locations for TDWMSs √ × × × Land suitability analysis NA 

Fetter and Rakes, 
2012 

Optimize waste clean-up in the 
recovery stage 

√ √ × × Robust Programming 49 customer nodes + 8 
possible TDWMS 
locations 

Hu and Sheu, 
2013 

Optimize waste clean-up in the 
recovery stage 

√ √ × √ Multi-objective linear 
programming 

23 customer nodes + 23 
TDWMSs 

Takeda et al., 
2014 

Optimize waste clean-up in the 
recovery stage 

× √ × × Warshall-Floyd 
algorithm and linear 
programming 

10 customer nodes + 23 
TDWMSs 

Lorca et al., 2017 Optimize waste clean-up in the 
recovery stage 

√ √ √ √ Mixed Integer 
programming 

12 customer nodes + 14 
TDWMSs 

Habib et al., 2019 Optimize waste clean-up in the 
recovery stage without the 
collection of waste from source to 
TDWMSs 

√ √ × √ Fuzzy programming 3 TDWMSs + 20 final 
disposal sites 

Hu et al., 2019 Optimize waste clean-up in the 
recovery stage 

× √ × × Mixed Integer 
programming 

30 customer nodes 

Mamashli et al., 
2021 

Optimize waste clean-up in the 
recovery stage 

× √ × √ Particle swarm 
optimization algorithm 

13 customer nodes + 18 
TWDMSs 

Asai et al., 2021 Optimize waste clean-up in the 
recovery stage 

√ × √ × Dynamic hauling/ 
Transportation model 

53 customer nodes + 12 
TWDMSs 

Cheng et al., 
2021b 

Optimize waste clean-up in the 
recovery stage 

√ √ √ × Genetic algorithm 125 customer nodes + 10 
TDWMSs 

The current paper Optimize waste clean-up in the 
recovery stage 

√ √ √ √ Multi-objective Mixed 
Integer programming 

10 to 500 customer 
nodes + 8 TDWMSs  
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Bush-fires (Brown et al., 2010), which severely affected the State of Victoria, Australia. A number of additional synthetic instances are 
also generated to better understand the behaviour of the method for problems with different scales. 

The remainder of this paper is as follows. A literature review positioning our contributions with respect to the existing research is 
presented in Section 2. In Section 3, the proposed methodology is described. Section 4 introduces the case study, detailing the data 
generation process. Section 5 presents the setting and the results of the computational experiments. Section 6 ends this paper with an 
overview of the managerial insights that can be obtained and some concluding remarks. 

2. Literature review 

Waste clean-up operations can be seen as a reverse logistic problem (Hu and Sheu, 2013), in which commodities (waste) must be 
collected at consumer locations, moved through logistic facilities, and transported to their final destinations. The amount of waste 
generated through disasters can exceed multiple times the yearly amount generated in municipal waste collection, giving rise to large- 
scale operations (Zhang et al., 2019; Lu et al., 2015, 2018). In large-scale disasters, the demolition of destroyed buildings and the 
selection of locations for TDWMSs further increase the complexity of the problem (Cheng et al., 2021a). The following sections review 
the related literature. Table 1 summarizes research problems, objectives, solution methods, and problem sizes considered in the 
literature. The most important contributions are summarized in the remainder of this section. 

2.1. Disaster waste clean-up problems 

Several studies aim at examining how to open blocked roads and ensure that vital activities such as evacuation, rescue, and relief 
can proceed in the response stage of disaster management (Özdamar et al., 2014; Pramudita et al., 2014; Çelik et al., 2015, Sahin et al., 
2016). Other studies are interested in seeking optimal routes either for relief or waste clean-up operations (Hu and Sheu, 2013; Takeda 
et al., 2014; Lorca et al., 2017). When the focus is on waste clean-up, researchers consider the necessity of designing complex operation 
structures. This is usually done with the use of intermediate facilities, generating an extensive literature on the location of TDWMSs 
(Cheng and Thompson, 2016; Kim et al., 2014; Fetter and Rakes, 2012; Habib et al., 2019; Hu et al., 2019, Onan et al., 2015). 

2.2. Optimization objectives and algorithms 

Regarding the optimization objectives, different objectives are considered subject to research purposes. Minimizing total operation 
cost was firstly taken as the foremost objective in relevant studies (Fetter and Rakes, 2012; Hu and Sheu, 2013; Onan et al., 2015; Lorca 
et al., 2017; Habib et al., 2019; Hu et al., 2019). These costs include all fees paid for waste collection and transportation, disposal and 
storage reduction operations, and project management. The time spent on waste clean-up has been recognized as another important 
objective, as it can directly affect the recovery process of disaster-affected areas (Brown et al., 2011a; Lorca et al., 2017). 

Waste removal by heavy-duty vehicles inevitably exerts critical environmental footprints such as CO2, SOx, NOx, and PM. These 
emissions have substantial impacts on human health and the living environment. In line with the rising environmental concerns, a 
growing number of studies included environmental emissions in their optimization objectives (Hu and Sheu, 2013; Lorca et al., 2017; 
Habib et al., 2019). 

2.3. Solution method 

Considering the complexity of the post-disaster waste clean-up system, some models attempted to deal with multiple objectives. 
Usually, the multi-objective problems are solved by normalizing considered objectives and minimizing the weighted sum of all ob-
jectives (Lorca et al., 2017; Hu and Sheu, 2013) or by using heuristic algorithms such as NSGA-II (Onan et al., 2015; Zhong et al., 2020; 
Qiu et al., 2021). However, converting multiple objectives into a single objective can only generate a single solution per calculation, 
while heuristics algorithms cannot guarantee the quality of solutions. 

2.4. Problem size 

The research aimed to open blocked roads using the number of nodes needed to reach (Pramudita et al., 2014; Sahin et al., 2016; 
Berktaş, Kara, & Karaşan, 2016) or the number of roads in the network (Özdamar et al., 2014; Çelik, Ergun, & Keskinocak, 2015) to 
represent the scale of the problem. The largest scale of the problem researched includes 100 customer nodes (Pramudita et al., 2014) 
and 604 roads in the network (Çelik, Ergun, & Keskinocak, 2015). Papers focused on the recovery stage of disaster waste clean-up 
normally used the number of customer nodes and the number of TDWMSs in the system to measure problem size. In these studies, 
problem sizes were generally small, with the largest problem involving 125 customer nodes and 10 TDWMSs (Cheng et al., 2021b). 

2.5. Discussion 

As mentioned early, one of the main gaps in the literature is that current studies have not managed to explicitly consider different 
optimization objectives in the design of waste clean-up systems. Namely, the environmental objectives have not been handled together 
with economic or efficiency objectives. Regarding solution methods, heuristics algorithms are most frequently used (Özdamar et al., 
2014; Pramudita et al., 2014; Çelik et al., 2015; Onan et al., 2015; Sahin et al., 2016, Berktaş et al., 2016). A few studies used mixed- 
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integer programming and resorted to black-box solvers to obtain optimal solutions for the models proposed (Hu and Sheu, 2013; Hu 
et al., 2019). 

To bridge this research gap, the post-disaster waste clean-up system model in this study explicitly considers the total environmental 
emission, the total cost, and the total time required to complete the waste clean-up. The main tasks of the model are to decide on 
TDWMS locations and the movements of heavy-duty vehicles from collection points to intermediate facilities and from there to final 
disposal facilities. 

This study proposes a mixed-integer programming model that is used in the process of obtaining Pareto frontiers. Methods to 
generate Pareto solutions include the physical programming method, the typical boundary intersection method, the normal constraint 
method, the weighted sum method, the compromise programming method, and NNCM. This paper applies the NNCM proposed by 
Messac et al. (2003). Small and large-scale instances (25 to 500 customer nodes) are used to test the methodology. 

3. Problem description and mathematical model 

3.1. Problem description 

We consider the problem of designing and managing a two-echelon waste clean-up system. The location of the temporary waste 
processing sites (TDWMS) is the central decision in the problem as they define the frontier between the two echelons of the problem. 
The problem is depicted in Fig. 1 and can be described in four stages: demolition, collection, processing, and transportation. In the first 
echelon, demolition resources are used to generate the waste to be collected at the customer nodes. The order of demolition is crucial as 
it defines the nodes available for collection at each period of the planning horizon. Nodes with available waste are then visited by 
collection trucks, and the waste is transported to the TDWMSs where waste is stored and processed. Finally, the processed waste is 
transported to its final destinations, either landfills or recycling facilities by vehicles in the second echelon. 

The following assumptions are made:  

• All recyclable waste is regarded as one category, which will be sent to the recycling facilities after separation and processing at 
TDWMSs;  

• The waste clean-up planning horizon is discretized in units of half a month (15 days);  
• The number and types of each available vehicle are known a priori. Different vehicles may have different capacities.  
• The quantity of pollutants emitted during a trip depends on the vehicle type, load and distance travelled.  
• A vehicle travels directly from customer nodes to TDWMSs and to the final disposal sites (no routing).  
• Demolition operations are continuous, and the amount of waste generated at each period depends on the demolition speed which is 

assumed to be an input parameter.  
• Candidate locations for TDWMS are known, as well as the costs to implement a processing facility at each location. 

Given these characteristics, the problem consists in deciding the location of the TDWMS and, for each period of the planning 
horizon: the order in which the buildings are demolished to generate the waste to be collected, the quantity and types of vehicles 
assigned to each echelon of the problem, and the flow of waste in each echelon. 

3.2. Mathematical model 

A graph G = (N, A) is defined to describe the problem. The set of nodes N contains all relevant locations in the problem, N––C ∪ J ∪
L ∪ R, in which C = {1, 2, …, n} is the set of customer nodes, J = {n + 1, n + 2, …, n + m} is the set of TDWMS, L = {n + m + 1, n + m +
2, …, n + m + l} denotes landfill sites, and R = {n + m + l + 1, n + m + l + 2, …, n + m + l + r} denotes the recycling facilities. The set 

Fig. 1. Two-echelon disaster waste clean-up system structure.  
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A, in turn, contains the transportation links between the nodes in N, A ={ (i, j), ∀i, j ∈ N}. 
The input parameters of the model, as described in Section 4, are as follows: 
Input parameters: 
dij : Distance between node i and node j, i, j ∈ N (Unit: Km). 
Di: Demand of customer node i, i ∈ C (Unit: tonne). 
M: Demolition capacity (Unit: tonne/timeslot). 
η: Disaster waste recycling rate. 
W: Set of waste clean-up period (Unit: timeslot = 15 days). 
K: Set of vehicle types. 
fk: Fixed cost of selecting a vehicle of type k, k ∈ K. 
F: Maximum fixed cost can be spent on vehicles. 
V0

k : Maximum number of type k ∈ K vehicle that is available. 
VT: Number of vehicles in the fleet. 
Qk: Capacity of vehicle type k ∈ K. 
t1k : Number of trips a type k ∈ K vehicle can conduct in the collection stage in a time slot. 
t2k : Number of trips a type k ∈ K vehicle can conduct in the transportation stage in a time slot. 
Sj: Capacity of TDWMS j ∈ J (Unit: tonne). 
CVOC

k : Operation cost of vehicle type k ∈ K (Unit: AUD/Km). 
CVOT

k : Time cost of vehicle type k ∈ K (Unit: AUD/Km). 
CEC

k : Environmental cost of vehicle type k ∈ K (Unit: AUD/Km). 
CSC

k : Social cost of vehicle type k ∈ K (Unit: AUD/Km). 
cs: Waste storage cost in TDWMSs (Unit: AUD/tonne). 
cL: Waste landfill cost (Unit: AUD/tonne). 
cR: Waste recycling cost (Unit: AUD/tonne). 
E: Set of environmental emissions considered in the problem, E = {CO2, Sox, Nox, PM}. 
pe

k: e ∈ E emission of vehicle type k ∈ K (Unit: Kg/(tonne ⋅ Km)). 
pe s: e ∈ E emission from waste storage at TDWMSs (Unit: Kg/tonne). 
pe L: e ∈ E emission from waste landfill (Unit: Kg/tonne). 
pe R: e ∈ E emission from waste recycling facilities (Unit: Kg/tonne). 
The set of decision variables is divided into main and auxiliary decisions, as follows: 
Main decision variables: 
xijkω: Amount of waste collected from customer node i ∈ C to TDWMSs j ∈ J by vehicle type k ∈ K in time slot w ∈ W (Unit: tonne). 
yjlkω: Amount of waste transported from TDWMSs j ∈ J to landfill l ∈ L by vehicle type k ∈ K in time slot w ∈ W (Unit: tonne). 
zjrkω: Amount of waste transport from TDWMSs j ∈ J to recycling facilities r ∈ R by vehicle type k ∈ K in time slot w ∈ W (Unit: 

tonne). 
wj : Binary variable equal to 1 if TDWMS j ∈ J is selected, 0 otherwise. 
sjω: Amount of waste stored in a TDWMS j ∈ J at the end of time slot w ∈ W (Unit: tonne, sj0 = 0, ∀j ∈ J). 
Vk : Number of vehicle type k ∈ K used in the system. 
v1

kω: Number of vehicle type k ∈ K involved in the waste collection (first echelon) in time slot w ∈ W. 
v2

kω: Number of vehicle type k ∈ K involved in waste transportation (second echelon) in time slot w ∈ W. 
Auxiliary variables: 
γω : Binary variable equal to 1 if all the waste is cleaned at the end of time slot w ∈ W, 0 otherwise. 
Giw: Amount of waste produced at customer node i ∈ C in time slot w ∈ W (Unit: tonne). 
giω: Amount of available waste accumulated at customer node i ∈ C at the end of a time slot w ∈ W (Unit: tonne, gw = 0). 
CT : Total cost of waste clean-up (Unit: AUD). 
CVOC

ω : Operation cost of the system in time slot w ∈ W (Unit: AUD). 
CVOT

ω : Time cost of the system in time slot w ∈ W (Unit: AUD). 
CEC

ω : Environmental cost of the system in time slot w ∈ W (Unit: AUD). 
CSC

ω : Social cost of the system in time slot w ∈ W (Unit: AUD). 
Cs

ω: Waste storage cost in TDWMSs in time slot w ∈ W (Unit: AUD). 
CL

ω: Waste landfill costs in time slot w ∈ W (Unit: AUD). 
CR

ω: Waste recycling cost in time slot w ∈ W (Unit: AUD). 
Pe

T : Total e ∈ E emission from the whole waste clean-up system (Unit: Kg). 
P1e

ω : e ∈ E emission from waste collection stage in time slot w ∈ W (Unit: Kg). 
P2e

ω : e ∈ E emission from waste transportation stage in time slot w ∈ W (Unit: Kg). 
Pse

ω : e ∈ E emission from waste storage in TDWMSs in time slot w ∈ W (Unit: Kg). 
PLe

ω : e ∈ E emission from waste landfill in time slot w ∈ W (Unit: Kg). 

C. Cheng et al.                                                                                                                                                                                                          



Transportation Research Part E 165 (2022) 102867

6

PRe
ω : e ∈ E emission from waste recycling in time slot w ∈ W (Unit: Kg). 

The three objectives of the problem are as below: 

min
∑

e∈E
Pe

T (1)  

minCT (2)  

min|W| −
∑

w∈W
γw + 1 (3) 

Objective (1) concerns the minimization of total emissions. Objective (2) aims to minimize the total cost of logistic operations, 
while objective (3) aims to minimize the total time required to finish the clean-up operations. 

The logistic constraints below ensure that the capacities of vehicles and processing sites are respected and that all demand is 
collected within the measured time horizon. 

∑

k∈K
Vkfk ≤ F, (4)  

∑

i∈C
Giω ≤ M, ∀ω ∈ W (5)  

Giω ≤ Di,∀i ∈ C,ω ∈ W (6)  

∑

ω∈W
Giω = Di,∀i ∈ C (7)  

∑

j∈J

∑

k∈K
xijkω + giω = Giω + giω− 1,∀i ∈ C,ω ∈ W (8)  

(1 − η)
∑

i∈C

∑

k∈K
xijkω + sjω− 1 − sjω =

∑

l∈L

∑

k∈K
yjlkω,∀j ∈ J,ω ∈ W (9)  

η(
∑

i∈C

∑

k∈K
xijkω + sjω− 1 − sjω) =

∑

r∈R

∑

k∈K
zjrkω, ∀j ∈ J,ω ∈ W (10)  

0 ≤ sjω ≤ Sjwj, ∀j ∈ J,ω ∈ W (11)  

∑

i∈C

∑

j∈J
xijkω ≤ t1

k v1
kωQk , ∀k ∈ K,ω ∈ W (12)  

∑

l∈L

∑

j∈J
yjlkω +

∑

r∈R

∑

j∈J
zjrkω ≤ t2

k v2
kωQk , ∀k ∈ K,ω ∈ W (13)  

∑

j∈J

∑

k∈K

∑

ω∈w
xijkω = Di,∀i ∈ C (14)  

∑

i∈C

∑

k∈K

∑

ω∈W
xijkω =

∑

l∈L

∑

k∈K

∑

ω∈W
yjlkω +

∑

r∈R

∑

k∈K

∑

ω∈W
zjrkω,∀j ∈ J (15)  

∑

k∈K
Vk ≤ VT , (16)  

Vk ≤ V0
k , ∀k ∈ K (17)  

v1
kω + v2

kω ≤ Vk ,∀k ∈ K,ω ∈ W (18)  

g|W| = 0, (19)  

sj|W| = 0,∀j ∈ J (20)  

(1 − η)
∑

i∈C

∑

k∈K

∑

ω∈W
xijkω =

∑

l∈L

∑

k∈K

∑

ω∈W
yjlkω,∀j ∈ J (21)  
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η
∑

i∈C

∑

k∈K

∑

ω∈W
xijkω =

∑

r∈R

∑

k∈K

∑

ω∈W
zjrkω, ∀j ∈ J (22)  

γw ≤ 1 −
Di − Σω

ω’=1Giω’ + giω

Di
,∀i ∈ C,ω ∈ W (23)  

γw ≤ 1 −
sjω

Sj
, ∀j ∈ J,ω ∈ W (24) 

Constraints (4) ensure the maximum fixed cost of vehicles is not exceeded. Constraints (5) guarantee that the total amount of waste 
generated in a time slot is no more than the demolition capacity. Constraints (6) limit the waste produced in a customer node in each 
time slot to the total demand of the customer node. Constraints (7) ensure that all customer nodes are properly processed by demolition 
operations, making their waste available for collection. Constraints (8) are waste flow balance constraints at each customer node and 
ensure that only available waste can be collected at each time slot. Constraints (9) and (10) are flow balance constraints in TDWMSs for 
landfill waste and recyclable waste, respectively. They measure the waste inventory at each TDWMS and, along with Constraints (11) 
ensure that a TDWMS can only be used if it is open and that the stored waste at each time slot must respect the site capacity. Constraints 
(12) and (13) are vehicle capacity constraints in the waste collection and transportation stages, respectively. These constraints 
approximate the management of vehicle capacities using a proxy given by the total number of trips that can be conducted at each time 
slot, at each echelon, given the characteristics of the selected fleet. 

Constraints (14) force all waste generated by demolition at each customer to be collected. Constraints (15) ensure that all waste 
sent to each TDWMS should be transported to final disposal sites (landfills or recycling facilities). Constraints (16) ensure that the total 
number of vehicles used is bounded by the existing fleet. Constraints (17) are the counterpart of Constraints (16) for each vehicle type. 
Constraints (18) assign the available vehicles to the two echelons of the problem. Constraints (19) and (20) ensure all the waste has 
been cleaned at the end of the planning horizon. Constraints (21) and (22) guarantee that all non-recyclable waste ends in landfills and 
all recyclable waste ends in recycling facilities. Constraints (23) and (24) guarantee the correct meaning of artificial variables γw, w ∈
W, that is, γw can be set at 1 only if all the waste is cleaned at the end of time slot w. 

The additional constraints below are used to compute the environmental emissions generated in waste collection, transportation, 
storage, landfill, and recycling in every time slot for each environmental factor. 

p1e
ω =

∑

i∈C

∑

j∈J

∑

k∈K

(
xijkωpe

kdij

)
, ∀e ∈ E,ω ∈ W (25)  

p2e
ω =

∑

l∈L

∑

j∈J

∑

k∈K

(
yjlkωpe

kdjl

)
+
∑

r∈R

∑

j∈J

∑

k∈K

(
zjrkωpe

kdjr

)
, ∀e ∈ E,ω ∈ W (26)  

pse
ω = pe s

∑

j∈J
sjω, ∀e ∈ E,ω ∈ W (27)  

pLe
ω = pe L

∑

l∈L

∑

j∈J

∑

k∈K
yjlkω,∀e ∈ E,ω ∈ W (28)  

pRe
ω = pe R

∑

r∈R

∑

j∈J

∑

k∈K
zjrkω, ∀e ∈ E,ω ∈ W (29)  

pe
T =

∑

ω∈W

(
p1e

ω + p2e
ω + pse

ω + pLe
ω + pRe

ω
)
,∀e ∈ E (30)  

CVOC
ω =

∑

i∈C

∑

j∈J

∑

k∈K

(
xijkωcVOC

k dij

)
+
∑

l∈L

∑

j∈J

∑

k∈K

(
yjlkωcVOC

k djl

)
+
∑

r∈R

∑

j∈J

∑

k∈K

(
zjrkωcVOC

k djr

)
, ∀ω ∈ W (31)  

CVOT
ω =

∑

i∈C

∑

j∈J

∑

k∈K

(
xijkωcVOT

k dij

)
+
∑

l∈L

∑

j∈J

∑

k∈K

(
yjlkωcVOT

k djl

)
+
∑

r∈R

∑

j∈J

∑

k∈K

(
zjrkωcVOT

k djr

)
, ∀ω ∈ W (32)  

CEC
ω =

∑

i∈C

∑

j∈J

∑

k∈K

(
xijkωcEC

k dij

)
+
∑

l∈L

∑

j∈J

∑

k∈K

(
yjlkωcEC

k djl

)
+
∑

r∈R

∑

j∈J

∑

k∈K

(
zjrkωcEC

k djr

)
,∀ω ∈ W (33)  

CSC
ω =

∑

i∈C

∑

j∈J

∑

k∈K

(
xijkωcSC

k dij

)
+
∑

l∈L

∑

j∈J

∑

k∈K

(
yjlkωcSC

k djl

)
+
∑

r∈R

∑

j∈J

∑

k∈K

(
zjrkωcSC

k djr

)
,∀ω ∈ W (34)  

Cs
ω =

∑

j∈J
sjωCs , ∀ω ∈ W (35)  
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CL
ω =

∑

l∈L

∑

j∈J

∑

k∈K
yjlkωCL , ∀ω ∈ W (36)  

Fig. 2. Modeling flow.  

Fig. 3. Spatial distribution of significant fires of the 2009 Black Saturday Bush-fires.  
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CR
ω =

∑

r∈R

∑

j∈J

∑

k∈K
zjrkωCR ,∀ω ∈ W (37)  

CT =
∑

ω∈W

(
CVOC

ω +CVOT
ω +CEC

ω +CSC
ω +Cs

ω +CL
ω +CR

ω
)
+
∑

k∈K
Vkfk (38) 

Constraints (25) to (29) compute the emissions according to the vehicle trips. Constraints (30) compute total environmental cost, 
and Constraints (35) to (37) are used to compute the environmental costs in each time slot according to different components of the 
system, that is, waste storage cost, waste landfill cost, and waste recycling cost, respectively. Constraints (38) give the total cost of the 
system. 

3.3. Methodology for generating Pareto curves 

After modeling the objectives respectively, the model attempts to normalize the objectives to define the Utopia point and generate 
the Pareto frontier. To generate Pareto points, we run the optimization for J times by minimizing the total time objective considering 
the additional constraints (A7) to (A9) in Appendix A for each run j. We applied the Pareto filter to produce a subset of the Pareto points 
(Messac et al., 2003) in which all dominated points are removed. The modeling flow is summarized in Fig. 2. 

4. Case study 

4.1. Case study area 

The Black Saturday bushfires were a series of bushfires that ignited or burned across the Australian State of Victoria on and around 
Saturday, 7 February 2009. They were one of the worst bushfires disasters in Australian history. It has influenced several millions of the 
population in the State, across Australia, and internationally. 173 people were killed in 78 communities, over 430,000 ha of land, and 
2000 properties were destroyed (Brown et al., 2010). Fig. 3 shows the significant fires observed in the Black Saturday Bush fires. 

Fig. 4. The nodes are distributed in the study area.  
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4.2. Data collection and organization 

4.2.1. Nodes 
The nodes involved in the problem are customer nodes, TDWMSs candidates, landfills, and recycling facilities. Fig. 4 presents the 

spatial locations of the nodes identified in the study area. In total, there are 10 customer nodes, 11 TDWMSs candidates, 4 landfills, and 
3 recycling facilities in the case study. 

Customer nodes are derived from where houses were destroyed or land damaged. All damage information was summarized on the 
official website of the Country Fire Authority.1 The demand of each customer node (Di) is calculated using Equation (39). 

Di = αNi + βAi (39) 

Where Di is the demand of a customer node i ∈ C; α refers to the average waste generation rate for each demolished house (170.1 
tonnes/house), and β is the average waste generation rate of damaged land (265.9 tonnes/km2) (Rawtec, 2015); Ni and Ai are the 
number of destroyed houses and the area of damaged land in customer node i ∈ C, respectively. 

Table 2 shows the destroyed buildings and damaged areas in each customer node. The total number of the destroyed building was 
about 2000. However, there were 3,000 buildings demolished (Brown et al., 2010). Thus, we assume that the number of demolished 
buildings is directly proportional to the number of destroyed buildings. 

TDWMS candidates are selected respecting the method developed by Cheng and Thompson (2016). The capacity of each candidate 
(Sj) is estimated by Equation (40) (Tabata et al., 2017), where aj is the land area of a TDWMS j ∈ J, d is the volume-weight of disaster 
waste (m3/tonne), and H is the height for stacking the disaster waste (m). 

Sj=(aj × H)/d (40). 
In the actual post-disaster waste clean-up system, all these wastes were classified as a single category named “bushfire waste” that 

was transported to three landfills ultimately (Brown et al., 2010). Although a small part of the waste, such as concrete and metal, was 

Table 2 
Data related to customer nodes.  

No. of 
nodes 

Location No. of destroyed 
buildings 

No. of demolished 
buildings 

Damaged 
land (ha) 

Waste from demolished 
Buildings (tonnes) 

Waste from 
damaged land 
(tonnes) 

Total 
(tonnes) 

1 Kilmore East 1,242 1,812 125,383 308,221.2 33,3371 641,592 
2 Horsham(Vectis & 

Haven) 
13 19 2,346 3,232 6,238 9,470 

3 Coleraine 1 1 713 170 1,896 2,066 
4 Pomborneit-Weerite 0 0 1,008 0 1,896 2,680 
5 Churchill 145 212 25,861 36,061 68,760 104,821 
6 Murrindindi 538 785 168,542 133,529 448,123 581,652 
7 Redesdale 14 20 7,086 3,402 18,840 22,242 
8 Narre Warren and 

Upper Ferntree Gully 
7 10 163 1,701 433 2,134 

9 Bendigo 58 85 341 14,459 907 15,365 
10 Beechworth- 

Mudgegonga 
38 55 33,577 9,356 89,275 98,631 

Total 2,056 3,000 365,020 510,130 970,524 1,480,654  

Table 3 
Summary of data related to vehicles.  

Vehicle type Unit Type 1 Type 2 Type 3 Type 4 

Vehicle capacity tonnes 5 10 15 20 
Vehicle quantity  300 200 50 50 
Fixed cost AUD/vehicle 2,342 6,032 9,416 17,804 
Vehicle travel capacity in stage 1 trip/timeslot 30 30 30 30 
Vehicle travel capacity in stage 2 trip/timeslot 15 15 15 15 
Vehicle operation cost (VOC) AUD/(t⋅Km) 0.566 0.164 0.394 0.254 
Value of time (VOT) AUD/(t⋅Km) 0.113 0.056 0.038 0.029 
Environmental cost (EC) AUD/(t⋅Km) 0.47 0.151 0.345 0.24 
Social cost (SC) AUD/(t⋅Km) 0.491 0.466 0.311 0.356 
CO2 emission Kg/(t⋅Km) 8.59 × 10-2 7.82 × 10-2 7.20 × 10-2 6.32 × 10-2 

SOx emission Kg/(t⋅Km) 7.00 × 10-4 5.72 × 10-4 5.04 × 10-4 4.55 × 10-4 

NOx emission Kg/(t⋅Km) 1.19 × 10-3 9.03 × 10-4 7.78 × 10-4 7.04 × 10-4 

PM emission Kg/(t⋅Km) 1.13 × 10-4 1.01 × 10-4 9.12 × 10-5 8.08 × 10-5 

Note: 1 AUD = 0.79 USD in the year 2009. 

1 https://www.cfa.vic.gov.au/about/black-Saturday/. 
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recycled, there was no information about the recycling facilities in the existing waste clean-up system. Thus, three extensive recycling 
facilities close to the disaster-affected area are considered. The capacity of these facilities is assumed to be big enough to handle all 
waste generated from the bushfires. The recycling rate is 50 % because the potential recyclable waste can reach 53 % after bushfires 
(County of San Diego, 2005). The distance between each pair of nodes is calculated using Dijkstra’s algorithm, which provides the 
shortest paths between origin and destination in the platform of ArcGIS software. 

4.2.2. Vehicles 
The clean-up used 600 vehicles in the Black Saturday Bush-fires waste clean-up operations (Brown et al., 2010). Four vehicle types 

used in this study have characteristics described in Table 3. Each vehicle type has specific capacities, fixed cost, vehicle operation cost 
(VOC), the value of time (VOT), environmental cost (EC), and social cost (SC) (Yang et al., 2016). The CO2 emissions, SOx emissions, 
NOx emissions, and PM emissions for each type of vehicle are also different (Tabata et al., 2017). Vehicle travel capacity defines the 
number of trips made by each vehicle in each time slot, which is estimated based on the average distance between nodes, the speed of 
vehicles, and the load and unload time required. The fixed cost, VOC, VOT, EC, and SC of each type of vehicle are obtained from Yang 
et al. (2016) (Table 3). The total environmental emissions are calculated using the life cycle assessment method derived from Tabata 
et al. (2017). Namely, the total emission value includes emissions from waste collection and transportation, temporary storage and 
process in TDWMSs, and final disposal in landfills or recycling facilities. 

4.2.3. TDWMS and final disposal 
Table 4 provides the cost and environmental emission rate for waste operation in TDWMS, waste recycling, and waste landfill, 

respectively. The TDWMS operation cost is drawn from EPA (2016). Waste landfill cost is assumed to be zero since the landfill op-
erators are most likely to waive the levy for the waste generated in a disaster. The landfill levy fee was waived to dispose of waste 
generated from the 2009 Black Saturday bushfires (Brown et al., 2011b). The recycling profit is derived from ACT RECYCLING (2016), 
assuming that most of the recyclable waste is masonry as it contributes more than 60 % of the total waste generated in a large-scale 
bushfire (Rawtec, 2015). The environmental emission data is obtained from Tabata et al. (2017). 

5. Results analysis and discussion 

5.1. Instance generation 

We generated artificial instances from small to large scales to test the model’s performance. Based on the definition in Syrichas and 
Crispin (2017). Instances with 250 to 500 nodes are large instances. Therefore, we generated instances with 10 to 500 customer nodes. 
Each instance was repeated 10 times. In the artificial instances, the location of the customer nodes, TDWMSs, and final disposal 

Table 4 
Cost and environmental emission rate of TDWMS and waste final disposal.   

Cost 
(AUD/t) 

CO2 emission 
(Kg/t) 

SOx emission 
(Kg/t) 

NOx emission 
(Kg/t) 

PM emission 
(Kg/t) 

Operation in TDWMS 15  4.96 4.60 × 10-4 2.04 × 10-3 1.23 × 10-20 

Landfill 0  2.29 6.20 × 10-4 4.91 × 10-1 6.75 × 10-4 

Recycling − 44  − 1.61 − 7.43 × 10-4 − 9.64 × 10-4 − 1.57 × 10-14  

Fig. 5. Computation time of instances with different numbers of customer nodes.  
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facilities are generated randomly in a rectangle similar to the case study area (400 km × 200 km). The maximum clean-up time is 36 
slots for instances with more than 350 customer nodes. The rest of the parameters are the same as the case study. 

5.2. Performance of the model 

The model is solved using a Gurobi 8.1 solver in an Intel Core i5 @ 2.3 GHz machine with 8 GB RAM. The stopping criterion is a gap 
smaller than 0.01 %, guaranteeing the near optimal solution. The computation time for each instance is shown in Fig. 5. It illustrates 
that the model can solve large-scale problems within acceptable computational times for such a planning problem. 

5.3. Scenario analysis 

We compare the results in two different scenarios. The first scenario respects the model we presented in Section 3, in which 
different types of vehicles are considered. We create a baseline scenario in the second one assuming only one type of vehicle is used. For 
example, in the 2004 Marmara Earthquake in Turkey, three-axle trucks with a capacity of 10 tonnes were used in the clean-up process 
(Baycan, 2004). Thus, we assume that only Type 1 vehicles are used in the clean-up in the second scenario. To allow the model to 
generate feasible solutions in this scenario, we relaxed the constrain for the maximum clean-up time, which allowed the clean-up to 
finish in 60 time slots instead of 24 time slots in the original model. 

Table 5 compares the results of the two scenarios with three different objectives. It indicates that using Type 2, Type 3, and Type 4 
vehicles can save about 50 % of the total cost when the objective is to minimize total cost. When we minimize the total environmental 
emission, the emission decreases by around 87 % in the first scenario compared to the baseline. Furthermore, the total clean-up time 
can be reduced by two-thirds if Type 2, Type 3, and Type 4 vehicles are used. 

The table also illustrates that minimizing total environmental impacts can reduce emissions by more than 10 % and 70 %, 
respectively, compared to the results obtained in the first scenario when the objective is to minimize the total cost and total time. 
Therefore, it is significant to consider environmental impacts and reduce environmental emissions. Furthermore, comparing the 
number of vehicles required in different scenarios confirms the importance of using Type 2, Type 3, and Type 4 vehicles in the waste 
clean-up system. 

Table 5 
Results comparison of different scenarios.  

Objective Min total cost 
(AUD) 

Min total environmental emission (Kg) Min total time 
(time slot) 

Scenario 1 Scenario 2 Scenario 1 Scenario 2 Scenario 1 Scenario 2 

Total cost (AUD) 1.17 × 108 2.28 × 108 1.27 × 108 2.29 × 108 5.56 × 108 8.94 × 108 

Total environmental emission (Kg) 1.76 × 107 1.27 × 108 1.60 × 107 1.27 × 108 4.96 × 107 1.62 × 108 

Total time (time slot) 24 60 24 60 17 50 
No. of vehicles required 459 496 400 600 600 600 
Type1 0 496 0 600 0 600 
Type2 300 0 0 0 244 0 
Type3 0 0 200 0 156 0 
Type4 159 0 200 0 200 0  

Fig. 6. Detailed cost composition in each time slot when minimizing total cost.  
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5.4. Cost and environmental emission analysis 

Fig. 6 shows the amount and composition of the cost spent in each time slot when the objective is to minimize the total cost. The 
cost includes VOC, VOT, EC, SC, Operation and Storage Cost in TDWMSs (OSC), Landfill Cost (LC), and Recycling Cost (RC). 

It shows that the cost spent in every time slot ranges between 2 × 106AUD to 8.5 × 106AUD with an average of around 5 × 106AUD. 
According to the definition of total cost presented in the model (Equation (35) to (38)), the cost of each time slot depends on the 
following factors: i) amount of waste transported between nodes in different stages; ii) distances of routes used in different stages; iii) 
amount of waste stored in the selected TDWMSs; iv) amount of waste sent to final disposal facilities. The first two factors determine the 
VOC, VOT, EC, and SC of vehicles used in each time slot, contributing to the total cost. The diversity of the combination of waste 
transportation amount and distance between nodes makes the cost distribution flux according to time, especially without daily cost 
constraints. The Figure also indicates that the RC can deduct about one-fourth of the total cost, emphasizing recycling in disaster waste 
management. 

Fig. 7 presents the composition of CO2, SOx, NOx, and PM emissions on the left side when optimizing total environment impacts is 
the objective. The emissions come from waste collection (T1), waste transportation (T2), storage in TDWMSs (Ts), waste landfills (TL), 
and waste recycling (TR). The figures demonstrate that waste storage in TDWMSs and waste transportation are the most significant 
contributions to CO2 and the majority of SOx emission comes from waste transportation. The landfill has little impact on CO2 and SOx 
emissions. However, it takes a significant proportion of NOx and PM emissions. Furthermore, landfill contributes a dominant 

Fig. 7. Environmental emission composition in each time slot when minimizing total environmental impacts.  
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proportion of NOx emission. In addition, landfill is the second most extensive resource of PM emission, following waste transportation. 
According to figures on the left side of Fig. 7, the environmental emission fluctuates widely in different time slots and peaks in the 

time slot of 13. The reason could be attributed to the above reasons such as distance and amount. Specifically, at time slot 13, the 
amount of waste transported from the customer node to selected TDWMSs is high. The distance between the node pairs visited in time 
slot 13 is long in stage 1. It leads to a sizeable environmental emission in stage 1. However, in the actual waste clean-up practice, the 
system design needs to consider environmental capacity, i.e., the limit to absorb pollution in a certain period. Therefore, controlling 
the peak of environmental emissions and evenly distributing them across each time slot is necessary. A set of constraints (6) below are 
then added to the model. Constraints (41) ensure that each type of emission cannot exceed the limitation of each time slot. The figures 
on the right side of Fig. 7 show the distribution of each factor with environmental capacity limitations. The environmental emissions in 
each time slot are evenly distributed, ensuring the environmental capacities are satisfied. 

pCO2
ω ≤ 7 × 105,∀ω ∈ W  

pSOx
ω ≤ 3 × 103,∀ω ∈ W  

pNOx
ω ≤ 2 × 104,∀ω ∈ W  

pPM
ω ≤ 750,∀ω ∈ W (41)  

5.5. Pareto frontier 

The Pareto frontier is generated using MATLAB 2018b within 2 s. The order of objectives considered in this section is objective 1 
(minimizing the total cost, µ1), objective 2 (minimizing total environmental emission, µ2), and objective 3 (minimizing the total time, 
µ3). Based on the results provided in section 5.1, the anchor points µi are: 

µ1 = [1.17 × 108 1.76 × 107 24]. 
µ2 = [1.27 × 108 1.60 × 107 24]. 
µ3 = [5.56 × 108 4.96 × 107 17] (42). 
Then the normalized anchor points are calculated in Equation (43), and the direction vectors are presented in Equation (44). 

u1 = [ 0 0.05 1 ]

u2 = [ 0.02 0 1 ]

u3 = [ 1 1 0 ] (43)  

N1 = [ 1 0.95 − 1 ]

N2 = [ 0.92 1 − 1 ] (44) 

Fig. 8 shows the result of the Pareto frontier constructed using the method proposed in Appendix A.2. In this Figure, the points 
indicate the best combinations of the objectives. Fig. 8 also illustrates that most of the points in the original Pareto frontier are 
dominated by others. Finally, 9 points are non-dominated. The reason is that the total cost and total environmental emissions strongly 
depend on the total travel distance of vehicles. Thus, the two objectives only have a weak conflict with each other. 

Fig. 8. Pareto frontier generated for the problem (m1 = 34).  
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In Table 6, we translate the non-dominated points to the actual value of each objective, which compromises the non-dominated 
results considering all objectives together. The decision-makers can select a waste clean-up plan according to their preference of 
the objectives. If the total cost and environmental emission are the main concerns, the results provided in Point 4 and Point 8 are good 
choices. If it is more important to recover the disaster-affected area as soon as possible, plans associated with Point 1 and Point 5 are 
better options. The results also generated transportation routes and waste flow in each point shown in Appendix B using point 1 as an 

Table 6 
Objective values of non-dominated points.  

Point Total cost (AUD) Total environmental emission (Kg) Total time (time slots) 

Point 1 1.47 × 108 1.79 × 107 17 
Point 2 1.38 × 108 1.72 × 107 18 
Point 3 1.28 × 108 1.66 × 107 20 
Point 4 1.23 × 108 1.63 × 107 24 
Point 5 1.48 × 108 1.78 × 107 17 
Point 6 1.37 × 108 1.73 × 107 18 
Point 7 1.28 × 108 1.67 × 107 19 
Point 8 1.24 × 108 1.62 × 107 24 
Point 9 1.30 × 108 1.66 × 107 19  

Fig. B1. Collection and transportation routes used in point 1 in Fig. 5.  

Table B1 
Waste flow of point 1.  

From To Amount (ton) From To Amount (ton) 

1 14 18,227 14 24 9113 
1 19 623,365 15 22 1033 
2 13 9470 16 22 1340 
3 15 2066 17 25 40,102 
4 16 2680 18 23 47,009 
5 17 80,204 19 24 335,992 
5 18 15,857 20 23 278,076 
5 21 8760 21 25 5447 
6 18 25,500 12 27 17,480 
6 20 556,152 13 27 4735 
7 12 22,242 14 28 9113 
8 21 2134 15 27 1033 
9 12 12,717 16 27 1340 
9 18 2648 17 26 40,102 
10 18 50,012 18 28 47,009 
10 19 48,619 19 28 335,992 
12 24 17,480 20 28 278,076 
13 22 4735 21 26 5447  

C. Cheng et al.                                                                                                                                                                                                          



Transportation Research Part E 165 (2022) 102867

16

example. 

6. Conclusion remarks 

6.1. Major findings 

Integrating the location of processing facilities with vehicle transportation decisions is essential for establishing an efficient waste 
clean-up system, and the literature has dedicated much attention to the resulting optimization problems. However, few studies have 
proposed algorithms that simultaneously consider cost, time, and emissions outcomes across different waste removal arrangements, 
especially in the context of large scale. This study investigates how to achieve multiple-objective management in a two-echelon waste 
clean-up system that considers the location of TDWMS and truck fleet composition. A mixed-integer programming model in this study 
explicitly considers total operation time, cost, and environmental emissions. The most significant findings of this study can be sum-
marized as follows:  

i) The multiple objectives can be simultaneously considered by the mixed-integer programming model, which can be solved with 
black-box tools in very reasonable times. This time efficiency allows the model to be solved multiple times and their results 
applied to an NNCM to generate a Pareto frontier of the objectives. The computational efficiency of the approach allows for the 
methodology to be applied to large-scale decision problems.  

ii) The three objectives related to time, cost and emissions are conflictive with each other. The solutions are analyzed from this 
perspective, and a series of managerial insights are obtained. For example, increased use of heavy-duty trucks can save about 50 
% of the total cost and time but significantly increase environmental emissions. 

iii) Minimizing the total environmental emissions can lead to an 87 % reduction of pollutants emissions. Considering environ-
mental emission limitations in each time slot can help evenly release the pollutants to the environment without increasing the 
total amount. 

6.2. Managerial implication 

The model results can enable decision-makers to make efficient waste clean-up plans regarding selecting TDWMSs and vehicle 
fleets. It also helps design the transportation networks to and from the intermediate facilities. The availability of multiple non- 
dominated solutions can help decision-makers obtain ex-ante evaluations of a policy scheme. 

Appropriate post-disaster waste management solutions can be formulated according to specific situations or requirements limiting 
emissions, time, or costs. The Pareto frontier analysis provides valid reference information for the decision-makers to allocate the funds 
and balance the environmental emission at each time slot. On the other hand, the numerical results can help convince stakeholders 
with different interests by justifying, for example, small losses in one of the objectives in the benefit of large gains in other aspects of the 
problem. 

The analysis outcomes also indicate that solely pursuing one of the problem objectives can lead to serious drawbacks with respect to 
the solutions that explicitly consider all dimensions of the problem. In particular, it allows for conclusions regarding the importance of 
limiting carbon emissions. 

6.3. Limitations and suggestions 

Given the limited data, this paper did not integrate truck routing optimization in this model. We also do not consider the impacts of 
traffic on the route choice for waste collection and transportation, especially in areas close to urban developments. Finally, carbon 
emissions modeling can be improved with the use of real-time behavior models. These are interesting topics for future investigations. 
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Appendix A:. The steps for Pareto frontier generation Pareto frontier 

Step 1: Anchor Points generation. Anchor points are generated by sequentially considering each objective in the optimization 
model. The optimization model is run once for each objective, and the values obtained for all objectives for each run define the anchor 
points. The three anchor points define the utopia plane. In our case, we will get the following anchor points: 

µ1 = [objCc objCe objCt]. 
µ2 = [objEc objEe objEt]. 
µ3 = [objTc objTe objTt] (A1). 
Step 2: Objectives normalisation. To avoid scaling deficiencies, the normalization of objectives is required to generate the Pareto 

frontier. To normalize the objectives, we defined the Utopia point in our case as µµ =[objCc objEe objTt]. Based on the values of ob-
jectives obtained in step one, we can get the distance between the worst and best case of the objective values L = [lc le lt]. 

lc = max(objEc, objTc) – objCc. 
le = max(objCe, objTe) − objEe. 
lt = max(objCt, objEt) – objTt (A2). 
Using the above definitions, the normalised design metrics can be evaluated as: 

u1 = (μ1 − μμ)/L  

u2 = (μ2 − μμ)/L  

u3 = (μ3 − μμ)/L (A3) 

Step3: Computation of Utopia Plane Vectors. Utopia plane vector Nk defines the direction from un to uk. In our case, we have. 

N1 = u3 − u2  

N2 = u3 − u1 (A4) 

Step 4: Normalisation of Increments. The increment (δk) along the direction Nk are defined to decide the number of solutions (mk) 
we want to obtain along with the associated Nk direction. 

δk = 1/(mk − 1) (A5). 
To make sure points are evenly distributed on the utopia plane, we can use the following relationship. Given a specified number of 

points (m1) along the vector N1, we can set Nk as. 
mk = m1| Nk |/| N1 | (A6). 
Step 5: Utopia Plane Points generation. This step aims to evaluate a set of evenly distributed points on the utopia plane as: 

Xj =
∑3

k=1
akjuk (A7) 

Note that the value αkj should respect:  

0 ≤ αkj ≤ 1.                                                                                                                                                                            (A8) 

∑3

k=1
akj = 1 (A9) 

The value of αkj depends on the increments δk, which can be calculated using the Algorithm 1. 

Algorithm 1. α Generation. 
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1 j = 0 

2 α = 0 
3 while α ≤ mi do 
4 j = j + 1 
5 α1j = α * δ1 
6 α2j = 0 
7 α3j = 1 − α1j 
8 while α1j + α2j + δ2 <= 1 do 
9 j = j + 1 
10 α1j = α1j − 1 
11 α2j = α2j − 1 + δ2 
12 α3j = 1-α1j − α2j 
13 end 
14 end 
15 return α  

Step 6: Pareto Points generation. To generate Pareto points, we run the optimisation for J times by minimizing the total time 
objective considering the additional constraints in the following for each run j. 

Nku − XT
j ⩽0 10)  

u = { u1 u2 u3 } 11) 

Step 7: Generate Non-dominated Pareto Frontiers. In the final step, we applied the Pareto filter presented by Messac et al. 
(2003) to produce a subset of the Pareto points generated in Step 6 for which none will be dominated by any other. The filter aims to 
eliminate all dominated points from the Pareto frontier. 

Appendix B: 

Refer Fig. B1 and Table B1. 
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Özdamar, L., Aksu, D.T., Ergünęs, B., 2014. Coordinating debris clean-up operations in post-disaster road networks. Socio-Econ. Plan. Sci. 48, 249–262. 
Pramudita, A., Taniguchi, E., Qureshi, A.G., 2014. Location and routing problems of debris collection operation after disasters with realistic case study. Procedia Soc 

Behav Sci. 125, 445–458. 
Qiu, Y., Zhou, D., Du, Y., Liu, J., Pardalos, P.M., Qiao, J., 2021. The two-echelon production routing problem with cross-docking satellites. TRANSPORT RES E-LOG. 

147, 102210. 
Rafee, N., Karbassi, A.R., Nouri, J., Safari, E., Mehrdadi, M., 2008. Strategic Management of Municipal Debris aftermath of an earthquake. Int. J. Environ. Res. 2, 

205–214. 
Rawtec, 2015. Disaster waste management scoping study. Technical Report. Office of Green Industries, South Australia, Australia. 
Sahin, H., Kara, B., Karasan, O., 2016. Debris removal during disaster response: A case for turkey. Socio-Econ. Plan. Sci. 53, 49–59. 
Sanchis, J., Martinez, M., Blasco, X., Salcedo, J., 2008. A new perspective on multi-objective optimization by enhanced normalized normal constraint method. Struct 

Multidiscipl Optim. 36, 537–546. 
Sheu, J., 2007. A coordinated reverse logistics system for regional management of multi-source hazardous wastes. Comput Oper Res. 34, 1442–1462. 
Syrichas, A., Crispin, A., 2017. Large-scale vehicle routing problems: Quantum annealing, tunings and results. Comput Oper Res. 87, 52–62. 
Tabata, T., Wakabayashi, Y., Tsai, P., Saeki, T., 2017. Environmental and economic evaluation of pre-disaster plans for disaster waste management: Case study of 

minami-ise. Japan. Waste Manage. 61, 386–396. 
Takeda, T., Mori, Y., Kubota, N., Arai, Y., 2014. A route planning for disaster waste disposal based on robot technology. In: In: Robotic Intelligence In Informationally 

Structured Space (RiiSS), 2014 IEEE Symp. Robot. Intell. Informationally Struct. https://doi.org/10.1109/RIISS.2014.7009173. 
Yang, Y., Perera, L., Thompson, R.G., 2016. Truck cost analysis. Technical Report. Infrastructure Engineering Department, University of Melbourne. 
Zhang, F., Cao, C., Li, C., Liu, Y., Huisingh, D., 2019. A systematic review of recent developments in disaster waste management. J. Clean. Prod. 235, 822–840. 
Zhong, S., Cheng, R., Jiang, Y., Wang, Z., Larsen, A., Nielsen, O.A., 2020. Risk-averse optimization of disaster relief facility location and vehicle routing under 

stochastic demand. TRANSPORT RES E-LOG. 141, 102015. 

C. Cheng et al.                                                                                                                                                                                                          

http://refhub.elsevier.com/S1366-5545(22)00248-4/h0160
http://refhub.elsevier.com/S1366-5545(22)00248-4/h0160
http://refhub.elsevier.com/S1366-5545(22)00248-4/h0170
http://refhub.elsevier.com/S1366-5545(22)00248-4/h0170
http://refhub.elsevier.com/S1366-5545(22)00248-4/h0175
http://refhub.elsevier.com/S1366-5545(22)00248-4/h0180
http://refhub.elsevier.com/S1366-5545(22)00248-4/h0185
http://refhub.elsevier.com/S1366-5545(22)00248-4/h0185
http://refhub.elsevier.com/S1366-5545(22)00248-4/h0195
http://refhub.elsevier.com/S1366-5545(22)00248-4/h0200
http://refhub.elsevier.com/S1366-5545(22)00248-4/h0200
http://refhub.elsevier.com/S1366-5545(22)00248-4/h0215
http://refhub.elsevier.com/S1366-5545(22)00248-4/h0215
http://refhub.elsevier.com/S1366-5545(22)00248-4/h0220
http://refhub.elsevier.com/S1366-5545(22)00248-4/h0220
http://refhub.elsevier.com/S1366-5545(22)00248-4/h0230
http://refhub.elsevier.com/S1366-5545(22)00248-4/h0235
http://refhub.elsevier.com/S1366-5545(22)00248-4/h0235
http://refhub.elsevier.com/S1366-5545(22)00248-4/h0240
http://refhub.elsevier.com/S1366-5545(22)00248-4/h0245
http://refhub.elsevier.com/S1366-5545(22)00248-4/h0250
http://refhub.elsevier.com/S1366-5545(22)00248-4/h0250
https://doi.org/10.1109/RIISS.2014.7009173
http://refhub.elsevier.com/S1366-5545(22)00248-4/h0280
http://refhub.elsevier.com/S1366-5545(22)00248-4/h0285
http://refhub.elsevier.com/S1366-5545(22)00248-4/h0285

	An integrated multi-objective model for disaster waste clean-up systems optimization
	1 Introduction
	2 Literature review
	2.1 Disaster waste clean-up problems
	2.2 Optimization objectives and algorithms
	2.3 Solution method
	2.4 Problem size
	2.5 Discussion

	3 Problem description and mathematical model
	3.1 Problem description
	3.2 Mathematical model
	3.3 Methodology for generating Pareto curves

	4 Case study
	4.1 Case study area
	4.2 Data collection and organization
	4.2.1 Nodes
	4.2.2 Vehicles
	4.2.3 TDWMS and final disposal


	5 Results analysis and discussion
	5.1 Instance generation
	5.2 Performance of the model
	5.3 Scenario analysis
	5.4 Cost and environmental emission analysis
	5.5 Pareto frontier

	6 Conclusion remarks
	6.1 Major findings
	6.2 Managerial implication
	6.3 Limitations and suggestions
	Fund

	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgement
	Appendix A: The steps for Pareto frontier generation Pareto frontier
	Appendix B: Appendix A: The steps for Pareto frontier generation Pareto frontier
	References


