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Abstract: Harmonization of satellite imagery provides a good opportunity for studying land surface 

temperature (LST) as well as the urban heat island effect. However, it is challenging to use the har-

monized data for the study of LST due to the systematic bias between the LSTs from different satel-

lites, which is highly influenced by sensor differences and the compatibility of LST retrieval algo-

rithms. To fill this research gap, this study proposes the comparison of different LST images re-

trieved from various satellites that focus on Hong Kong, China, by applying diverse retrieval algo-

rithms. LST images generated from Landsat-8 using the mono-window algorithm (MWAL8) and 

split-window algorithm (SWAL8) would be compared with the LST estimations from Sentinel-3 

SLSTR and Himawari-8 using the split-window algorithm (SWAS3 and SWAH8). Intercomparison 

will also be performed through segregated groups of different land use classes both during the day-

time and nighttime. Results indicate that there is a significant difference among the quantitative 

distribution of the LST data generated from these three satellites, with average bias of up to −1.80 K 

when SWAH8 was compared with MWAL8, despite having similar spatial patterns of the LST images. 

The findings also suggest that retrieval algorithms and the dominant land use class in the study 

area would affect the accuracy of image-fusion techniques. The results from the day and nighttime 

comparisons revealed that there is a significant difference between day and nighttime LSTs, with 

nighttime LSTs from different satellite sensors more consistent than the daytime LSTs. This empha-

sizes the need to incorporate as much night-time LST data as available when predicting or optimiz-

ing fine-scale LSTs in the nighttime, so as to minimize the bias. The framework designed by this 

study will serve as a guideline towards efficient spatial optimization and harmonized use of LSTs 

when utilizing different satellite images associated with an array of land covers and at different 

times of the day. 

Keywords: land surface temperature; mono-window algorithm; split-window algorithm;  
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1. Introduction 

Land surface temperature (LST) is widely adopted in a range of meteorological, hy-

drological, and ecological applications [1–3] for assessing variability in the Earth’s climate 

system. Estimating spatial LST is primarily constrained when using the conventional 

ground monitoring stations under varying spatial and temporal changes [4,5]. Thus, the 

adoption of satellite remote sensing techniques has been used frequently for effective LST 

measurement [6,7]. Particularly, data retrieved from the thermal infrared (TIR) band of 

both sun-synchronized and geostationary satellites have been adopted widely for LST es-

timation around the globe [8,9]. 
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However, there are different combinations of spatial and temporal resolutions of 

LSTs obtainable from satellite data due to technical limitations in the design of these sat-

ellites’ TIR sensors [10,11]. This can be learned from the sun-synchronized sensors that 

provide data with finer spatial resolution but low temporal resolution, while the spatial 

resolution of geostationary satellite data is relatively coarse but has a finer temporal reso-

lution. This has led to the limited use of these satellite-derived LSTs, especially for diurnal 

LST analysis where high-spatial-resolution LSTs at different times of the day (daytime and 

nighttime) are required [2,12]. For example, among various sun-synchronized satellite plat-

forms, with the advanced developments of high-resolution Thermal Infrared Sensor (TIRS) in 

Landsat-8, the sensor can potentially provide global-scale and high-quality LST data at 100 m 

spatial resolution, yet the temporal resolution is about 16 days. On the other hand, data from 

the TIRS of the NOAA Geostationary Operational Environmental Satellites (GOES) can pro-

vide LST data at a high temporal resolution ranging from 30 min to 1 h, but these data have a 

relatively low spatial resolution of 4 km. There are also several sun-synchronized satellites that 

produce LST data with moderate temporal and spatial resolution, e.g., Sentinel-3 and Moder-

ate Resolution Imaging Spectroradiometer (MODIS) satellites’ sensors, which can provide LST 

data at 1 km spatial resolution at a temporal resolution of 12 h. 

To achieve high-spatial-resolution and high-temporal-resolution data suitable for di-

urnal analysis from satellite sensors, studies have focused on the harmonized use of data 

from different satellites and data optimization using fusion models. However, harmo-

nized use of satellite data is still primarily focused on data in the visible spectrum of re-

mote sensing satellites. Considering the systematic bias between the satellite sensors, their 

resolution differences and the discrepancies in LST inversion algorithms can affect the 

accuracy of their fusion or harmonize use [13]. With the blending spatiotemporal temper-

atures model (BLEST), integrating the image fusion and spatiotemporal fusion model 

(IIFSM) and spatial and temporal adaptive emissivity fusion model (STAEFM) having 

RMSEs of up to 0.6 K, 1.82 K, and 5.7 K, respectively [2,7,14]. It is important to understand 

the relationship between the satellite images to be fused and the resulting biases from the 

combination of different retrieval algorithms. For example, daytime LSTs can be retrieved 

from Landsat-8 using several algorithms such as the mono-window algorithm (MWA), 

split-window algorithm (SWA), and single-channel algorithm (SCA) [15]. Sentinel-3 Sea 

and Land Surface Temperature Radiometer (Sentinel-3 SLSTR) on the other end can pro-

vide both daytime and nighttime LST data at 1 km spatial resolution, given its dual-view 

scanning temperature radiometer, while the Himawari-8 satellite can provide LST data 

with a spatial resolution of 2 km in 10 min intervals. The harmonized use of LST images 

from Landsat-8, Sentinel-3, and Himawari-8 can potentially generate high-spatial-resolu-

tion LSTs both in daytime and nighttime. The accuracy of the results greatly depends on 

the compatibility of Landsat-8′s LST retrieval algorithms with those of the other satellites 

[15]. However, existing cross-comparison studies have primarily focused on the visible 

and near-infrared band of satellite sensors [16,17], while cross-comparison between TIR 

bands generally receives less attention.  

Despite very little research focusing on the cross-comparison of remotely sensed data 

in the TIR band, some are exceptionally worth noting. One study compared LST data re-

trieved from the TIRS of the Landsat-8 satellite with in situ LST measurements using a 

broadband thermal infrared radiometer on the island of Mallorca, Spain [18]. The three 

algorithms studied in the LST retrieval included the SCA, SWA, and radiative transfer 

equation (RTE). The results show that SWA obtained the lowest root-mean-squared error 

(RMSE) in a range between 1.6 K to 2 K. In comparison, the other study compared the LST 

generated from the MODIS with a medium resolution loaded on the sun-synchronized 

satellite with that retrieved from the data obtained by a geostationary satellite (GOES) 

[19]. The LST from the MODIS satellite was retrieved using SWA, and the dual-window 

algorithm (DWA) was used alternatively for the LST retrieval from the GOES satellite due 

to the lack of split-window channels in the GOES (12) satellite. It revealed that LST gener-

ated from the GOES satellite was higher overall when compared with that retrieved from 
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the MODIS satellite. The temperature difference was also reported to be larger in the day-

time when compared with the nighttime, which can be explained by anisotropy in satellite 

viewing geometry and land surface properties. In addition, Jee et al. compared LST data 

in Japan derived from two sun-synchronized satellites, i.e., Landsat and MODIS. The 

study observed a positive correlation between Landsat and MODIS LST and a RMSE of 

4.61 K [20]. However, when the LST from two satellites were compared with observations 

from automatic weather stations (AWS), a stronger correlation and a smaller RMSE error 

were obtained for both satellites (0.83 and 3.28 K) and MODIS (0.96 and 2.25 K). The dif-

ference between two LSTs was attributed to the difference in optical observation and var-

iance of spatial resolution. The studies on cross-comparison of LST discussed above pri-

marily focused on (i) identifying satellites with the highest accuracy for estimating LST in 

a specific locality, (ii) resolving differences between products from different satellites, and 

(iii) identifying the most precise LST retrieval algorithm for a particular satellite. 

Given the potential to achieve high-spatial-resolution and high-temporal-resolution 

LST from the harmonized use or fusion of LST products from Landsat-8, Sentinel-3 SLSTR, 

and Himawari-8 TIRS, which will be suitable for diurnal analysis, this study aims to con-

duct a cross-comparison analysis on the LST products from these three satellites. The ob-

jectives of this study are to (i) develop a framework for LST comparison between the TIRS 

of various satellites; (ii) examine the effect of the differences in retrieval algorithms on the 

relationship between LSTs retrieved from different satellite sensors; and (iii) examine the 

relationship between remotely sensed LSTs during daytime and nighttime. In addition, a 

null hypothesis that there is no significant relationship between the LSTs retrieved from 

different satellite sensors will also be tested.  

2. Study Area and Data 

2.1. Study Area 

Hong Kong is located at the entrance of Pearl River Delta of China (see Figure 1a), at 

latitude 22°9′14”N~22°33′44”N and longitude 111°50′7”E~114°26′30”E [21], with an ap-

proximate size of 1104.4 km2. Hong Kong is dominated by several hills and highlands, 

resulting in a remarkably high development density in the few areas with relatively shal-

low slopes across its 18 districts (See Figure 1b) [22]. The intense urbanization in the region 

has consequently resulted in the development of an urban heat island (UHI) effect with 

large temperature differences between urban and rural areas, making the region a perfect 

site for cross-comparison of LST from different remote sensing satellites [23]. The study 

of LST in relation to spatial and temporal peculiarities of this region will help to under-

stand the factors responsible for the vast variation in the temperature of urban and rural 

landscapes in the area. A population of about 7.5 million was recorded in 2020 and the 

region is considered as one of the world’s most densely populated cities [24]. Hong Kong 

has a monsoon-influenced humid subtropical climate, according to the Köppen–Geiger 

climate classification [25], and its climate has received a lot of attention by local research-

ers because of the considerable increase in the occurrence of extreme hot weather events 

in the region in recent decades [26]. 
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(a) (b) 

Figure 1. The study area in Hong Kong SAR. (a) Hong Kong in southeast China; (b) the map of 

Hong Kong with 18 districts. 

2.2. Data 

2.2.1. Landsat-8 Satellite Data 

There are several sun-synchronized satellites hosted with TIR sensors [10]. In this 

study, high-quality data from the Landsat-8 satellite were adopted with high spatial res-

olution, availability of long-term series, and availability of multiple TIR bands (bands 10 

and 11) [27]. Landsat-8 has a relatively fine spatial resolution in 30 m for both visible and 

near-infrared bands, and 100 m for TIR bands with a revisit period of every 16 days for all 

bands [28]. The Landsat-8 satellite carries the Operational Land Imager (OLI), which 

stores remotely sensed data in visible spectra into nine spectral bands; and the Thermal 

Infrared Sensors (TIRS), which feature two bands in the TIR region centered at the 10.9 

μm and 12 μm atmospheric windows (see Figure 2) [16,29]. To carry out cross-comparison 

analysis for this study, cloud-free Landsat-8 data covering Hong Kong were sourced from 

the United States Geological Survey website [30] (Table 1).  

Table 1. Details of satellite data used for this study. 

Satellite Data Date Overpass Time Period 

Landsat 8 19 January 2021 10:52 am daytime 

Sentinel-3 SLSTR 
18 January 2021 10:48 pm nighttime 

19 January 2021 10:48 am daytime 

Himawari-8 
18 January 2021 10:50 pm nighttime 

19 January 2021 10:50 am daytime 
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Figure 2. Spectral response of Landsat 8, Sentinel-3, and Himawari-8 TIRS thermal channels. 

2.2.2. Sentinel-3 SLSTR Data 

In order to complement LST data from Landsat 8 that can only be used to derive LST 

data in the daytime at 16-day intervals, Sentinel-3 SLSTR, which can produce daily LST 

data at daytime and nighttime, was also adapted in this study [31]. Like the Landsat-8 

satellite, Sentinel-3 SLSTR is also a sun-synchronized satellite but with a moderate spatial 

resolution (1 km). The presence of two TIR bands centered at the 10.5 μm and 12.4 μm 

atmospheric windows can be used to derive LST products using SWA. The daytime and 

nighttime Sentinel-3 SLSTR data for Hong Kong were downloaded from the "Europe’s 

eyes on Earth” website where it was archived [32]. 

2.2.3. Himawari-8 Satellite Data 

Since several geostationary satellites are available, data from the Advance Himawari 

Imager (AHI) on the Himawari-8 Japanese metrological satellite were selected as a major 

data source for this study. The Himawari-8 satellite is a new-generation geostationary sat-

ellite that was launched by the Tanegashima Space Center [33]. This satellite was chosen 

for this study because of its improved TIR sensors and a better spatial (2 km) and temporal 

resolution (+10 min for full disk and 2 min for Japan) when compared with other geosta-

tionary satellites [33]. In addition, the presence of three TIR bands centered at 10.4 μm, 

11.2 μm, and 12.4 μm can be used to derive LST products using SWA [29]. The Himawari-

8 satellite provides a coverage of the entire East Asia and Western Pacific regions [34]. The 

AHI data for Hong Kong were downloaded from the JAXA website, where it was archived 

in the NetCDF format using the P-Tress system. 

2.2.4. Land Use Data 

Land use involves the modification and management of the natural environment into 

the built environment [35]. These modifications consequently influence land surface emis-

sivity (LSE), which is a key input in estimating LST, making land use data indispensable 

for this study. The Land Utilization in Hong Kong (LUHK) obtained in December 2020 

was used to extract land classification information of the study area [36]. The LUHK map 

was created utilizing updated satellite photos, the Planning Department’s in-house sur-

vey data, and other pertinent data from various government ministries. The data have a 

spatial resolution of 10 m, covering the administrative boundary of Hong Kong. Thus, for 

this study, the LUHK data were collected and resampled by interpolating the values to 

the resolution of the satellite data. The collected LUHK map has 27 different land use 

classes and was further integrated into 10 classes by grouping land use classes with similar 
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characteristics together [37]. The area under study is a combination of both vegetation, 

developed land, and water bodies, as presented in Figure 3 and Table 2. 

 

Figure 3. Hong Kong land cover map (LUHK 2020). 

Table 2. The percentage of each land use class in Hong Kong. 

S/N LUHK Class (Abbreviation) Percentage (%) 

1 Residential (RES) 7.082 

2 Commercial (COM) 0.42 

3 Industrial (IND) 2.40 

4 Institutional (INS) 12.56 

5 Agricultural (AGR) 4.41 

6 Green Space (GS) 65.73 

7 Undeveloped (UND) 1.78 

8 Waterbody (WB) 4.21 

9 Others (OT) 1.41 

Total Land Surface coverage  100.00 
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3. Methodology 

The process involved in the cross-comparison analysis can be classified into two main 

tasks as presented in the framework in Figure 4, including (i) the retrieval of LST from 

satellite data and (ii) cross-comparison of the LST product obtained from the different 

satellite data. 

 

Figure 4. Framework for LST retrieval and comparison. 

3.1. Estimation of LST from Satellite Data 

The first step in the research design was to estimate the LST products from the satel-

lites, and this was carried out by using existing retrieval algorithms. Compared to Senti-

nel-3 SLSTR and Himawari-8, there are a number of retrieval algorithms available for the 

retrieval of LST from Landsat-8. In this study, two widely used methods were employed 

to retrieve LST from Landsat-8 [26], i.e., the MWA and the SWA, while for Sentinel-3 

SLSTR and Himawari-8, SWA was the only LST retrieval algorithm that is widely em-

ployed [31,36], which gives referencing and a baseline to further develop this study. 

3.1.1. LST Retrieval from Landsat-8 

• Mono-Window Algorithm  

In this study, the MWA was adopted to estimate LST using information from a single 

TIR band (band 10) of the Landsat-8 satellite [38]. The method, which has an accuracy of 

2 K, requires two major parameters, i.e., brightness temperature (BT) and land surface 

emissivity (LSE) (ελ), to estimate LST [38]. The computation of the LST is presented in 

Equation (1): 

𝐿𝑆𝑇 =
𝐵𝑇

{1 + [(𝜆𝐵𝑇/𝜌)ln𝜀𝜆]}
 (1) 

where BT represents the brightness temperature of the TIR band, λ is the emitted radi-

ance’s wavelength (10.895), ρ is the Boltzmann constant (1.38 × 10−23 J/K), and ε is the land 

surface emissivity. 

• Split-Window Algorithm  

The SWA, also referred to as the multichannel algorithm, was used to retrieve LST 

from the Landsat-8 data. The algorithm depends on more than one TIR band for the re-

trieval of LST from satellite data. The algorithm chosen for this study has received a wide 

acceptance for LST retrieval with high accuracy (RMSE = 0.93 K) [39]. In addition, it does 

not require additional information about the atmospheric profile during satellite 
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acquisition. Landsat-8 contains dual TIR bands (band 10 and 11), which makes it possible 

to retrieve LST by using SWA. This study used SWA [39] for the estimation of LST from 

Landsat 8 TIR data, as presented in Equations (2)–(4).  

𝐿𝑆𝑇 = 𝑇10 + 𝐵1(𝑇10 − 𝑇11) + 𝐵0 (2) 

𝐵0 =  
𝐶11(1 − 𝐴10 − 𝐶10)𝐿10 − 𝐶10(1 − 𝐴11 − 𝐶11)𝐿11

𝐶11𝐴10 − 𝐶10𝐴11

  (3) 

𝐵1 =
𝐶10

𝐶11𝐴10 − 𝐶10𝐴11

 (4) 

T10 and T11 are the BT of the Landsat-8 band 10 and band 11. B0 and B1 are coefficients 

in the algorithm, which can be calculated using the expressions in Equations (3) and (4). 

A10, A11, C10, and C11 in the equations are intermediate parameters determined by the LSE 

and atmospheric transmittance (AT) for band 10 and 11. The AT for the two Landsat-8 TIR 

bands can be estimated using water vapor, as presented in Table 3 [39]. 

Table 3. The relationship between atmospheric transmittance (τ10/11) and water vapor content (w). 

Model Water Vapor Range Equation 

Mid-latitude sum-

mer region 
0.2–3.0 g/cm2 

𝜏10 = −0.0164𝑤2 − 0.04203𝑤 + 0.9715 

𝜏11 = −0.01218𝑤2 − 0.07735𝑤 + 0.9603 

The water vapor content (w) in the equations in Table 3 for this study was estimated 

from the relative humidity (RH) and near-surface temperature (To) of the study area based 

on Equation (5) [40]. 

𝑊𝑖 =  0.0981 × {10 × 0.6108 × exp [
17.27 × (To − 273.15)

273.3 + (To − 273.15)
] × RH} + 0.1697 (5) 

After estimating the AT, A10, A11, C10, and C11 can then be calculated using Equations 

(6)–(9). 

A10 = ε10 τ10 (6) 

A11 = ε11 τ11 (7) 

C10 = (1 − τ10) [1 + (1 − ε10) τ10] (8) 

C11 = (1 − τ11) [1 + (1 − ε11) τ11] (9) 

where τ10 and τ11 represent AT for bands 10 and 11, respectively; ε10 and ε11 represent the 

LSE for bands 10 and 11, respectively. Meanwhile, L10 and L11 were computed using the 

variables in Table 4 depending on the range of the BT of bands 10 and 11 [20]. From the 

table, A is the slope and B(K) is the linear regression intercept. Thus, if the BT of band 10 

ranges between −10 and 20 °C, the value of L10 will be estimated as 0.4087 × T10 – 55.58. The 

same method was used for the estimation of L11. 

Table 4. Linear regression coefficients for L10 and L11. 

TIR Bands  T Range (°C) A B(K) 

Band 10 
−10−20 0.4087 −55.58 

20−50 0.4464 −66.61 

Band 11 
−10−20 0.4442 −59.85 

20−50 0.4831 −71.23 
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• Calculating Land Surface Emissivity 

The NDVI threshold method (NBEM) was adopted to estimate LSE in this study. This 

method is simple and accurate, such that it is more preferred when compared to other 

methods used in several studies [33,41,42]. Firstly, the NDVI is estimated from the satellite 

data’s red and near-infrared (NIR) band of the satellite data, as presented in Equation (10), 

after which the LSE can be estimated. 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑟𝑒𝑑

𝑁𝐼𝑅 + 𝑟𝑒𝑑
 (10) 

In order to consider the high signal-to-noise ratio (SNR), the NDVI threshold method 

adopted for this study considered the impact of different land use cover types, i.e., vege-

tation, bare soil, impervious surface, and water, in the estimation of LSE [43]. Pixels with 

NDVI values smaller than 0 were considered as water bodies, pixels with NDVI values 

greater than 0.50 were considered to be fully vegetated, while pixels with NDVI values 

smaller than 0.2 were considered as non-vegetated areas [41]. The ASTER spectral data-

base was used to determine the emissivity value of the different land use cover types for 

both band 10 and band 11, as presented in Table 5 [41]. Finally, pixels with NDVI values 

that fall between the nonvegetated pixels (NDVI < 0.2) and fully vegetated pixels (NDVI 

> 0.5) were considered to be a mixed pixel. The LSE for these pixels was estimated using 

Equation (11) [41,44]: 

𝜀𝑚 =  𝜀1𝑃𝑣 +  𝜀2(1 − 𝑃𝑣) + (1 − 𝜀2)(1 − 𝑃𝑣)𝐹𝜀1 (11) 

where εm is the emissivity of mixed pixels, ε1 is the emissivity value for fully vegetated 

pixels, and ε2 is the emissivity value for nonwater and nonvegetated pixel. F is a geomet-

rical factor whose value ranges between 0 to 1 depending on the surface [45]. For this 

study, the value was defined as equaling to 0.05. Pv in this study was estimated using 

Equation (12): 

2

S
V

V S

NDVI NDVI
P

NDVI NDVI

 −
=  

− 
 (12) 

where NDVI is the result of estimation from Equation (10); NDVIv and NDVIs represent 

the NDVI values for vegetation and sand, respectively, which are quantified as 0.5 and 

0.2, accordingly [44]. 

Table 5. The emissivity values of water, vegetation, and nonvegetation for Landsat-8 TIRS band 10 

and band 11. 

 ε for Water ε for Vegetation ε for Non-Vegetation 

TIR—band 10 0.991 0.984 0.964 

TIR—band 11 0.986 0.980 0.970 

3.1.2. LST Retrieval from Sentinel-3 SLSTR 

Given that Sentinel-3 SLSTR data can provide LST data both during daytime (~11:00 

am) and nighttime (~11:00 pm), LST was retrieved at both time instants using SWA for the 

study area. Although surface temperature can be retrieved from Sentinel-3 SLSTR data 

using the dual-angle algorithm (DAA) as well, the choice of SWA was due to its better perfor-

mance over land surface when compared with DAA, due to the differences in the footprints 

and the observation geometries between the two views used in the DAA [31]. The Zheng19 

SWA algorithm, which has an accuracy of 1.3 K, was adopted in this study for both daytime 

and nighttime LST retrieval from Sentinel-3 SLSTR [46]. This algorithm was adopted because 

it is refined from the generalized SWA (Equation (2)) that has been adaptive to the spectral 

channel of Sentinel-3 SLSTR. Equation (13) describes the Zheng19 algorithm [46]: 
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𝐿𝑆𝑇 = 𝑑0 + (𝑑1 + 𝑑2

1 − 𝜀

𝜀
+ 𝑑3

∆𝜀

𝜀2
)

𝑇8 + 𝑇9

2
+ (𝑑4 + 𝑑5

1 − 𝜀

𝜀
+ 𝑑6

∆𝜀

𝜀2
)

𝑇8 + 𝑇9

2
+ 𝑑7(𝑇8 − 𝑇9)2 

(13) 

where dn are equation constants, as presented in Table 6 (n = 0–7); T8 and T9 are input data 

that represent the BT of the Sentinel-3 SLSTR band 8 and band 9, respectively; while ∆𝜀 

is the difference between the emissivity of the two TIR channels, i.e., ∆𝜀 = (𝜀8 − 𝜀9); and 

𝜀 represents the average emissivity of the two TIR channels (𝜀 = 0.5 × (𝜀8 + 𝜀9)). 

Table 6. Coefficients of SWA used for retrieving LST from Sentinel-3 SLSTR. 

Coefficient Value 

𝒅𝟎 −0.51 

𝒅𝟏 −0.053 

𝒅𝟐 −0.180 

𝒅𝟑 2.13 

𝒅𝟒 0.377 

𝒅𝟓 71.4 

𝒅𝟔 −10.04 

𝒅𝟕 −5.9 

The two input variables for the daytime and nighttime estimation of moderate reso-

lution LST from Sentinel-3 SLSTR as presented in Equation (13) are the BT and LSE of the 

two TIR channels. Since the TIR band of Sentinel-3 SLSTR contains the information of BT, 

the only input parameter required to be estimated was the LSE and it was retrieved using 

the NDVI threshold-based method, following the expressions in Equation (14): 

𝜀𝜆 = {

𝑎𝜆 +  𝑏𝜆𝜌𝑟𝑒𝑑

𝜀𝑣𝜆𝑃𝑣 + 𝜀𝑠𝜆(1 − 𝑃𝑣) + 𝐶𝜆  
𝜀𝑣𝜆 + 𝐶𝜆 = 0.99 

 
𝑁𝐷𝑉𝐼 <  𝑁𝐷𝑉𝐼𝑠  

𝑁𝐷𝑉𝐼𝑠 ≤ 𝑁𝐷𝑉𝐼 ≤ 𝑁𝐷𝑉𝐼𝑣  
𝑁𝐷𝑉𝐼 >  𝑁𝐷𝑉𝐼𝑣  

(14) 

where Cλ is the cavity effect of the thermal band, and the subscripts “s” and “v” stand for 

soil and vegetation, respectively. Meanwhile, Pv is the percentage of vegetation and 𝜌𝑟𝑒𝑑  

is the surface reflectance of the red band of the Sentinel-3 STSLR data. For the estimation 

of daytime LSE, the NDVI and PV were estimated following Equations (10) and (12) re-

spectively, with the data in Sentinel-3 SLSRT band 2 (S2) and band 3 (S3) representing the 

red and NIR band, respectively. Considering that the satellites cannot collect data in the 

visible band (S2 and S3) at nighttime, LSE value estimated during daytime was also em-

ployed for the LST estimation at nighttime, assuming that there will be no significant 

change in the LSE within the same day. 

3.1.3. LST Retrieval from Himawari-8  

The algorithm developed by Choi and Shu [33] was employed in this study owing to 

high retrieval accuracy (RMSE = 1.083 K), efficiency, and similarity to the one used for the 

Landsat data and Sentinel-3 SLSTR by making use of two TIR bands (bands 13 and 15). 

The equation for the LST retrieval is presented as below. 

𝐿𝑆𝑇 = 𝑐0 + 𝑐1𝐵𝑇13 + 𝑐2(𝐵𝑇13 − 𝐵𝑇15) + 𝑐3(sec𝜃 − 1) + 𝑐4(1 − 𝜀)̅ + 𝑐5𝛥𝜀 (15) 

where c1 to c5 are Himawari-8 LST retrieval coefficients presented in Table 7, and ∆ε, and ͞͞ε 

are the difference in LSE and mean LSE across the two TIR bands. BT13 and BT15 are the 

BT of bands 13 and 15, respectively, and θ is the viewing zenith angle (VZA) of the 

Himawari-8 data, which was estimated based on the locational properties (longitude and 

latitude) of the data [47]. Given that Himawari-8 has a temporal resolution of 10 min for the 

full disc, which includes the study area, LST was estimated both during the day and at 

nighttime for the detailed comparison with the moderate-resolution LST retrieved from Sen-

tinel-3 SLSTR. 
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Table 7. Coefficients of the algorithm used for retrieving LST from Himawari-8 data. 

 Conditions C0 C1 C2 C3 C4 C5 

 Moist  67.1857 0.7448 2.07 1.096 63.061 −75.1606 

Day Normal 8.926 0.9651 0.9364 −0.1385 56.8638 −63.8708 

 Dry 15.3567 0.9461 1.1996 −1.411 48.5137 −68.3093 

 Moist  44.5826 0.8205 2.0427 1.6411 58.5399 −59.1371 

Night Normal 12.1778 0.9535 0.9278 −0.095 51.2696 −51.8349 

 Dry 20.3004 0.9279 1.0879 −1.4883 47.2503 −61.7212 

The NDVI threshold method was also adopted for the LSE inversion for Himawari-

8 using Equation (16) [28], with band 3 and band 4 of the Himawari-8 data representing 

the red and NIR band, respectively. εvλ and εgλ are the equation constants for the vegetation 

emissivity and ground emissivity, respectively and were adopted from the study of [28] 

for different land-use classes, while the emissivity constant for the water body was esti-

mated as the average of the total emissivity of all the land use classes in the study area. In 

addition, the cavity effect (Ci) for urban areas was estimated based on the Himawari-8 

Satellite Zenit Angle (SZA), as shown in Table 8 [28], to reduce the emissivity error as 

proposed by Atitar and Sobrino [48]. Similarly to the estimation of LST from Sentinel-3 

SLSTR at nighttime, it was also assumed that LSE in the study area remains constant 

throughout the day, so the LSE data estimated during the daytime could be used in the 

LST estimation at nighttime.  

Table 8. The cavity effect (Ci) in the urban area for the three TIR bands. 

Band 
SZA (°) 

0 10 20 30 40 50 60 

13 0.0104 0.0115 0.0125 0.0136 0.0147 0.0155 0.0161 

14 0.0104 0.0109 0.0114 0.0119 0.0124 0.0128 0.0131 

15 0.0089 0.0092 0.0096 0.0099 0.0102 0.0106 0.0108 

3.2. Cross-Comparison of LSTs from Satellite Data  

Spatial and statistical analysis were conducted to assess the relationship between the day-

time (~11:00 am) LSTs from the Landsat-8 satellite using both MWA and SWA and the LSTs 

from Sentinel-3 SLSTR and Himawari-8 satellites retrieved using SWA. Given that Landsat-8 

data are not generally available at nighttime, only the relationship between LSTs from Senti-

nel-3 STSLR and Himawari-8 satellite data was assessed at nighttime (~11:00 pm).  

LST data from Landsat-8 derived using MWA and SWA (MWAL8 and SWAL8) were 

compared against the LST data from Sentinel-3 SLSTR (SWAS3) and Himawari-8 (SWAH8) 

to investigate the bias in their combined use and identify the combination that has the 

least bias. The relationship between Sentinel-3 and Himawari-8 both during the daytime 

and nighttime was also assessed to estimate bias resulting from their combined use. 

According to Wu et al. [49], when a moderate- or coarse-resolution LST image has 

been resampled to the same spatial resolution as the fine-resolution LST image, the rela-

tionship between the temperature of the pure homogeneous coarse-resolution pixel, 

which is covered by only one land cover (LC) type, and the corresponding fine-resolution 

pixel, can be described by a linear equation expressed as: 

𝐿𝑆𝑇𝐹(𝑥,𝑦,𝑑𝑛) = 𝐿𝑆𝑇𝐶(𝑥,𝑦,𝑑𝑛) + 𝑅 (16) 

where LSTF and LSTC represent the LST of the fine resolution and resampled moderate or 

coarse resolution, respectively. Meanwhile, (x, y) is the pixel location for both fine- and 

coarse-resolution LST; dn is the acquisition date; and R is the bias, which is the difference 

between the LST observed at the fine and moderate or coarse resolutions.  
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Since LST images obtained from Landsat-8, Sentinel-3 SLSTR, and Himawari-8 have 

a spatial resolution of 100 m, 1000 m, and 2000 m, respectively, Sentinel-3 SLSTR and 

Himawari-8 were also resampled to 100 m by using the bilinear resampling method. The 

estimated LSTs from three satellites were also projected to the same coordinate system. In 

addition, the processed land use data (LUHK) of the study area were then used to extract 

LSTs by land use type from the satellite data.  

Following Equation (16), the relationship between the moderate-resolution LST data 

(SWAS3) and the corresponding fine-resolution LST (MWAL8 and SWAL8) for each land use 

class can be expressed as: 

        𝑀𝑊𝐴𝐿8(𝐿𝑈,𝑑𝑛) = 𝑆𝑊𝐴𝑆3(𝐿𝑈,𝑑𝑛) +  𝑀𝑊𝐴𝐿8−𝑆3 (17) 

𝑆𝑊𝐴𝐿8(𝐿𝑈,𝑑𝑛) = 𝑆𝑊𝐴𝑆3(𝐿𝑈,𝑑𝑛) + 𝑆𝑊𝐴𝐿8−𝑆3 (18) 

where MWAL8 and SWAL8 are the average LST values for the land use class as measured from 

the Landsat-8 data using MWA and SWA, respectively; SWAS3 is the LST value as measured 

from the Sentinel-3 SLSTR data; LU is the land use class; MWAL8-S3 and SWAL8-S3 are the biases 

that can be estimated by subtracting SWAS3 from MWAL8 in Equation (17) or SWAL8 in Equa-

tion (18), respectively. Meanwhile, dn denotes the acquisition date of the satellite data. Simi-

larly, the relationship between the coarse-resolution LST from SWAH8 and the corresponding 

fine-resolution LST from MWAL8 and SWAL8 for each land use class following Equations (17) 

and (18) can be expressed as presented in Equations (19) and (20), respectively. 

𝑀𝑊𝐴𝐿8(𝐿𝑈,𝑑𝑛) = 𝑆𝑊𝐴𝐻8(𝐿𝑈,𝑑𝑛) + 𝑀𝑊𝐴𝐿8−𝐻8 (19) 

𝑆𝑊𝐴𝐿8(𝐿𝑈,𝑑𝑛) = 𝑆𝑊𝐴𝐻8(𝐿𝑈,𝑑𝑛) + 𝑆𝑊𝐴𝐿8−𝐻8 (20) 

where SWAH8 is the LST value as measured from the Himawari-8 data, MWAL8-H8 and 

SWAL8-H8 are the biases, which can be estimated by subtracting SWAH8 from MWAL8 in 

Equation (19) or SWAL8 in Equation (20), respectively.  

For comparisons between coarse (SWAH8)- and moderate (SWAS3)-resolution LSTs, 

the coarse-resolution LST data (2000 m) were resampled to the same resolution as moder-

ate-resolution data (1000 m). The two data were subsequently projected to the same coor-

dinate system together with the land use data. The resulting data were then compared 

using a similar Equation as the daytime. 

𝑆𝑊𝐴𝑆3(𝐿𝑈,𝑑𝑛) = 𝑆𝑊𝐴𝐻8(𝐿𝑈,𝑑𝑛) + 𝑆𝑊𝐴𝑆3−𝐻8 (21) 

where SWAS3 and SWAH8 represent both the daytime and nighttime LST values as meas-

ured from Sentinel-3 SLSTR and Himawari-8 satellites, respectively, and SWAS3-H8 is the 

relationship bias, which can be estimated by subtracting SWAS3 from SWAH8 in Equation 

(21). The RMSE, SD, and the average of the biases of the land use classes were further 

estimated.  

4. Results 

4.1. Comparison of Remotely Sensed LSTs Retrieved Using Different Retrieval Algoritims  

Figure 5 reveals that LST maps generated from SWAH8 (Figure 5a), SWAS3 (Figure 5b), 

and from Landsat-8 using both MWA (Figure 5c) and SWA (Figure 5d) all had a similar pat-

tern for Hong Kong on 19 January 2021. Overall, water bodies have lower LST values, while 

the developed land has higher LST values. However, the LST map generated from Sentinel-3 

SLSTR (SWAS3) and Himawari-8 (SWAH8) could not provide more detailed heterogeneity of 

temperature distribution compared with that generated from Landsat-8 (MWAL8 and SWAL8) 

satellite data. That is due to the difference in resolution between the satellite sensors, with 

Landsat-8 having a finer spatial resolution (100 m). The temperature range of the results from 

SWAH8 is the smallest (280 K to 293 K), followed by SWAS3 (279 K to 294 K), MWAL8 (276 K to 

304 K), and SWAL8 (274 K to 312 K), which has the widest temperature range. 
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(a) (b) 

   

(c) (d) 

Figure 5. LST map of Hong Kong on 19 January 2021. (a) LST retrieved from SWAH8; (b) LST re-

trieved from MWAS3; (c) LST retrieved from MWAL8; (d) LST retrieved from SWAL8. 

The average LST by land use class on 19 January 2021, as presented in Table 9, reveals 

that as estimated from all satellite data, commercial (COM) land use has the lowest average 

LST, with an average temperature of 287.88 K for MWAL8, 289.53 K for SWAS3, 290.4 for 

SWAH8, and 290.04 K for SWAL8. In contrast, the land use class with the highest average LST 

is industrial (IND) land use, based on the estimations from all the satellite data, with an aver-

age temperature of 289.76 K for MWAL8, 290.68 K for SWAS3, 290.98 for SWAH8, and 291.42 K 

for SWAL8, respectively. Similarly, the other land use class (OT), which comprise rocky shores, 

cemeteries, and construction sites, also have high LSTs for SWAH8, SWAS3, and the two re-

trieval algorithms for Landsat-8, while the agricultural (AGR) and green space (GS) land use 

classes have a relatively low average LST as estimated from the three satellites, demonstrating 

that the green vegetation cover had a considerable cooling effect. 
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Table 9. Relationship between average LST estimated from Himawari-8 (SWAH8), Sentinel-3 SLSTR 

(SWAS3), and Landsat-8 (SWAL8 and MWAL8) on 19 January 2021 by land use class. 

LUHK Class MWAL8 (K) SWAS3 (K) SWAH8 (K) 
MWAL8-S3 

(∆K) 

MWAL8-H8 

(∆K) 

SWAL8 

(K) 

SWAL8-S3 

(∆K) 

SWAL8-H8 

(∆K) 

RES 288.26 289.96 290.41 −1.70 −2.15 289.5 −0.46 −0.91 

COM 287.88 289.53 290.4 −1.65 −2.52 289.04 −0.49 −1.36 

IND 289.76 290.68 290.98 −0.92 −1.22 291.42 0.34 0.24 

AGR  288.68 290.01 290.33 −1.33 −1.65 290.08 0.07 −0.25 

INS 288.77 289.8 289.86 −1.03 −1.09 290.46 0.26 0.2 

GS 288.21 289.91 290.03 −1.70 −1.82 289.95 0.04 −0.08 

UND 287.1 288.9 289.55 −1.8 −2.45 289.02 0.12 −0.53 

OT 289.12 290 290.65 −0.88 −1.53 290.65 0.65 0 

Bias (K)    −1.38 −1.80  0.77 −1.46 

SD (K)    0.39 0.54  0.49 0.65 

RMSE (K)    1.20 1.66  0.87 1.04 

However, from the Landsat-8 TIR sensor, MWAL8 was relatively lower and dominated 

with negative bias in all land use, while SWAL8 was relatively higher and largely dominated 

with positive bias in all the land use classes when compared with moderate-resolution LST 

(SWAS3), but largely dominated with negative bias when compared with coarse-resolution 

LST (SWAH8). This variation is due to the differences in the inversion algorithm.  

For MWA L8-S3, the result indicated that the estimated LSTs obtained from Landsat-8 

are lower than those from Sentinel-3, with the undeveloped (UND) land use class largely 

underestimated in having the largest bias (−1.8 K). Meanwhile, for MWAL8-H8, the greatest 

underestimation was found in the commercial (COM) land use class, with a bias of −2.52 

K. For SWAL8-S3, the overestimation (the estimated LST from Sentinel-3 is lower than that 

from Landsat-8) was largest for the other (OT) land use class, with a positive bias of 0.65 

K; while the least bias was 0.04 K, recorded in the area covered by green space (GS) land 

use class. This finding agrees with the study of Yu et al. [41] that an overestimation was 

recorded for LST estimated from Landsat using SWA when compared with in situ meas-

urements, and an underestimation was recorded when MWA was used for the LST esti-

mation from Landsat data.  

The RMSE, as presented in Table 9, is 1.20 K and 1.66 K when SWAS3 and coarse 

SWAH8 are compared with fine-resolution LST from Landsat-8 using MWA, while the 

RMSE of SWAL8-S3 and SWAL8-H8 is 0.87 K and 1.04 K, respectively. This reveals that LST 

retrieved from Landsat-8 using SWA is more consistent with LST retrieved from the mod-

erate and coarse-resolution LST.  

It can also be deduced from the statistical analysis as presented in Table 9 that mod-

erate-resolution LST (SWAS3) is more closely related to the fine-resolution LST when com-

pared with the relationship between the coarse-resolution (SWAH8) and fine-resolution 

LSTs. The close relationship between moderate- and fine-resolution LST is further re-

vealed in Figure 6, where the boxplots of the LSTs estimated from the three satellites (Sen-

tinel-3 SLSTR, Himawari-8, and Landsat-8 using both MWA and SWA) revealed that the 

first quartile of SWAS3, as well as the third quartile and maximum value, are more con-

sistent with the values from the Landsat-8 satellite (MWAL8 and SWAL8). However, SWAS3 

is more consistent with the SWAL8 estimation than MWAL8.  

The regression analysis of the LSTs presented in Figure 7 further depicts the high 

variability in the relationship between LST data from different satellite sensors when the 

varying retrieval algorithm is employed. The lowest values are reported in Figure 7a,c, 

while Figure 7b,d show higher correlation values. This difference also suggests that mod-

erate- and fine-resolution LST is more closely related as compared with the relationship 

between the coarse- and fine-resolution LST. 
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Figure 6. Boxplots of LSTs estimated from Himawari-8, Sentinel-3, and Landsat-8 using MWA and 

SWA for the different land use classes during winter. 

   

(a) (b) 

  

(c) (d) 

Figure 7. Four regressions of the average LSTs in the daytime. (a) Regression of LSTs obtained from 

SWAS3 and MWAL8. (b) Regression of LSTs obtained from SWAS3 and SWAL8. (c) Regression of LSTs 

obtained from SWAH8 and MWAL8. (d) Regression of LSTs obtained from SWAH8 and MWAL8. 

4.2. Cross-Comparison between Remotely Sensed LST during Daytime and Nightime 

This study generated both nighttime (~11:00 p.m.) and daytime (~11:00 a.m.) LST 

maps from SWAH8 (Figure 8a,c) and SWAS3 (Figure 8b,d) on 18 January 2021 and 19 Janu-

ary 2021, respectively. Similar to the observation in daytime, the LST maps from the two 

satellite exhibited a similar temperature distribution. However, in contrast to the obser-

vation in the daytime, water bodies are generally characterized with high LST value at 
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nighttime together with developed land in the study area. The LST maps also revealed 

that temperatures for all land use classes are relatively lower in the nighttime than in the 

daytime, and this can be related to the absence of shortwave radiation from the sun at 

nighttime. Thus, LST measurements are solely based on longwave radiation emitted from 

the land surface. Since Himawari-8 TIRS has a coarser spatial resolution, the range of LSTs 

(280.114 K–286.281 K) from Himawari-8 is smaller than that from Sentinel-3 SLSTR 

(278.937 K–287.937 K). 

  

(a) (b) 

  

(c) (d) 

Figure 8. LST maps of Hong Kong on 18 January 2021 at nighttime (around 11 pm). (a) LST retrieved 

from SWAH8. (b) LST retrieved from SWAS3. (c) LST retrieved from MWAL8 (d) LST retrieved from 

SWAL8 

The average LST from SWAS3 and SWAH8 during the day (~11:00 a.m.) and nighttime 

(~11:00 p.m.) by land use class, presented in Table 10, further confirmed the inference from 
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the LST map, as the average LST for all land use classes during the daytime is higher than the 

estimate at nighttime, with the industrial (IND) land use class having the largest temperature 

difference as estimated from both SWAS3 (7.93 K) and SWAH8 (8.39 K). This is closely followed 

by the agricultural (AGR), green space (GS), and residential (RES) land use classes, which also 

have large temperature differences between daytime and nighttime as estimated from both 

satellites. In contrast, the commercial (COM) land use class has the lowest temperature differ-

ence when the daytime and nighttime estimated LSTs from the two satellites are compared 

(i.e., 4.56 K and 6.16 K from SWAS3 and SWAH8, respectively).  

Table 10. Relationship between average LST from SWAH8 and SWAH8 during the daytime (~11:00 

a.m.) and nighttime (~11:00 p.m.) by land use class. 

LUHK Class 

Nighttime Daytime Daytime–Nighttime 

SWAS3 

(K) 

SWAH8 

(K) 

SWAS3-H8 

(∆K) 

SWAS3 

(K) 

SWAH8 

(K) 

SWAS3-H8 

(∆K) 

SWAS3 

(∆K) 

SWA-H8 

(∆K) 

RES 283.27 282.77 0.5 289.96 290.41 −0.45 6.69 7.64 

COM 284.97 284.24 0.73 289.53 290.4 −0.87 4.56 6.16 

IND 282.75 282.59 0.16 290.68 290.98 −0.3 8.2 8.66 

AGR  281.81 281.67 0.14 290.01 290.33 −0.32 7.93 8.39 

INS 283.12 282.9 0.22 289.8 289.86 −0.06 6.68 6.96 

GS 282.46 282.48 −0.02 289.91 290.03 −0.12 7.45 7.55 

UND 283.46 283.25 0.21 288.9 289.55 −0.65 5.44 6.3 

OT 282.59 283.06 −0.47 290 290.65 −0.65 7.41 7.59 

Bias (K)   0.18   −0.43 6.8 7.41 

SD (K)   0.38   0.50 6.90 7.45 

RMSE (K)   0.35   0.38 1.25 0.90 

When comparing the relationship between LST from moderate (SWAS8)- and coarse 

(SWAH8)-resolution satellites at nighttime (~11:00 p.m.), estimates from SWAS3 are overes-

timated with positive bias in six of the eight land use classes. Meanwhile, during the day-

time(~11:00 a.m.), the moderate-resolution LST is generally dominated by negative bias in 

all land use classes. However, the bias is insignificant both during the nighttime and day-

time, ranging between −0.47 to 0.73 and −0.87 to 0.06, respectively, with the relationship 

in the nighttime more significant, with an RMSE of 0.35 K. The greater RMSE in the day-

time (0.38) could be due to the effects of LSE and viewing geometry.  

The regression analysis of the LSTs presented in Figure 9 further depict a closer rela-

tionship between LSTs retrieved from moderate and coarse resolution in the nighttime 

with a regression coefficient of 0.61, as compared to the relationship in the daytime. 

  

(a) (b) 

Figure 9. Regressions of the average LSTs in the daytime and nighttime. (a) Regression of LSTs 

obtained from SWAS3 and SWAH8 at nighttime on January 18, 2021 (~11:00 p.m.); (b) regression of 

LSTs obtained from SWAS3 and SWAH8 at daytime on 19 January 2021 (~11:00 a.m.). 



Remote Sens. 2022, 14, 4444 18 of 21 
 

 

5. Discussion 

This study developed a framework for the cross-comparison of LST data retrieved 

from sun-synchronized and geostationary satellites using different algorithms, and we 

compared the biases resulting from the relationship between LSTs both during the day-

time and nighttime. In order to achieve high-spatial-resolution and high-temporal-resolu-

tion data from satellite sensors, studies on image fusion and harmonized use of satellite data 

leveraged on the relationship between sun-synchronized and geostationary satellite data 

[14,50,51]. However, the bias in the relationship influenced the accuracy of the resulting data 

[2,6,14]. Given that there are several techniques for LST retrieval from satellite data, the first 

step for achieving an optimal result from harmonized use of LST data or image fusion is to 

identify the combination of retrieval algorithm for sun-synchronized and geostationary data 

to achieve the minimum bias. In order to achieve this, our framework recommends the re-

trieval of LST from both the sun-synchronized and geostationary satellite using different re-

trieval methods, depending on the availability of data, after which the retrieved LST data from 

the sun-synchronized and geostationary data can be compared based on land use class to 

identify the combination that will result in the least bias.  

The choice of land use class as the basis for comparison is borne out of the entangled 

relationship between LST and land use class as established in different literatures [52,53]. 

Findings from the comparison of LSTs retrieved from Sentinel-3 SLSTR and Himawari-8 

satellites using SWA with LSTs retrieved from Landsat-8 using both MWA and SWA revealed 

similarity in the spatial distribution pattern of resulting LSTs, of the LST maps from the three 

satellites irrespective of the retrieval algorithm. However, as suggested in the literature [54,55] 

and confirmed by this study, LSTs derived from the three satellite sensors are not directly 

compactible. The disparities in estimated LST between Himawari-8, Sentinel-3 SLSTR, and 

Landsat 8 are directly related to variances in the spectral bandwidth and radiometric resolu-

tion between the satellite sensors (see Figure 2). The difference in spectral band resolution also 

affects the relationship between the LSTs from three sensors, and in particular, the dynamic 

range of LST. LST retrieved from the Sentinel-3 SLSTR satellite has a closer relationship with 

LST retrieved from Landsat-8 both using MWA and SWA when compared with the relation-

ship between LSTs from Himawari-8 and Landsat 8. This is because of the closer spatial reso-

lution range between Sentinel-3 SLSTR and Himawari-8 (1000–100 m) when compared with 

the range of Himawari-8 and Landsat-8 (2000–100 m).  

Further comparison of retrieved LSTs in the study revealed that there is a significant 

difference in the biases generated based on the retrieval algorithm. The biases of LSTs 

retrieved using similar algorithms (SWAH8, SWAS3 and SWAL8) are comparable and insig-

nificant (0.17 K and −0.0.26 K when SWAL8 is compared with SWAS3 and SWAH8, respec-

tively), while the biases are large when different algorithms are used (SWAH8, SWAS3, and 

MWAL8). The reason is that when SWA was used for the retrieval for both satellite images, 

the estimation was based on the difference in the atmospheric absorbance of two adjacent 

thermal bands in a satellite (e.g., bands 10 and 11 for Landsat-8 and bands 13 and 15 for 

Himawari-8) and some environmental variables have also been considered, including rel-

ative humidity and water vapor, which ultimately reduces the temperature difference in 

the LST images from both satellites [38,39]. This implies that fusion or harmonized use of 

LSTs retrieved from sun-synchronized and geostationary satellites using similar algo-

rithms is preferable because there will be less bias to account for. However, the pattern of 

the LST map generated from the Himawari-8 and Sentinel-3 SLSTR satellites are similar 

both in the daytime and nighttime, with daytime temperature generally being hotter [1]. 

The study demonstrates a higher correlation between SWAH8 and SWAS3 in the nighttime 

compared to daytime. The bias is less significant at nighttime, largely due to the lower 

dependency on differential surface cooling/heating at nighttime, and this makes nighttime 

LST more efficient for algorithm testing and temperature analysis [54]. In addition, SD 

during the daytime is relatively larger than at night. This can be linked with the impacts 

of structural shading, evaporative cooling, and changes in surface-air temperature [55]. 
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Differential surface heating over various surface covers, such as trees and grass/soil, is 

another factor that contributes to the ample variation in LST in the daytime [1]. 

Finally, the study reveals that there is significant difference in the relationship between 

LSTs from different satellite sensors based on the retrieval algorithm employed, and also that 

there are huge discrepancies in the variation of LSTs based on the time of the day.  

6. Conclusions 

The need for high-spatial-resolution and high-temporal-resolution remotely sensed 

LST, which leads to the fusion and harmonized use of data from different satellites, has 

essentially provided a valuable insight to optimize the accuracy of LST. This study there-

fore proposed a method for comparing LST data retrieved from different satellite sensors 

with distinct retrieval algorithms. The proposed cross-comparison method is based on the 

land use classification of the study area. In this study, LST data for Hong Kong retrieved 

from Landsat-8 using both MWA and SWA were compared with those retrieved from the 

Sentinel-3 SLSTR and Himawari-8 satellites using SWA. A comparison was also carried 

out between daytime and nighttime LST retrieved from the Himawari-8 and Sentinel-3 

SLSTR satellites. A significant difference was found between the LST images retrieved 

from the different satellites. The magnitude of the bias was revealed to be largely depend-

ent on the attribute of the satellite sensor, retrieval algorithm, and the land use classes in 

the study area. The comparison based on the time of the day revealed that nighttime LSTs 

from the two satellites (SWAH8 and SWAS3) are more consistent compared to daytime 

LSTs. This explains why LST studies that include assessment of the LST retrieval algo-

rithm, accuracy assessment of LSTs from satellite sensors, and urban heat island analysis 

encourage the use of nighttime LSTs over LSTs retrieved in the daytime. Furthermore, 

considering the close relationship between LSTs from Himawari-8 and Sentinel-3 as ob-

served in this study (R2 = 0.56 and 0.61 for daytime and nighttime respectively), the com-

bined use of satellite data from these sensors to provide high-spatial-resolution and high-

temporal-resolution LSTs for diurnal LST analysis should also be investigated. 
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