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H I G H L I G H T S  

• A framework for city-scale rooftop solar PV potential estimation was developed. 
• Labor cost of deep learning was significantly reduced with proposed spatial optimization sampling strategy. 
• Rooftop extraction model was proved to be robust in districts with different architectural styles and land use. 
• 311,853 GWh rooftop solar PV potential was estimated for Nanjing in 2019. 
• 330.36 km2 rooftop area and 66 GW installed capacity were estimated for Nanjing.  
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A B S T R A C T   

The estimation of rooftop solar photovoltaic (PV) potential is crucial for policymaking around sustainable energy 
plans. But it is difficult to accurately estimate the availability of rooftop area for solar radiation on a city-scale. In 
this study, a generic framework for estimating the rooftop solar PV potential on a city-scale using publicly 
available high-resolution satellite images is proposed. A deep learning-based method is developed to extract the 
rooftop area with image semantic segmentation automatically. A spatial optimization sampling strategy is 
developed to solve the labor-intensive problem when training the rooftop extraction model based on prior 
knowledge of urban and rural spatial layout and land use. In the case study of Nanjing, China, the labor cost on 
preparing the dataset for training the rooftop extraction model has been reduced by about 80% with the pro-
posed spatial optimization sampling strategy. Meanwhile, the robustness of the rooftop extraction model in 
districts with different architectural styles and land use has been improved. The total rooftop area extracted was 
330.36 km2, and the overall accuracy reached 0.92. The estimation results show that Nanjing has significant 
potential for rooftop-mounted PV installations, and the potential installed capacity reached 66 GW. The annual 
rooftop solar PV potential was approximately 311,853 GWh, with a corresponding estimated power generation of 
49,897 GWh in 2019.   

1. Introduction 

As an emerging renewable energy technology, solar photovoltaic 

(PV) technology is recognized as an essential option for sustainable 
energy transformation [1]. In recent years, benefiting from the 
advancement of technology, the reduction of material costs, and the 
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government’s support for electricity production from renewable energy, 
solar PV technology has been increasingly developed [2]. Especially in 
China, the world’s largest PV modules manufacturer, PV modules’ 
production costs have been continuously reduced because of the 
continuous development and innovation of crystalline silicon solar cells 
[3]. A series of national incentive policies and regulations issued by the 
Chinese government has also actively promoted the scale development 
of China’s domestic PV market, such as the ’Renewable energy law’ and 
’Benchmark feed-in tariff’ [4]. With the development of technology and 
policies’ support, China has become the world’s largest market for solar 
PV power generation. The new installed capacity and cumulative 
installed capacity in China reached 53 GW and 130 GW, respectively in 
2017, ranking the highest in the world [5]. In addition, in terms of grid 
parity capabilities and investment values of solar PVs, China’s industrial 
and commercial solar PV systems have generated electricity at a lower 
cost than that of the grid power supply [6]. 

With the transformation of China’s economic structure, the tertiary 
industry’s development shows that energy demand is increasingly 
dispersed [7]. The development of distributed PVs is the inevitable 
choice based on the actual national conditions and the lessons learned 
from centralized PVs [8]. Rooftops have been selected as the main 
location for PV installation by identifying favorable solar positions to 
avoid the loss of distributed energy generation caused by transmission 
[9]. Especially in China, with its high urban population density, occu-
pying no additional land is a huge advantage of small-scale rooftop 
applications [10]. A series of subsidy policies formulated by the Chinese 
government has led to the continuous development of distributed PV 
power generation in the residential and commercial sectors, but also to 
the problem of excessive fiscal funding [11]. In China, natural resources, 
energy demand, and economic levels vary significantly among regions. 
Therefore, it is necessary to reasonably evaluate the rooftop solar PV 
potential before determining the scale of subsidies to help decision- 
makers better formulate sustainable energy plans to avoid negative 
impacts. 

To estimate the solar PV potential of rooftop, it is necessary to 
quantify the available rooftop area of buildings that can receive solar 
radiation. At present, there are no publicly accessible rooftop data for 
most areas. Therefore, there is a need to develop an acquisition method 
for city-scale rooftop information to promote the assessment of rooftop 
solar PV potential on a large scale. Current studies have applied three- 
dimensional (3D) spatial data, such as light detection and ranging 
(LiDAR) and digital surface models (DSMs), to extract rooftop infor-
mation in urban areas [12]. However, the acquisition cost for 3D spatial 
data is not affordable when applied in studies on a large scale. Besides, 
the processing of 3D spatial data is labor-intensive and time-consuming. 

The use of massive open data from public map services to assess 
urban environments is increasing [13]. Google Earth satellite (GES) 
images are open-access data sources with advantages in extensive 
coverage, fast update speed, and low acquisition costs [14]. The 
emerging deep learning-based image semantic segmentation method 
can address the challenges of the complexity of building shapes. On the 
one hand, deep learning provides an effective solution for the city-scale 
extraction of rooftop information from optical images [15]. The 
extraction results can further support the estimation of city-scale solar 
potential and power generation [16]. On the other hand, because deep 
learning-based methods require many computer resources and large- 
scale labeled data, such methods are considered to require a signifi-
cant amount of time and labor costs to complete widespread promotion. 
Although most studies have reduced the time cost needed for applying 
deep learning-based methods from computer hardware [17–19], mini-
mizing the labor cost input in a large-scale promotion scenario has not 
been well explored. This study aims to bridge this gap and discuss 
critical issues that affect the benefits of deep learning-based methods in 
a city-scale promotion. The rooftop image samples are collected with a 
strategic approach that can significantly reduce the sample size input 
without reducing the accuracy of the rooftop extraction model. Besides, 

a cost-benefit analysis of the image training sample size and rooftop 
extraction model’s performance is conducted to determine whether the 
image training sample size can maximize the input–output benefit of the 
deep learning-based image semantic segmentation method. 

This study’s main objective is to develop a low-cost generic frame-
work for the city-scale extraction of building rooftop areas, which can 
serve as a data basis for the large-scale assessment of rooftop solar PV 
potential. A spatial optimization sampling strategy based on prior 
knowledge of urban and rural spatial layouts and land use is proposed to 
obtain training samples from GES images and further train the rooftop 
extraction model under the deep learning-based image semantic seg-
mentation method. By applying this model, a case study in Nanjing, 
China, is implemented to illustrate the extraction of rooftops with the 
proposed framework, and the extracted rooftop area is then used to 
assess the rooftop solar PV potential and solar PV power generation of 
the rooftops in Nanjing in 2019. 

2. Literature review 

2.1. City-scale solar PV potential estimation 

2.1.1. Methods of city-scale solar PV potential estimation 
Considerable efforts have been made to evaluate the global and 

regional solar energy potential in the existing studies, many of which 
have focused on the technological feasibility and economic feasibility of 
solar power PV generation [20,21]. However, it is still challenging to 
quickly apply the proposed method to a large-scale promotion while 
ensuring solar energy estimation accuracy. Traditional studies have 
applied various social factors, such as land use and the areas of build-
ings, to estimate the solar PV potential of a city [22,23]. These methods 
are effective when the building rooftop area data are not available; 
however, the solar potential estimation accuracy is limited. Because 
high-rise urban areas are not always suitable for installing solar PV 
panels, accurate estimates of the available rooftop area are of great 
significance for reliable solar potential estimation [24]. Levinson et al. 
used high-resolution orthophotos and LiDAR data in combination with 
vegetation growth models to estimate solar potential [25]. Ko et al. 
developed a novel algorithm by considering the effect of shadows, 
rooftop surface availability, rooftop features (i.e., chimneys or walls), 
and the azimuthal angle on the measurement of rooftop solar potential 
[26]. By considering the actual area of the available roof surface and the 
effect of shadow on the potential assessment, these methods obtain more 
accurate estimation results. However, these methods have high re-
quirements for the quality and quantity of data, and their efficiency is 
low. These disadvantages make it challenging to extend these methods 
to studies of regions or more extensive scale estimation. Many studies 
have recently applied the Geographic Information System (GIS) to es-
timate solar PV potential on the city-scale [27,28]. The important 
distinction of the GIS method is that rooftop suitability is not determined 
by manually selecting buildings or using predetermined constant values 
[29]. The GIS method shows higher accuracy than the constant values 
method and allows handling of larger data sets than manual selection. 

2.1.2. Resources of city-scale solar PV potential estimation 
In urban environments, the limitation of available areas for receiving 

solar radiation and sunlight blocking by high-rise buildings can prevent 
solar energy’s full utilization [30]. Current city-scale objects for the 
assessment and study of potential solar resources include road pavement 
[31], noise barriers [32], and building rooftops [33]. For example, 
Hofierka et al. developed the v.sun model to simulate the spatial dis-
tribution of different parts of a building receiving solar radiation in 
Presov, Slovakia [34]. Jakubiec et al. proposed a method based on 
detailed 3D urban massing models to predict PV panels’ citywide elec-
tricity revenue in Cambridge, Massachusetts [35]. Mohajeri et al. used a 
deep learning-based method to obtain building information from highly 
accurate LiDAR data to assess the solar PV potential of Geneva, Sweden 
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[36]. Romero et al. used a high-accuracy 3D city model to calculate the 
total rooftop area and solar irradiance in Ludwigsburg, Germany [37]. 
Although a building’s facade has a more available area than the rooftop, 
the building facade’s solar PV potential is lower than that of rooftops 
[38]. Installing rooftop-mounted PV systems on urban buildings has 
great potential for reducing greenhouse gas emissions. A building’s 
rooftop is considered a suitable place to install solar equipment without 
additional development [39]. In response to the current energy crisis 
and environmental degradation, rooftop solar PV integration effectively 
addresses the urban energy demand and environmental problems [30]. 

2.2. Acquisition of building rooftop information at the city scale 

The rooftop area of buildings is the data basis for estimating the 
rooftop solar PV potential. However, currently, roof data cannot be 
obtained directly in most areas. Therefore, it is necessary to develop a 
city-scale acquisition method for building rooftop information. 

2.2.1. Data sources for rooftop information acquisition for city buildings 
High-resolution remote sensing data, including LiDAR and DSMs, 

have been widely used for extracting urban building rooftops. Jochem 
et al. used airborne laser scanning (ALS) data to detect all rooftop sur-
faces utilizing region growing [40]. Gooding et al. used model-driven 
methods to reconstruct a rooftop form from the low-resolution DSM 
[33]. However, these high-resolution remote sensing data are not 
affordable when applied at the city scale. Open-access data from public 
map service providers, including Google Earth and OpenStreetMap, 
have also been used for rooftop extraction. For example, Huang et al. 
used deep learning technology to extract rooftop areas based on GES 
images [16]. Public map services’ public data have advantages in terms 
of extensive coverage, high update speed, and low acquisition cost. In 
particular, GES images with sub-meter-level resolution provide new 
opportunities for solar energy estimation at the city scale. 

2.2.2. City-scale extraction method for building rooftop information 
3D city models are usually constructed in advance to facilitate the 

extraction of building rooftops at the city scale. Agugiaro et al. used the 
Delaunay algorithm to construct a 3D city model based on LiDAR data 
[41]. The rooftop area can also be obtained with traditional edge 

detection algorithms. Kabir et al. used object-based image analysis 
(OBIA) to extract rooftops from Quickbird satellite imagery [42]. This 
type of method usually uses low- or mid-level features to distinguish 
building objects from non-building objects. The results depend on the 
setting of certain thresholds or the use of decisive empirical rules [43]. 
As the study area continues to expand, the rooftop style tends to be 
diversified. As a result, the setting of thresholds or empirical rules will 
become more complicated, making it challenging to popularize such 
methods to be implemented at the city scale. 

Recently, there has been an increase in the use of deep learning- 
based methods to extract rooftop information at the city scale. Moha-
jeri et al. proposed a support vector machine (SVM)-based method to 
classify rooftops into six categories according to the rooftop features 
[36]. Huang et al. obtained rooftop areas based on the image semantic 
segmentation model [16]. Semantic features have been widely used in 
the extraction of urban objects such as buildings, roads, and trees from 
satellite images [43]. For deep learning-based methods, a large training 
data set helps improve model performance. However, the additional 
amount of training data will increase data labeling’s labor cost and the 
time cost of model training. When faced with a wide range of application 
scenarios, a way to maximize the efficiency of data input and perfor-
mance output should be found instead of increasing the amount of data 
unscientifically. 

In summary, the current research on the estimation of rooftop solar 
PV potential on a city scale is challenging to consider both the accuracy 
of the estimation results and the economic and time costs of large-scale 
application and promotion methods. The accuracy of rooftop extraction 
using the 3D building model method is relatively high, while the 
demanding specific remote sensing data products (e.g., 3D LiDAR data) 
are not affordable. Traditional image processing algorithms or spatial 
analysis algorithms need to manually determine the threshold value for 
image segmentation, which is challenging to be applied on a large-scale 
urban scale. In recent years, the image semantic segmentation algorithm 
based on deep learning enables the extraction of building rooftops on a 
city scale. However, the existing methods of extracting building rooftops 
from high-precision remote sensing images using deep learning have 
limitations in implementation cost. Especially the manually labeling of 
massive rooftop image samples for training the deep learning-based 
models is labor-intensive. In addition, the random sampling method of 

Fig. 1. Research flow chart.  
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sample images will lead to redundancy in the training dataset. 
This study proposes a city-scale framework for the estimation of 

rooftop solar PV potential. Specifically, a novel training data acquisition 
strategy based on prior knowledge is developed to improve the proposed 
framework’s feasibility when applied on a large scale. The estimated 
rooftop solar PV potential with this affordable framework can further 
support the estimation of rooftop solar PV power generation. 

3. Methodology and research framework 

To facilitate the elaboration of the method, Nanjing, China, was 
taken as the study area. Sample data were obtained based on GES images 
with prior knowledge of the study area. An image semantic segmenta-
tion model was designed to extract the image’s rooftop part to support 
building-scale solar PV potential estimation. 

In Section 3.1, the overall framework of the study is described. In 
Section 3.2, to avoid blindly increasing the amount of data, a spatial 
optimization sampling strategy using prior knowledge is proposed to 
obtain rooftop samples with good richness and balance. The construc-
tion of a training dataset for deep learning is further explained. In Sec-
tion 3.3, the rooftop extraction technique based on deep learning used to 
achieve the city-scale acquisition of rooftop information is discussed. In 
Section 3.4, the extracted city-scale rooftop is applied to estimate the 
rooftop solar PV potential. In addition, the potential installed capacity 
and the corresponding potential annual power generation of the rooftop- 
mounted PV system are estimated based on the extracted city-scale 
rooftop. 

3.1. Overall research framework 

The research framework consists of the following three main mod-
ules: the construction of a training dataset for deep learning based on the 
proposed spatial optimization sampling strategy, the training and 
implementation of the rooftop extraction model, and the estimation of 

rooftop solar PV potential. The overall work framework and process, 
shown in Fig. 1, are as follows. In constructing a training dataset for deep 
learning, a spatial optimization sampling strategy was formulated, 
combined with prior knowledge about the urban and rural spatial 
structure and land use. A series of citywide satellite images were ob-
tained as samples by stratified sampling. The collected samples were 
standardized and labeled, and data augmentation was performed to 
construct a training data set suitable for deep learning. The constructed 
dataset was input into the deep learning network for training in the 
rooftop extraction model’s training and implementation. An image se-
mantic segmentation model that extracts the rooftop in GES images 
could then be obtained. The rooftop area was then obtained by applying 
this model to the whole study area. The rooftop solar PV potential can be 
estimated based on the extracted rooftop. The proposed framework can 
also be applied to estimate the potential installed capacity and the 
corresponding potential annual power generation of the rooftop- 
mounted PV system. 

3.2. Construction of training dataset for deep learning based on proposed 
spatial optimization sampling strategy 

3.2.1. Study area 
The study was conducted in Nanjing, Jiangsu Province, China 

(Fig. 2). Nanjing is the capital of Jiangsu Province and one of China’s 
most historic cities with a resident population of 8.44 million by the end 
of 2018 and covers an area of 6587.02 km2 [44]. The city has a sub-
tropical monsoon climate with four distinct seasons. The annual pre-
cipitation is 1200 mm, and the annual average temperature is 15.4 ◦C 
[45]. Nanjing is the central city of the Nanjing Metropolitan Area that 
was jointly built by Jiangsu and Anhui provinces. With the continuous 
expansion of Nanjing’s economy and population, the demand for energy 
consumption increases rapidly. In recent years, the energy transition in 
Nanjing has been improving energy efficiency to expanding the use of 
green energy (e.g., solar energy). Nanjing has favorable natural 

Fig. 2. Study area. (a) China, (b) Jiangsu Province, (c) Nanjing City.  
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conditions for utilizing solar energy to generate electricity. There are 
many rooftops of residential buildings and factories in urban and rural 
areas of Nanjing that can significantly support the construction of 
rooftop solar PV projects. The study on Nanjing is of significance for 
implementing and promoting distributed rooftop solar PV projects in 
other metropolitan areas of China. 

Nanjing includes 11 districts (Fig. 2c, black-bordered areas), three 
zones (Fig. 2c, orange, yellow and green areas), and the main city 

(Fig. 2c, the area with red slashes). Typical verification areas were 
selected in each district to verify the accuracy of the rooftop extraction 
results. Nanjing, with 11 districts, is divided into three zones, the central 
zone (urban area), middle zone (urban–rural transitional area), and 
outer zone (rural area), according to the urban and rural spatial layout of 
Nanjing. The proportion of rooftop samples of different styles can be 
more balanced by setting a reasonable sampling amount in each zone. 
The main city is densely built with the highest level of construction in 

Fig. 3. Sampling process based on the layering and filtering strategy.  

Fig. 4. Sampling area layering based on the urban and rural spatial layout. (a) GES image in Nanjing, (b) Division of urban and rural spatial layout in Nanjing, (c) 
Part of the central zone image, (d) Part of the middle zone image, (e) Part of the outer zone image. 
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Nanjing. Therefore, in Section 4, the main city was taken as an example 
further to demonstrate the estimated results of rooftop solar PV 
potential. 

3.2.2. Citywide satellite image acquisition 
This study used publicly available GES images as the data source. 

GES images have advantages in terms of accuracy and extensive 
coverage. According to the boundary vector data of Nanjing City, GES 
images within the Nanjing area were downloaded with Python scripts 
based on the open map service application program interface (Google 
Earth API) provided by Google. The image resolution of the downloaded 
GES images is approximately 0.25 m/pixel. Under this resolution, the 
details of a building can be displayed clearly. 

3.2.3. Image layering and filtering based on prior knowledge 
For deep learning, the model performance on vision tasks improves 

logarithmically as the magnitude of the training data increases. How-
ever, the data set should be organized with some prior knowledge 
instead of being increased arbitrarily. Under the same sample size, a 
well-organized data set with distinct characteristics improve the rooftop 
extraction model’s performance. From the perspective of data acquisi-
tion, the spatial distribution and number of samples were determined in 
combination with Nanjing’s urban morphology. The flowchart of the 
sampling process is illustrated in Fig. 3. First, the sampling area was 
layered into three parts, the central zone, middle zone, and outer zone, 
according to the urban and rural spatial layout. In each part, the sam-
pling areas were selected, and only the artificial surface (a land use type 
refers to the surface formed by artificial construction activities, 
including residential areas, industrial and mining areas, and trans-
portation facilities) was retained based on the land use of Nanjing. 
Finally, by adopting the spatial optimization sampling strategy based on 
prior knowledge, more abundant and distinctive rooftop samples were 
obtained in Nanjing.  

A. Sampling area layering based on the urban–rural spatial layout 

China’s rapid urbanization has led to differing architectural char-
acteristics between rural and urban residential buildings [46]. To make 
the rooftop extraction model more suitable for extracting rooftops of 
different styles in Nanjing, urban and rural architectural samples must 
be obtained as the training samples in a balanced manner. According to 

the Nanjing Urban Construction Plan, the urban–rural spatial layout in 
Nanjing’s urban construction adopts the circular structure of the central 
city, metropolitan area, and city area [47]. The central urban area in-
cludes the main built-up area of the city. The municipality includes the 
central city and relevant scattered groups or satellite towns outside 
downtown. Between the metropolitan area and the city’s administrative 
boundaries are generally small towns and the countryside in a large area 
far from the city center. According to the circular structure, the GES 
image of Nanjing (Fig. 4a) has been layered into three zones: the central 
zone, the middle zone, and the outer zone (Fig. 4b). Enterprises mostly 
lead the construction of buildings in the central zone, and the archi-
tectural style follows a unified standard (Fig. 4c). Individuals normally 
build the buildings in the outer zone, so the locations and styles have 
great randomness and subjectivity (Fig. 4e). The middle zone is the 
transition zone between the urban style and rural style (Fig. 4d).  

B. Sampling area filtering based on land use 

The study area (Fig. 5a) contains many areas, such as water surfaces 
and cultivated land, and the proportion of these non-target samples is 
much greater than that of our target samples (rooftops). Therefore, the 
samples must be further filtered and combined with information on 

Fig. 5. Sampling area filtering based on the current situation of urban land use. (a) GES image in Nanjing, (b) Land use in Nanjing, (c) Sampling area in three zones.  

Table 1 
Acquisition of the training samples based on prior knowledge.  

Layering of 
sampling area 

Layering result Area 
(km2) 

Proportion of each zone 
(%) 

Central zone 867.10 13.16 
Middle zone 3524.85 53.50 
Outer zone 2196.39 33.34 
Total 6588.34 100.00  

Filtering of 
sampling area 

Filtering result Area 
(km2) 

Artificial surface 
coverage of each zone 
(%) 

Artificial surface of 
central zone 

509.35 58.74 

Artificial surface of 
middle zone 

669.73 19.00 

Artificial surface of 
outer zone 

289.97 13.20 

Total 1469.05 22.30  
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urban land use. The land use data were derived from the global 30-m 
surface coverage data (Globeland30) (Fig. 5b).2 Artificial land surface 
categories were selected (Fig. 5c, red), and the scope of the sampling 
area was limited to this category. 

3.2.4. Sample acquisition 
By layering the sampling area according to the urban and rural 

spatial layout and filtering the sampling area according to the current 
land use, a sample acquisition method based on a priori knowledge is 
proposed. As shown in Table 1, the central zone is small but has a high 
artificial surface coverage rate. In contrast, the middle zone is large but 
has a lower rate of artificial surface coverage. If the random sampling 
method is applied to collect the samples, there are many sample images 
with a small artificial surface. Besides, the buildings in the outer zone 

have a rural-style rooftop. Random sampling will not be able to obtain 
enough samples of the rural style of rooftops. Therefore, to obtain 
enough sample images of rooftops in different styles, a sample acquisi-
tion strategy method based on a priori knowledge is needed. 

In this study, the central zone, middle zone, and outer zone images 
were observed and studied. Based on the buildings’ style characteristics 
in different zones and the proportion of visual observations, the 
assumption was made that the proportions of urban-style and rural-style 
buildings in the central and outer zones are the opposite. In contrast, the 
percentages in the middle zone are equal. Based on this assumption, the 
sample proportion was set in each partition. Based on this sample pro-
portion, training samples were obtained from GES images throughout 
Nanjing with a Python script. To determine the appropriate sampling 
amount, we set up a series of different sampling amounts to prepare for 
the benefit curve’s subsequent drawing. 

Fig. 6. Comparison of remote sensing images before and after pre-processing.  

Fig. 7. Data pre-processing.  

2 See http://www.globallandcover.com. 
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Fig. 8. Example of labeled image production results.  

Fig. 9. Application example of the data augmentation method.  
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3.2.5. Training sample standardization 
A GES image’s quality varies with the imaging system, imaging time, 

and environmental factors such as the atmosphere and climate (Fig. 6). 
A difference in image quality will add much interference information in 
the training and testing of the model. Therefore, these GES images must 
be pre-processed to improve their quality. In this study, brightness and 
sharpness are the two major quality problems of remote sensing images 
in the Nanjing area. Consequently, brightness processing and sharpness 
processing must be performed. The overall method of pre-processing is 
shown in Fig. 7. 

In the brightness processing step, the input remote sensing image’s 
brightness was detected to determine whether the image had normal 
brightness. A remote sensing image with an abnormal brightness level 
(such as an image that was overexposed or too dark) was adjusted with 
gamma correction. In the sharpness processing step, contrast limited 
adaptive histogram equalization (CLAHE) was conducted on the remote 
sensing image. Histogram equalization is essentially a non-linear 
stretching of the image. The image pixel values are redistributed so 
that the numbers of pixel values within a specific grey range are 
approximately equal. A comparison of images before and after remote 
sensing image pre-processing is shown in Fig. 6. 

3.2.6. Sample labeling and augmentation 
In this study’s deep learning-method, a labeled image corresponding 

to a remote sensing image sample must be produced to carry out model 
training and testing. ArcGIS was used to mark the remote sensing image 
samples manually. A drawing tool was used to mark the rooftops in the 
remote sensing image samples one by one. An example of a labeled 
image production result is shown in Fig. 8. 

Data augmentation is implemented to obtain sufficient data for 
training deep networks [48,49]. The remote sensing image samples were 
randomly processed for data augmentation. The data augmentation 
methods used included image rotation, image flipping, image blurring, 
and noise addition. In particular, adding noise to the training data can 
enhance the robustness of the model. Therefore, better performance can 
be achieved when images of low quality are input into the model. When 
the remote sensing image sample data were expanded, the labeled im-
ages corresponding to the sample were copied. An application example 
of the data augmentation method is shown in Fig. 9. 

The training data set built in this study consisted of remote sensing 
image samples and corresponding labeled images after data pre- 
processing and data augmentation. There were a total of 20,000 
remote sensing images in the sample, and the image size was 256 × 256 
pixels. Correspondingly, the labeled images totaled 20,000, and their 
size was 256 × 256 pixels. 

3.3. Training and implementation of rooftop extraction model 

3.3.1. Rooftop extraction algorithm 
Rooftops in Nanjing were extracted based on the image semantic 

segmentation algorithm DeepLab v3 using GES images. After the GES 

images of Nanjing were acquired, rooftop image samples of typical areas 
were collected. The rooftop sample data were labeled before being 
entered into the DeepLab v3 algorithm to train the image semantic 
segmentation model suitable for city-scale rooftop extraction in Nanjing. 
DeepLab v3 is the latest version of the DeepLab series of open-source 
image semantic segmentation algorithms launched by the Google R&D 
team. The basic structure of DeepLab v3 is shown in Fig. 10. The blue 
region in the figure is the convolution layer, and the features extracted 
by each convolution kernel are different. The yellow region is the 
pooling layer. It takes the previous layer’s feature map as input and 
samples the feature map to reduce the convolutional network’s 
computational cost. The red region is atrous spatial pyramid pooling 
(ASPP). DeepLab v3 strengthens the extraction and differentiation of 
semantic information at different scales to achieve the segmentation of 
multi-scale objects in the target image. 

3.3.2. Rooftop extraction model training 
After the study area’s rooftop samples were labeled; they were input 

into the DeepLab v3 model as a training data set. When training deep 
learning networks, due to computer memory and video memory’s 
physical limitations, the training model’s input size was set to 256 × 256 
pixels to improve the training efficiency and save video memory space. 
Besides, to improve the training model’s extraction performance, the 
gradient descent method was used to optimize the training model al-
gorithm. The core idea of the deep learning-based method is to use 
unsupervised learning for each network layer. Only one layer of the 
network was trained at a time, and the training results were used as the 
input to the next layer. Finally, supervised information feedback was 
used to adjust all the layers’ weights. This feedback adjustment is usu-
ally carried out through gradient descent. There are three methods of 
gradient descent: batch gradient descent (BGD), stochastic gradient 
descent (SGD), and mini-batch gradient descent (MBGD). In the training 
process for this study model, the small-batch gradient descent method 
was used. The specific idea is to use a part of the samples to update each 
parameter. This can significantly reduce the number of iterations 
required for convergence, and at the same time, the convergence result 
can be brought closer to the gradient descent effect. 

3.3.3. Rooftop extraction model application 
After the rooftop sample data set was input to DeepLab v3 for 

training, an ideal model suitable for Nanjing rooftop extraction was 
obtained. By inputting all the satellite images of Nanjing City to be 
classified into this model, the satellite images’ rooftop portions could be 
identified. Since the input image size was 256 × 256 pixels when 
training the Nanjing rooftop extraction model, the size of the input 
images for prediction should also be 256 × 256 pixels. However, the size 
of the acquired high-precision satellite image of Nanjing was much 
larger than the input size specified in the prediction. Therefore, it was 
necessary to divide the satellite image of the entire city of Nanjing into 
blocks. The original satellite image was processed into multiple standard 
images after block processing. The numerous standard images were then 

Fig. 10. Using a deep learning approach for rooftop segmentation.  
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inputted into the Nanjing rooftop extraction model for prediction. 
Finally, each block’s prediction results were stitched together to com-
plete the entire satellite image’s prediction. The specific process is 
shown in Fig. 11. With this block prediction method, the trained rooftop 
extraction model could be applied to satellite images throughout Nanj-
ing, and the rooftop image classification results for Nanjing were finally 
obtained. 

3.3.4. Performance evaluation of the rooftop extraction model  

A. Verification area 

After the city-scale extraction of the rooftop features of Nanjing City 
through the DeepLab v3 model, the model’s extraction performance 
needed to be verified. Four square kilometers of typical verification 
areas from densely constructed regions of 11 jurisdictions in Nanjing 
were selected and combined with Nanjing’s administrative divisions’ 
characteristics and the land use types in each administrative district. 
Verification areas with a total area of 44 km2 were used for the per-
formance assessment of the Nanjing rooftop extraction model. In terms 
of architectural style, both urban and rural architectural styles were 
considered. In terms of spatial distribution, the building features of 11 
subordinate areas of Nanjing were selected. Therefore, the verification 
areas chosen in this study can objectively evaluate the Nanjing rooftop 
extraction model’s overall performance.  

B. Evaluation index 

The confusion matrix and the four indicators calculated by the 
confusion matrix—accuracy, recall, precision, and comprehensive 
evaluation—were used to evaluate the performance of the Nanjing 
rooftop extraction model. 

The confusion matrix is an error matrix used in machine learning to 
evaluate the model’s performance. For a binary classification model, the 

confusion matrix is a table with two rows and two columns composed of 
False Positives (FP), False Negatives (FN), True Positives (TP), and True 
Negatives (TN). The larger numbers of TP and TN and smaller numbers 
of FP and FN will indicate a better performance of the model. The spe-
cific definition of the confusion matrix is shown in Table 2. The confu-
sion matrix counts the number of pixels, which leads to difficulties in 
measuring the pros and cons of the model with massive data. Therefore, 
the Accuracy, Precision, and Recall are calculated from a confusion 
matrix for a binary classifier. For the purpose of standardized 

Fig. 11. Block prediction process.  

Table 2 
Definition of the confusion matrix.  

Element Definition 

False Positives (FP) Negative samples predicted as positive by the model 
False Negatives (FN) Positive samples predicted as negative by the model 
True Positives (TP) Positive samples predicted as positive by the model 
True Negatives (TN) Negative samples predicted as negative by the model  

Table 3 
Definition of evaluation index.  

Expression Meaning 

Accuracy =

TP + TN
TP + TN + FP + FN  

The ratio of the rooftop and background correctly 
extracted by the model to the total rooftop and 
background 

Precision =
TP

TP + FP  
The ratio of the rooftop correctly extracted by the 
model to the total rooftop extraction, describing the 
precision of rooftop extraction result 

Recall =
TP

TP + FN  
The ratio of the rooftop correctly extracted by the 
model to the actual total rooftop, describing the 
coverage of the rooftop extraction result 

F1 Score =

2 × Precision × Recall
Precision + Recall  

A comprehensive evaluation of the recall and 
precision of rooftop extraction result  
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measurement, the quantity in the confusion matrix will be transformed 
into a ratio between 0 and 1. The closer the value is to 1, the better the 
performance of the model. The F1 Score is a weighted average of Recall 
and Precision. Its value range is 0–1, the closer to 1 represents the better 
the model’s performance. The specific definitions of accuracy, precision, 
recall, and comprehensive evaluation index F1 score are shown in 
Table 3. 

3.4. Estimation of rooftop solar PV potential 

3.4.1. Rooftop solar PV potential estimation model 
The solar radiation data used in this study come from the Copernicus 

Atmosphere Monitoring Service (CAMS).3 These data are solar radiation 
data at the surface level with a clear sky taken at hourly intervals, and 
they are publicly available free of charge. In this study, the rooftop of a 
building is regarded as a horizontal plane. Combined with clear sky 
radiation data (Wh/m2) and cloud cover correction parameters, the total 
amount of solar radiation received on the buildings’ rooftop is 
estimated. 

The total solar radiation reaching the ground consists of direct ra-
diation and diffuse radiation [50], as shown in Fig. 12. The formula for 
calculating the total radiation at the surface level is as follows [51]: 

GHI = BHI +DHI (1)  

where GHI is the global horizontal irradiance, BHI is the beam horizontal 
irradiation, and DHI is the diffuse horizontal irradiance. 

The formula for calculating the true acceptable solar radiation in the 
horizontal plane is as follows [52]: 

GHIr = BHIh⋅Mt +DHIh⋅Md (2)  

where GHIr is the actual solar radiation received by the horizontal plane, 
BHIh is the horizontal solar radiation under clear sky conditions, Mt is 
the monthly atmospheric transmittance, DHIh is the horizontal solar 
radiation under clear sky conditions, and Md is the monthly diffusion 
ratio. 

The formulas for calculating the monthly atmospheric transmissivity 
(Mt) and diffuse proportion (Md) from cloud data are as follows [52]: 

Mt = 0.7⋅Pclear + 0.3⋅Pcloudy (3)  

Md = 0.2⋅Pclear + 0.7⋅Pcloudy (4)  

where Pclear is the proportion of sunny days in a month, and Pcloudy is the 
proportion of cloudy days in a month. We use World Weather Online to 
obtain the sunny and cloudy days in each month to determine Pclear and 
Pcloudy.4 We have given specific values in Table 4. 

The annual solar radiation (ASR) of all rooftop surfaces in the study 
area is estimated as follows: 

ASR =
∑n1

i=1

(
∑12

m=1

(
∑23

h=0

(
∑n2

d=1
(Si × GHIrmdh)

)))

(5)  

where Si represents the area of the ith rooftop, and GHIrmdh represents the 
corrected real solar radiation between the times h and h + 1 in the mth 

month on the dth day of the year. i represents the number of a rooftop (i 
= 1, 2, 3, …, n1), and n1 represents the total number of rooftops. m 
represents the month (m = 1, 2, 3, …, 12). h represents the time in the 
24-hour system (h = 0, 1, 2, …, 23). The actual duration of received 
radiation is from sunrise to sunset on each day. d represents the day of 
the month (d = 1, 2, 3 , …, n2), and n2 represents the actual number of 
days per month. 

The model’s input data are the hourly solar radiation data, monthly 
atmospheric transmittance, diffusion ratio, and rooftop surface (stored 
in the ESRI shapefile format). The simulation time interval is 1 h. The 
radiation estimation results for different periods can be generated ac-
cording to the research design. This study shows the total annual 
acceptable solar radiation and the monthly total solar radiation per hour 
are obtained. 

3.4.2. Performance evaluation of rooftop solar PV potential estimation 
model 

In this study, the initial input solar irradiance was calculated under 
the clear sky’s assumption with the very pure clearness. There is still a 
need to estimate the received solar irradiation under the influence of 
real-world weather conditions. We use the formula (3) and (4) in Section 
3.4.1 to correct weather conditions’ negative influence. The best 
approach to validate our model’s results is to use ground-truth data from 
either pyranometers solar radiation measuring equipment or installed 
solar PV systems [53]. Before obtaining the ground truth data, the 
observed solar radiation values of standardized weather stations are 
used for verification to obtain a certain understanding of the rooftop 
solar PV potential estimation results’ overall accuracy. 

The observed solar radiation data set can be obtained from the China 
Meteorological Administration, which includes the monthly average 

Fig. 12. Schematic diagram of the solar radiation received by a build-
ing rooftop. 

Table 4 
Summary of the weather condition in Nanjing in each month of 2019.  

Month Sunny days Cloudy days Total days Pclear Pcloudy 

January 16 15 31 51.61% 48.39% 
February 9 19 28 32.14% 67.86% 
March 20 11 31 64.52% 35.48% 
April 15 15 30 50.00% 50.00% 
May 23 8 31 74.19% 25.81% 
June 19 11 30 63.33% 36.67% 
July 10 21 31 32.26% 67.74% 
August 9 22 31 29.03% 70.97% 
September 18 12 30 60.00% 40.00% 
October 23 8 31 74.19% 25.81% 
November 23 7 30 76.67% 23.33% 
December 20 11 31 64.52% 35.48%  

3 See http://www.soda-pro.com/web-services/radiation/cams-radiation-se 
rvice. 

4 See https://www.worldweatheronline.com. 
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solar radiation based on multi-year observation results, in kWh/m2/ 
day.5 The observed solar irradiance values were further used to compare 
with the corrected ones. The RMSE and Pearson product-moment cor-
relation coefficient (Pearson’s r) were involved as the quantitative in-
dicators to evaluate the proposed rooftop solar PV potential estimation 
model’s performance. The RMSE measures the average difference be-
tween the corrected and the observed values, while Pearson’s r measures 
the linear correlation between them. They are calculated as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

12(G − Gobs)
2

12

√

(6)  

r =

∑
12

(
G − G

)(
Gobs − Gobs

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

12

(
G − G

)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
12

(
Gobs − Gobs

)2
√ (7)  

where G is the corrected daily solar irradiance, Gobs is the monthly mean 
daily solar irradiance observed in a meteorological station, G and Gobs 
are the mean values of the mean daily solar irradiance in the months of a 
year. 

4. Study results and discussion 

In the previous section, the processes of sample acquisition, sample 
processing, rooftop extraction and estimation are illustrated. In this 
section, the results are described to demonstrate the performance of the 
proposed framework for the case study in Nanjing of both rooftop solar 
PV potential and rooftop solar PV power generation. 

Fig. 13. Results of rooftop extraction. (a) Results of rooftop extraction in Nanjing, (b) Results of rooftop extraction in the main city of Nanjing, (c) Details of the 
rooftop extraction results in Nanjing. 

5 See http://data.cma.cn/. 
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4.1. Rooftop extraction results 

In Nanjing, the total rooftop area is 330.36 km2. A more detailed 
rooftop extraction result is illustrated in Fig. 13(b) and (c). The rooftop 
extraction model’s performance evaluation based on the strategic sam-
pling method was conducted in 11 verification areas in Nanjing. The 
overall model performance evaluation of both the non-strategic sam-
pling method and the strategic sampling method are summarized, and 
the results are shown in Table 5. Compared with the rooftop extraction 
model based on the non-strategic sampling method, the accuracy of the 
rooftop extraction model based on the strategic sampling method is 
improved by 2%, the precision value is improved by 2%, the recall value 

Table 5 
Comparison of the model performance under strategic and non-strategic sam-
pling methods in Nanjing.  

Method Accuracy Precision Recall F1-Score 

Non-strategic sampling method 0.90 0.80 0.71 0.74 
Strategic sampling method 0.92 0.82 0.79 0.80  

Improvement 0.02 0.02 0.08 0.06  

Fig. 14. Comparison of the two methods under different indexes. (a) Comparison of the two methods under the accuracy index, (b) Comparison of the two methods 
under the F1 score index. 
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is increased by 8%, and the F1 score value is increased by 6%. 
In this study, GES images were used to extract rooftop areas. GES 

image is not an orthorectified image, which leads to a position offset 
between the extracted rooftop contours and the ground truth. This po-
sition offset is more significant, which is about 20 m, at high-rise 
buildings, while it is insignificant for low-rise buildings. This position 
offset will not affect the accumulated rooftop areas for the city-scale 
rooftop solar PV potential estimation. 

The extracted rooftop does not contain detailed structural informa-
tion of the rooftop. Therefore, the extracted rooftop area is not identical 
to the usable rooftop area to install PV panels for real implementation. It 
is difficult to accurately extract the rooftop’s geometric form, in terms of 
slope and aspect, based on the GES image. The reconstruction of the 
rooftop’s detailed structural information relies on a high-precision 3D 
rooftop model that is difficult for the estimation on a city scale. Future 

research will integrate methods for reconstructing rooftop geometry 
using publicly available street view images [54]. 

The proposed spatial optimization sampling strategy’s contribution 
to constructing an efficient training dataset is mainly reflected in two 
aspects. On the one hand, the layering of the sampling areas improves 
the rooftop samples’ style diversity. On the other hand, the filtering of 
sampling areas increases the abundance of rooftop samples and im-
proves sampling efficiency. Therefore, in addition to the improvement in 
rooftop extraction’s overall performance, the rooftop extraction model 
trained based on the strategic sampling method shows better robustness 
for rooftop extraction in each. Moreover, the training sample size 
required by the strategic sampling method is considerably smaller than 
that of the non-strategic sampling method when the rooftop extraction 
model is trained to achieve a target accuracy to satisfy the accuracy 
requirement. 

Fig. 15. Cost-profit benefit curve. (a) Cost-profit benefit curve under the accuracy index, (b) Cost-profit benefit curve under the F1 score index.  
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The rooftop extraction model’s performance was evaluated in each 
region to demonstrate further the robustness of the rooftop extraction 
model trained by image samples collected with the strategic sampling 
method. The evaluation results are shown in Fig. 14. If 0.88 is used as the 
threshold of the accuracy rate, the model evaluation results under the 
non-strategic sampling method do not meet the standard in Gaochun, 
Lishui, and Luhe. This is for two main reasons. The first is that these 
three verification areas are located on the outer edge of the city. The 
architectural style is mostly rural. The houses under this style generally 
occupy a small area. The site layouts have strong randomness and 
subjectivity. This increases the difficulty of accurate model identifica-
tion. Furthermore, because the GES image’s quality is inconsistent be-
tween regions and these three more remote verification areas are in 
areas where the image quality is degraded, this also causes difficulty in 
model identification to a certain extent. 

However, through the strategic sampling method, a training data set 
with better richness and balance is constructed. The final model’s 

universality was improved to address the above identification diffi-
culties caused by differences in the building distribution and building 
style. After the strategic sampling method is used, the accuracy of model 
identification is improved in each area. In particular, for areas with more 
rural-style buildings such as Gaochun, Lishui, and Liuhe, the recognition 
accuracy is notably enhanced. In the study area in Gaochun, with the 
lowest recognition accuracy of 0.85, the recognition accuracy of the 
current model is 0.90, so it has also been improved. 

A comparative study of sampling amount and model performance is 
conducted to demonstrate further the study’s strategic sampling 
method’s beneficial influence. Fig. 15 shows the cost-profit benefit curve 
under the strategic sampling method and the non-strategic sampling 
method. In terms of the method promotion’s cost input, the sampling 
amount required by the strategic sampling method is significantly 
smaller than that of the non-strategic sampling method when the model 
performance is equal. Taking the random sampling method’s model 
performance in 20 km2 as the benchmark, we use the red indicator line 

Fig. 16. Solar PV potential on rooftops. (a) Results of rooftop solar PV potential estimation in Nanjing, (b) Distribution of the estimated rooftop solar PV potential in 
the main city of Nanjing, (c) Details of the rooftop solar PV potential distribution in Nanjing. 
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to show the difference in sampling amount between the two methods to 
achieve it. In strategic sampling, only approximately 20% of the sam-
pling amount is required to achieve the benchmark accuracy, and the 
sampling amount input is reduced by about 80%. This shows that the 
sampling method based on prior knowledge can significantly reduce the 
cost of sampling and annotation, and a small number of samples can be 
collected for training to obtain a model that can be applied to rooftop 
extraction over the whole city. 

4.2. Estimation and temporal analysis of the rooftop solar PV potential 

4.2.1. Rooftop solar PV potential estimation results 
The solar radiation that the city’s rooftops can receive was estimated 

based on Nanjing’s rooftop extraction results. The results are displayed 
according to a three-level scale (Fig. 16). Fig. 16(a) shows the rooftop 
solar PV potential in Nanjing City. Fig. 16(b) shows the distribution of 
the estimated rooftop solar PV potential in downtown Nanjing. Taking a 
small local area as an example, the details of the rooftop solar PV po-
tential’s estimation results are presented in Fig. 16(c). 

According to our calculation results, the annual rooftop solar PV 
potential in Nanjing is 311,853 GWh. A certain number of the individual 
rooftops in Nanjing had an annual rooftop solar PV potential of more 
than 1 GWh as of 2019. Rooftops with larger available areas can receive 
more solar radiation. The results show that there are some rooftops with 
solar PV potentials greater than 5 GWh distributed outside Nanjing’s 
downtown. This is because large-scale industrial factory buildings with 
large rooftop areas moved to the suburbs during the industrial restruc-
turing and upgrading in Nanjing. 

The value of RMSE is always no less than 0, and a lower RMSE means 
better goodness of fit to the observation data. Pearson’s r has a value 
between − 1 and 1. The closer the Pearson’s r is to 1, the better the 

correction of weather condition is. Fig. 17 shows the input, corrected, 
and observed values of solar irradiation for each month in Nanjing. The 
input values (in gray) of monthly mean daily solar irradiance under the 
clear sky range from 3.01 (December) to 7.49 kWh/m2 (June). The 
observed values (in blue) of monthly mean daily solar irradiance by a 
radiometer at the meteorological station range from 2.07 (December) to 
4.78 kWh/m2 (May). The real-world solar irradiance has been over-
estimated in different degrees. 

Based on formula (3) and (4) in Section 3.4.1, the theoretical values 
of mean daily solar irradiance of the 12 months were corrected (in red). 
The corrected values in Nanjing range from 1.42 (December) to 3.65 
kWh/m2 (June). The corrected curve is closer to that of the observed 
values than to that for the input values. The root-mean-standard error 
RMSE and the Pearson correlation coefficient (Pearson’s r) were used to 
quantify the correction performance. The RMSE value of Nanjing is 0.95 
kWh/m2/day, while Pearson’s r value is 0.98. That is, the proposed 
rooftop solar PV potential estimation model has been proven to be very 
useful. 

The initial input solar irradiance was calculated under the assump-
tion of a clear sky with very pure clearness. We use empirical constant to 
correct the negative influence of actual weather conditions. However, as 
shown in Fig. 17, there is still a difference between this correction value 
and the measured surface solar radiation data from the ground obser-
vation station. But for the application scenarios of large-scale estima-
tion, this is the result of considering the implementation cost of the 
method. In future research, we will continue to look for more accurate 
data to improve the estimation results. 

4.2.2. Temporal analysis of the rooftop solar PV potential 
This study also conducted a time series analysis of the rooftop solar 

PV potential in Nanjing and estimated the total rooftop solar PV po-
tential in Nanjing during different periods in 2019 (see Table 6, Fig. 18). 
In Fig. 18, the hourly rooftop solar PV potential curves are divided into 
different colors according to the seasonal characteristics of the hourly 
rooftop solar PV potential: (i) Spring (green): March, April, and May; (ii) 
Summer (red): June, July, and August; (iii) Autumn (orange): 
September, October, and November; (iv) Winter (blue): December, 
January, and February. 

Table 6 and Fig. 18 show that the rooftop solar PV potential reaches 
its maximum value at 11 and 12 a.m. This is because the elevation angle 
of the sun reache its maximum value at noon. At this time, the level of 
direct radiation acceptable to a horizontal receiving surface is highest. It 
can also be seen in Table 6 and Fig. 18 that the rooftop solar PV potential 
is highest in May and June. This is because the weather in Nanjing in 
May and June is mostly clear, and the sun has a higher elevation angle. 
In contrast, the rooftop solar PV potential is lowest in winter (December, 
January, and February). In addition, there are different sunrise and 
sunset times on each day of the year. Therefore, some months receive 

Fig. 17. Corrected results of monthly solar irradiation.  

Table 6 
Total rooftop solar PV potential in Nanjing during different periods of each month in 2019 (GWh).  

Month 5–6 
a.m. 

6–7 a. 
m. 

7–8 a. 
m. 

8–9 a. 
m. 

9–10 a. 
m. 

10–11 
a.m. 

11a.m.– 
12p.m. 

12–1 p. 
m. 

1–2 p. 
m 

2–3 p. 
m 

3–4 p. 
m 

4–5 p. 
m 

5–6 
p.m 

6–7 
p.m 

Total 

January 0 0 260 931 1653 2218 2525 2522 2206 1629 903 248 0 0 15,094 
February 0 23 534 1317 2055 2601 2895 2898 2604 2041 1289 513 19 0 18,789 
March 0 167 882 1835 2711 3362 3729 3746 3398 2713 1800 852 147 0 25,342 
April 16 473 1353 2318 3160 3770 4105 4127 3816 3194 2330 1354 476 13 30,504 
May 125 801 1820 2864 3755 4396 4732 4730 4378 3720 2824 1790 794 101 36,830 
June 187 881 1859 2837 3654 4236 4541 4537 4211 3604 2773 1811 868 187 36,186 
July 202 935 1864 2748 3483 4007 4283 4284 4006 3470 2719 1824 908 196 34,929 
August 73 727 1656 2559 3310 3844 4123 4125 3845 3303 2541 1630 709 27 32,470 
September 0 327 1202 2185 3025 3627 3937 3926 3585 2952 2095 1132 307 3 28,303 
October 0 54 615 1536 2421 3089 3437 3424 3039 2339 1444 565 28 0 21,991 
November 0 0 311 1088 1888 2488 2796 2781 2427 1793 1002 282 3 0 16,860 
December 0 0 202 879 1620 2186 2485 2475 2147 1557 821 185 0 0 14,556  

Total 602 4388 12,556 23,095 32,734 39,823 43,589 43,576 39,663 32,314 22,540 12,189 4258 526 311,853  
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zero radiation at 5–7 a.m and 5–7 p.m. 
The main city of Nanjing is used as a case study, and the rooftop solar 

PV potential maps of the four seasons of 2019 were generated (Fig. 19). 
The total rooftop solar PV potential in downtown Nanjing is 10,690 
GWh in spring, 11,948 GWh in summer, 7,746 GWh in autumn, and 
5,587 GWh in winter. This result indicates that the rooftop solar PV 
potential of urban buildings is affected by seasonal changes in solar 
radiation resources. In spring and summer, the solar altitude angle is 
large, and the total solar radiation value is high, so the overall rooftop 
solar PV potential is high in spring and summer. However, the opposite 
is true in autumn and winter. 

4.3. Estimation of the rooftop solar PV power generation 

The rooftop solar PV potential estimation is crucial for the accurate 
measurement of a roof-mounted PV system’s installed capacity. To 
harvest the greatest amount of electricity from a roof-mounted PV sys-
tem, the PV panels’ rated power is selected according to the maximum 
solar radiation power per hour per unit area of the rooftops in the area. 
In this study, we calculated that the maximum acceptable solar radiation 
power per hour per unit area of the rooftop is approximately 400 W. By 
combining this value with the existing technical conditions, the speci-
fication of the solar PV panel is determined to be 1 m × 1 m, and the 
rated power is 200 W. The total power output of a roof-mounted PV 
system in Nanjing can be calculated using Eq. (8) [55]: 

EP = HA⋅
PAZ

Es
⋅K (8)  

where EP is the power generated by solar PV electricity (KWh), HA is the 
annual total solar radiation per unit area, PAZ is the installed capacity of 
the solar PV system (KW), Es is the standard test condition of photo-
voltaics (1000 W/m2), and K is the comprehensive efficiency coefficient 
of the solar PV system, which has a general value of 0.80 [56]. 

The installed capacity of the solar PV system is calculated from the 
rated power P of a single solar PV panel and the number N of PV panels 
of a solar PV system using Eq. (9) [57]: 

PAZ = P⋅N (9)  

where P is the rated power of a single solar PV panel and N is the number 
of solar PV panels. 

The installed capacity of a roof-mounted PV system and the annual 
total solar radiation per unit area in Nanjing can be calculated according 
to the rooftop solar PV power generation estimation method described 
in Section 4.3 and the rooftop solar PV potential estimation results 
described in Section 4.2. The measured installed capacity and annual 
total solar radiation per unit area can then be used to estimate the 
rooftops’ electricity output in Nanjing. 

The total rooftop area for installing PV panels is 330.36 km2. In this 
study, the installed solar PV panels have dimensions of 1 m × 1 m and a 
rated power of 200 W. For the existing urban rooftops, the installed 
capacity of a roof-mounted PV system was 66 GW, and the annual total 
solar radiation per unit area was 943.98 KWh/m2 in 2019. Therefore, 
the total power output of a roof-mounted PV system based on these 
urban rooftops was 49,897 GWh for 2019. 

The rooftop solar PV power generation’s calculation results only 
represent theoretical design values and do not represent the power 
generation under actual installation conditions. More factors should be 
integrated and analyzed to reflect the actual installation situation, such 
as grid capacity and economic factors. In winter, the peak power of State 
Grid Nanjing Power Supply Company (the power supply company of 
Nanjing) is about 10 GW, which is much lower in summer. Nevertheless, 
the estimated solar PV installed capacity in this study is 66 GW, which is 
much larger than the grid capacity. However, it is out of this work’s 
scope to model how much solar electricity could be allocated in the 
power grid. The rooftop is assumed to be a flat surface to reduce the scale 
of calculations and obtain the final rooftop solar PV power generation. 
There is a need to further explore the methods to derive the rooftop’s 
slope and aspect information from the satellite images on a city scale 
when there are no high accurate 3D models of the city. 

The transition from fossil fuels to renewable energy is vital to 
achieving the Paris Agreement’s central goal and construct a sustainable 
future energy system. The growth of solar PV power generation will play 
a key role in China’s energy transition. At present, solar PV power 
generation in China is facing the policy background of abolishing sub-
sidies altogether. Insightful analysis of rooftop solar PV potential will 
help the local government promote the future decarbonization 

Fig. 18. Rooftop solar PV potential in Nanjing during each month in 2019 (GWh).  
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transition. According to our experiment results, Nanjing has 330.36 km2 

of rooftop area that can be used to install the distributed solar PV sys-
tems. The rooftops of residential buildings accounting for the largest 
proportion of the rooftop area in Nanjing. There are many high-rise 
residential buildings in the urban area of Nanjing, which caused diffi-
culties in installing and maintain rooftop solar PV systems. Therefore, it 
would be more suitable to promote the installation of rooftop solar PV 
systems in rural areas of Nanjing. 

The available area that can be used for installing solar PV panels on 
rooftops varies greatly in different architectural styles. Taking the 5KW 
PV power station as an example, PV panels cannot be installed if the 
available PV area of the rooftop is less than the required 50 square 
meters. Besides, different architectural styles will directly affect the 
installation and maintenance costs of solar PV panels. Moderate roof tilt 
angle is a major factor in installing solar power stations on rooftops. The 
steep rooftop will affect installation difficulty and result in safety 

hazards for installers. Meanwhile, solar PV panels on sloping rooftops 
are less efficient in generating electricity in summer. The rooftop data 
extracted in this study is only the rooftop profile and does not contain 
detailed 3D structure information of the rooftop in terms of slope and 
aspect. In future research, we will explore the rooftop geometry recon-
struction method based on publicly available high-resolution remote 
sensing image data, which is expected to provide data support for an in- 
depth analysis of the impact of different architectural styles on solar PV 
potential. 

The influence of building distribution on solar PV potential is mainly 
on the storage and transport of the generated solar energy. The scientific 
planning of the location and capacity of the distributed solar PV system 
is of great significance. Connecting a massive distributed solar PV sys-
tem to the distribution network will significantly impact the distribution 
network in terms of voltage level, network loss, and reliability. The 
degree of influence is closely related to the installation location and 

Fig. 19. Rooftop solar PV potential in the main city of Nanjing during each season in 2019. (a) Spring, (b) Summer, (c) Autumn, (d) Winter.  
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capacity of the distributed solar PV system. In the future study, we will 
explore the planning of location and capacity of the rooftop solar PV 
system according to the different distribution modes of urban and rural 
buildings. 

5. Conclusions 

In this study, a generic method is proposed to estimate the rooftop 
solar PV potential at the city scale from publicly available GES images. 
The proposed method is scalable and can be implemented easily in large- 
scale rooftop solar PV potential estimation with the proposed spatial 
optimization sampling strategy based on prior knowledge of the urban 
and rural spatial layout and land use. The available rooftop area is 
extracted with a deep learning-based image semantic segmentation 
method. The rooftop solar PV potential and rooftop solar PV power 
generation in Nanjing are calculated based on the extracted rooftop 
area. Rooftops at the city scale can be extracted from massive satellite 
images with an accuracy of 0.92 in Nanjing. The estimated annual 
rooftop solar PV potential in Nanjing is 311,853 GWh, and the rooftop 
solar PV power generation for 2019 was 49,897 GWh. 

The framework developed in this study can extract urban building 
rooftops without a 3D model, which means that it has high flexibility 
and can support the rapid promotion of building rooftop solar PV po-
tential assessments in a large-scale study area. With the support of deep 
learning, image semantic segmentation technology provides strong 
support for image segmentation refinement. In the future, an image 
semantic segmentation model with better performance can be further 
used to improve the performance of the rooftop extraction model. To 
simplify the estimation, the rooftop is assumed to be a plane in esti-
mating the rooftop solar PV potential. Future studies should consider the 
influence of the rooftop structure and available area on estimating the 
PV potential. In addition, the economic cost of deploying a building- 
attached photovoltaic (BAPV) system is not considered in this study. 
Future work should evaluate this idea’s economic feasibility by 
comparing the cost of implementing a BAPV system with the potential 
economic benefits of rooftop solar PV. 
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