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Disaster waste clean-up after large disasters is one of the core activities at the recovery stage of disaster
management, which aims to restoring the normal functioning of the disaster affected area. In this paper
we considered a waste clean-up system consists of (i) demolition operation, (ii) collection of waste from
customer nodes to temporary disaster waste management sites (TDWMSs), (iii) processing at TDWMSs,
and (iv) transportation of the waste to final disposal sites in the recovery of disasters. A multi-objective
mixed integer programming model is developed to minimise the total clean-up cost and time. Three dif-
ferent approaches are developed to solve the problem, which are tested with artificial instances and a real
case study. Results of artificial instances indicate that the models developed can be used to obtain close to
optimal solutions within an acceptable computing time. Results of the case study can facilitate the
decision-makers to develop the waste clean-up with minimised total cost and clean-up time by selecting
the right location of TDWMSs and setting up the proper waste clean-up schedule.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Large natural disasters draw the public particular concerns
when they are happening and during the response stage which
comprises evacuation and relief. After the disaster, recovery mea-
surements aim at restoring the normal functioning which has been
affected. Waste management is one of the core activities in the
recovery stage, focusing on collecting, reducing or recycling, and
final disposal of the remaining waste. Debris removal activities in
the recovery stage are time-consuming, expensive and difficult
(Zhang et al., 2019) because of the huge amount of the waste gen-
erated during the disaster, which can be several orders of magni-
tude larger than the usual waste generation. In many cases, this
is due to the necessity of demolishing compromised buildings.
For instance, during the 2008 Wenchuan earthquake, 6,945,000
rooms collapsed and 5,932,500 rooms were severely destroyed
(Xiao et al., 2012), which generated 381 million tonnes of waste
approximately.

To support the management of lager amount of waste gener-
ated after disasters, the modelling of disaster waste management
system (DWMS) is needed (Zhang et al., 2019). The disaster waste
management problem can be modelled as a reverse logistic
problem (Hu and Sheu, 2013), which can be mathematically for-
mulated using objective functions, decision variables and con-
straints. Depends on the focus of researches, the mathematical
model are usually different. In the previous research, Cheng and
Thompson (2016), Kim et al. (2014), and Fetter and Rakes (2012)
focused on the decision of the location of temporary disaster waste
management sites (TDWMSs). Takeda et al. (2015) made the deci-
sion on the route plan of disaster waste disposal. In Onan et al.
(2015), both the location selection of temporary storage facilities
and planning for the collection and transportation were considered
as decision variables. In terms of the objectives, different objectives
are considered, such as minimization total cost (Hu and Sheu,
2013; Onan et al., 2015), minimising risk (Hu and Sheu, 2013;
Onan et al., 2015), and psychological impacts (Hu et al., 2019; Hu
and Sheu, 2013). However, there is few research considered the
total time as the objective, which can affect the progress of the
recovery of disaster affected area and increase potential risky to
public and environmental health (Brown et al., 2011a). In our
study, we will make decision on the location of TDWMSs and waste
collection and transportation route plan by minimising the total
clean-up cost and time. Furthermore, we will also include the deci-
sion on the arrangement of destroyed building demolish in our
model, which haven’t been address in the literature. The demoli-
tion of damaged buildings plays an important role in the clean-
up since it affects the waste generation in collection and trans-
portation stage, which have impacts on total waste clean-up cost
and time.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.wasman.2020.09.023&domain=pdf
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To summary, we focus on large disasters which require exten-
sive manpower to demolish damaged architectures in the recovery
stage of disaster management. Thus, the waste clean-up system we
considered consists of (i) demolition operation, (ii) collection of
waste from customer nodes to TDWMSs, (iii) processing at
TDWMSs, and (iv) transportation of the waste to final disposal
sites. We incorporate the problem into a Mixed Integer Program-
ming (MIP) framework, which allows TDWMSs to process waste
clean-up in two continuous stages, i.e., the scheduling of damaged
buildings demolition and the subsequent scheduling of collection
and selection of transportation routes. The complexity of the prob-
lem limits the straightforward application of black-box solvers for
large scales instances. Therefore, we also propose a decomposition
approach that firstly solves the building demolition arrangement
problem and secondly addresses the two-echelon waste clean-up
problem.

We test our approaches with small, medium, and large-scale
artificial instances to compare their performance. Furthermore,
we conduct a case study focusing on the 2009 Black Saturday Bush-
fires in Victoria, Australia. The remainder of this paper is structured
as follows. Section 2 presents a detailed description of the problem.
Section 3 demonstrates a mathematical formulation of the prob-
lem. Section 4 investigates the case study and artificial instances
generation. Then, Section 5 summarises the numerical results.
Finally, Section 6 draws the conclusion.
2. Problem description

The reverse disaster waste management system involves four
major operations: demolition of destroyed buildings (demolition),
collection of waste from demolished buildings to TDWMSs (collec-
tion), processing of waste in TDWMSs (processing), and transporta-
tion of waste from TDWMSs to the final disposal sites
(transportation). TDWMSs are facilities where waste can be tem-
porarily stored, reduced, sorted, and processed before final disposal
(FEMA, 2007). They can help to improve the flexibility of opera-
tions, facilitate recycling and reduce waste, which has been applied
in many cases (Alziari et al., 1981; Amato et al., 2020, 2019; Brown
and Milke, 2016; Karunasena et al., 2012; Oh and Kang, 2013;
Rafee et al., 2008). The establishment of these facilities can also
shorten waste collection time. The processing of waste in the
TDWMSs can include waste separation, compression, and transfer
from collection vehicles to transportation vehicles depends on
the composition of waste generated in disasters. The operation of
Fig. 1. Illustration of the w
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waste separation in TDWMSs are context dependent since the
waste composition of different disasters vary a lot (FEMA, 2007).
Fig. 1 describes the relationship between the operations in the
waste clean-up system. Demolition precedes the other operations
to make waste available for collection. However, it does not mean
that the collection can only start when all demolition tasks are
completed. Alternatively, the collection operation can start when-
ever there is waste available. Similarly, the processing work can
begin immediately after the first waste collection trip. Ultimately,
transportation operations can commence when waste has been
processed in TDWMSs.

After large-scale disasters, the number of demolition machines
is limited; therefore, arrangements need to be made for the demo-
lition of the destroyed buildings, with the consideration of the
demolition times required for each destroyed building. Notably,
the efficiency of destruction affects the whole waste clean-up sys-
tem as well as the recovery of the disaster affected area. In the two-
echelon waste clean-up problem, we choose candidates among the
available TDWMSs and then decide the waste flows, which deter-
mines two important attributes: (i) the amount of waste to be col-
lected at each demolished building and transported to each
selected TDWMSs, and (ii) the amount of waste to be transported
from each chosen candidate to each final disposal site.

Fig. 1 provides a simple demonstration of the problem. A depot
is used to park vehicles used in the system, which is also all the
vehicles’ initial origins and final destinations on each working
day. Damaged buildings that have been demolished become cus-
tomers with determined waste to be collected. In the figure, nodes
1, 3, 5, and 6 are available customers. Collection vehicles transport
waste from these nodes to the selected TDWSM. Due to the large
waste generation from each building, each customer node (demol-
ished building) requires multiple services to collect all its waste.
For example, 0 ? 1 ? a ? 1 ? 3 ? a ? 3 ? c ? 0 is a possible
route for a collection vehicle. After processing, the waste is trans-
ported from selected TDWMSs to final disposal sites by transporta-
tion vehicles.
3. Modelling

3.1. Assumptions

The study proposes three important assumptions for the mod-
elling of the problem described in Section 2: (i) Waste is available
to be collected at each damaged building when the demolition
aste clean-up problem.
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starts. Besides, the waste generated at each customer node during
each day of the demolition period is assumed to be the same. It
means that in the demolition period of a building, m = M/t is the
fraction of waste generated every day, whereM is the total amount
of waste generated from the building and t is the number of days
required to demolish this building; (ii) In the system, we assume
that the recyclable waste is collected by recycling facilities from
TDWMSs after separation. Thus, in the second echelon, we only
need to deal with the landfill waste; (iii) In both the collection
and transportation stages, each vehicle can only provide service
to one node in each trip.

3.2. Integrated model (A1)

In this section, we develop the mathematical model for the
problem described in Section 3.1 using mixed integer program-
ming (MIP). Readers interested to MIP are referred to books
(Kaufmann and Henry-Labordère, 1977; Pochet and Wolsey,
2006). In our problem, a graph G ¼ ðN;AÞ is defined to describe
the problem, in which N is a set of nodes and A is a set of arcs asso-
ciated with the nodes. More specifically, f0g denotes the depot,
C ¼ f1;2; :::;ng is the set of customer nodes,
J ¼ fnþ 1;nþ 2; :::;nþmg is the set of TDWMS candidates,
F1 ¼ fnþmþ 1g denotes a hazard waste disposal facility,
F2 ¼ fnþmþ 2g denotes recycling facility, F3 ¼ fnþmþ 3g
denotes a landfill, F ¼ F1 [ F2 [ F3, N1 ¼ C [ J, N2 ¼ J [ F,
N ¼ C [ J [ F, and A is the set of arcs ði; jÞ;8i; j 2 N.

The graph considers the following parameters.

uij: distance between node i and node j, 8i; j 2 N; i–j
cij: cost of travelling arc ði; jÞ, 8i 2 C; j 2 J
Ej: fixed cost for building the TDWMS j, 8j 2 J (unit: AUD)
Oj: operation cost of TDWMS j 2 J (unit: AUD=d)
Wi: total demand of customer node i 2 C
ti: time required to demolish a customer node i 2 C
m: number of demolition machines
K: set of available collection vehicles in a day

K
0
: set of available transportation vehicles in a day

Q: the capacity of each collection vehicle

Q
0
: the capacity of each transportation vehicle

m: collection vehicle speed
m0 : transportation vehicle speed
R: total working time of a vehicle in a day (unit: min)
T: set of days in the clean-up period
sj: capacity of TDWMS j 2 J
g: waste recycling rate

It also defines of the following variables.

xid: binary variable equals to 1 if the demolition of customer
i 2 C starts in day d 2 T , otherwise 0
yid: binary variable equals to 1 if there is waste generated from
customer i 2 C in day d 2 T , otherwise 0
cid: the amount of total waste either demolished or not that has
not been cleaned at customer i 2 C at the end of day d 2 T
(cid � 0)
Did: amount of waste available to be collected in customer i 2 C
in day d 2 T including the waste generated in this day (Did � 0)
rid: the amount of waste that is available but have not been col-
lected in customer i 2 C at the end of day d 2 T (rid � 0, ri0 ¼ 0)
sd: binary variable equals to 1 if clean-up operations have fin-
ished at the end of day d 2 T, otherwise 0
xj: binary variable equals to 1 if TDWMS j 2 J is open, otherwise
0
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aijd: number of trips between node i and node j in day d 2 T,
i; j 2 N; i–j (aijd � 0)
zijd: the amount of waste collected from customer i 2 C and sent
to TDWMS j 2 J in day d 2 T (zijd � 0)
rjd: the amount of waste left in TDWMS j 2 J at the end of day
d 2 T (rjd � 0, rj0 ¼ 0)
bjld: number of trips between node j and node l in day d 2 T ,
j; l 2 N2 (bjld � 0)
f jld: the amount of waste transported from TDWMS j 2 J to final
disposal site l 2 F in day d 2 T (f jld � 0)
lj: operation cost of TDWMS j 2 J (lj � 0)

The model can be written as:

min
X

j2JxjEj þ
X

j2Jlj

þ ð
X

j2f0g[J

X
i2C

X
d2Tajidcji þ

X
i2C

X
j2J

X
d2Taijdcij þ

X
j2J

X
ð1Þd2Taj0dcj0Þ

þ ð
X

l2f0g[F

X
j2J

X
d2Tbljdclj þ

X
j2J

X
l2F

X
d2Tbjldcjl þ

X
l2F

X
d2Tbl0dcl0Þ

ð1Þ

min jTj �
X

d2T
sd þ 1 ð2Þ

Constraints:
X

d2T
xid ¼ 1; 8i 2 C ð3Þ

yid ¼
Xd

d
0 ¼maxf1; d�tiþ1g

x
id

0 ; 8i 2 C ð4Þ

X

i2C
yid � m; 8d 2 T ð5Þ

cid ¼ Wi �
X

j2J

Xd

d
0 ¼1

z
ijd

0 ; 8i 2 C;d 2 T ð6Þ

yid
Wi

ti
þ rid�1 ¼ rid þ

X

j2J
zijd; 8i 2 C;d 2 T ð7Þ

rijTj ¼ 0; 8i 2 C ð8Þ

zijd � aijdQ ; 8i 2 C; j 2 J;d 2 T ð9Þ
X

j2f0g[J

X

i2C
ajid

uji

m
þ
X

i2C

X

j2J
aijd

uij

m
þ
X

j2J
aj0d

uj0

m

�
X

i2C
a0idR; 8d 2 T ð10Þ

X

i2C
a0id ¼

X

j2J
aj0d; 8d 2 T ð11Þ

X

j2J
aijd ¼

X

j2J[f0g
ajid; 8i 2 C; d 2 T ð12Þ

X

i2J[f0g
ajid ¼

X

i2C
aijd; 8j 2 J; d 2 T ð13Þ

X

i2C
a0id � jKj; 8d 2 T ð14Þ

X

j2J

X

d2T
zijd ¼ Wi; 8i 2 C ð15Þ
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ð1� gÞ
X

i2C
zijd þ rjd�1 ¼ rjd þ

X

l2F
f jld; 8j 2 J;d 2 T ð16Þ

rjjTj ¼ 0; 8j 2 J ð17Þ

f jld � bjldQ
0
; 8j 2 J; l 2 F; d 2 T ð18Þ

X

l2f0g[F

X

j2J
bljd

ulj

m0 þ
X

j2J

X

l2F
bjld

ujl

m0 þ
X

l2F
bl0d

ul0

m0

�
X

j2J
b0jdR; 8d 2 T ð19Þ

X

j2J
b0jd ¼

X

l2F
bl0d; 8d 2 T ð20Þ

X

l2F
bjld ¼

X

l2F[f0g
bljd; 8j 2 J; d 2 T ð21Þ

X

j2J[f0g
bljd ¼

X

j2J
bjld; 8l 2 F;d 2 T ð22Þ

X

j2J
b0jd � jK 0j; 8d 2 T ð23Þ

rjd � xjsj; 8j 2 J;d 2 T ð24Þ

ð1� gÞ
X

i2C

X

d2T
zijd ¼

X

l2F

X

d2T
f jld; 8j 2 J ð25Þ

sd � 1� cid
Wi

; 8i 2 C; d 2 T ð26Þ

sd � 1� rjd

sj
; 8j 2 J; d 2 T ð27Þ

lj � ðjTj �
X

d2T
sd þ 1ÞOj � jTjOjð1�wjÞ; 8j 2 J ð28Þ

Eq. (1) is the objective function of the problem, which aims to
minimise the total cost. It contains four parts, the first part is the
establishment cost of TDWMSs, the second part is TDWMSs oper-
ation cost, and the last two parts denote waste collection cost and
waste transportation cost, respectively. The collection cost
includes travelling expenditures from the depot or TDWMSs to
customer nodes, from customer nodes to TDWMSs, and from
TDWMSs to the depot. The transportation cost consists of cost
for travelling from final disposal sites or the depot to TDWMSs,
from TDWMSs to final disposal sites, and from final disposal sites
to the depot. Eq. (2) is the second objective function aiming to min-
imise waste clean-up time.

Constraints (3) allow that each customer node is demolished
once and only once. Constraints (4) compute the value of variables
yid. Constraints (5) ensure the maximum number of the demolition
machines used on each day is not exceeded, and Constraints (6)
calculate the total amount of waste that has not been cleared in
each customer node, including waste either demolished or not.
Constraints (7) are the flow balance in each customer node for each
day. The above constraints make sure that the waste generated in a
day plus the available waste left in the previous day equals to the
amount waste to be collected at the end of the day plus the amount
of waste that has been cleared at each customer.

Then, Constraints (8) ensure that all waste at customer nodes is
cleared at the end of the period. Constraints (9) are capacity con-
straints on collection vehicles. Constraints (10) compute the aggre-
gated maximum daily operation times for collection vehicles. Note
that these constraints are approximations, which should not be
4

considered as the limitation of operation times for every single col-
lection vehicle. Constraints (11)–(13) are degree constraints to
ensure the continuity of collection vehicle routes. Constraints
(14) ensure that the number of collection vehicle used in each
day is less than the available number of collection vehicles. Con-
straints (15) make sure all the waste in each customer node is col-
lected. Constraints (16) are the flow balance of TDWMSs for each
day, which is similar to the structure of the flow balance con-
straints of customer nodes.

Furthermore, constraints (17) ensure that all the waste stored in
each TDWMS is cleared at the end of the given period. Constraints
(18) make sure the capacity of transportation vehicles not
exceeded. Constraints (19) avoid the transportation vehicles
exceeding their aggregated daily working times. Similar to Con-
straints (10), we cannot guarantee the work time limitation of each
single transportation vehicle. Constraints (20)–(22) are degree con-
straints to ensure the continuity of transportation vehicle routes.
Constraints (23) regulate that the number of transportation vehi-
cles used in one day is no more than the maximum available num-
ber. Constraints (24) ensure that a TDWMS cannot be used if it is
closed and its capacity will not be exceeded. Constraints (25) guar-
antee all the waste stored in each TDWMS is cleared at the end of
the period. Constraints (26)–(27) make the sd variable equalling to
1 when there is no waste left either in customer nodes or in
TDWMSs. Finally, Constraints (28) compute the operational cost
for TDWMSs.
3.3. Decomposition approach (A2)

The problem is decomposed into two hierarchical sub-problems
for an explicit presentation. In the first sub-problem (SP1), the
objective is to assign customer nodes to demolition machines
and minimising the total time required for demolition. Then, the
sequence of customers that have been designated for a machine
is random since it will not affect the final result. In the second
sub-problem (SP2) is the two-echelon waste clean-up problem. A
new set of M and two more sets of variables are introduced to for-
mulate SP1:

M: the set of available demolition machines;
rim: a binary variable equalling to 1 if the demolition of cus-
tomer i 2 C is assigned to demolition machinem 2 M, otherwise
0;
p: the total time required to finish the demolition work.

Given these parameters, the model reads:

min p ð29Þ
X

m2M
rim ¼ 1; 8i 2 C ð30Þ
X

i2C
rimti � p; 8m 2 M ð31Þ

After solving SP1, the value of rim;8i 2 C;m 2 M and p can be
obtained. By randomly scheduling the sequence of customers that
have been assigned for each machine, the value of variables
yid;8i 2 C; d 2 T can be determined, acting as the input of SP2. In
SP2, the objectives are the same as those in A1 with Constraints
(6)–(28). To improve the results and test the efficiency of the
decomposition approach, the solution obtained for each instance
in A2 is used as an initial feasible solution, while solving the inte-
grated model with yid again as decision variables (A3). Comparison
of the results is made in Section 5.1.
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4. Empirical evaluation

4.1. Study area

Bushfire in Victoria, Australia has been a catastrophe for a long
history. There were about 30 severe bushfires in the history that
took people’s lives and burned significant acreage of land. Besides,
a single bushfire can generate hundreds or even thousands of tons
of waste to be removed for post-disaster reconstruction and
rebuild of the economy (Brown et al., 2011b).

During the past 35 years, there have been many extremely dam-
aging events inVictoria, such as the ‘‘AshWednesday” fires in Febru-
ary of 1983 and ‘Black Saturday’ fires in 2009. Both resulted in
destruction of a large number of buildings, loss of fencing and live-
stock with severe impact on regional economies. The other two sig-
nificant bushfires were the 2003 Eastern Victorian Alpine fires that
burned through 1.3 million hectares and the 2006–2007 forest fires
in the Great Divide that burned over 1.2 million hectares (Australia,
2010). The latest fire was the 2019–20 Australian bushfire season
which is known as the Black Summer. The fires burnt an estimated
0.186 million km2, destroyed more than 5900 buildings and killed
at least 34 people (Schweinsberg et al., 2020; Ulpiani et al., 2020).

The study investigates in the Kinglake region (Fig. 2), which was
severely affected by the 2009 ‘‘Black Saturday” bushfires that
almost all the residential buildings were destroyed. Kinglake is a
town in Victoria, Australia, 46 km north-east of Melbourne’s
Central Business District. It had a population of 1347 at the 2011
Census. It was the most damaged region of the state in the 2009
‘Black Saturday’ bushfires.

4.2. Estimation of input data for the case study

4.2.1. Customer nodes
The location of each destroyed building presents a customer

node. The amount of the waste generated from each customer is
estimated based on Rawson (2015), which estimates that the
Fig. 2. Study area is in the Kinglake town, which
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average disaster waste generation from a residential building is
170.1 tonnes. It indicated that even the best waste estimation
methods have a 30% error (FEMA, 2007). This means that the waste
generated from each customer is between 120 and 220 tonnes the-
oretically. Therefore, the total waste of each customer is randomly
generated in this range. The other important information is the
time for demolishing a general residential building, which can be
estimated by inspecting the disaster sites usually. It has already
suggested that the demolition time is ranging from 1 to 14 days
for the customers in this specific area (Brown et al., 2010), which
is thus used in the study straightforwardly.

4.2.2. TDWMSs candidates
TDWMSs have two properties of location and capacity. The selec-

tion of TDWMS candidates has been addressed bymany studies. For
example, Grzeda et al. (2014) applied binomial cluster analysis and
GIS to select TDWMSs before disasters. In Kim et al. (2014), a model
to select optimised location for TDWMSs is developed. Cheng and
Thompson (2016) used Boolean Logic and GIS for determining suit-
able locations for TDWMSs. The candidate’s selection method we
use is the one developed in Cheng and Thompson (2016), which is
clear and easy to follow. Based on this method, suitable locations
of the candidates have been obtained, which contains 125 cus-
tomers, 8 TDWMS candidates, and 1 depot (Fig. 3). There is also
one final disposal site around 80 km away from the study area.

The capacity is calculated by using an established method
(Tabata et al., 2017) with Equation (32). In the equation, Gis the
capacity of the candidate, a is the floor area of the candidate, q is
the relative volume-weight of the disaster waste (m3/t), and h is
the height for stacking the disaster waste (m).

G ¼ a� h
q

ð32Þ

To determine the capacity construction cost and operation cost
for TDWMS, we consulted staffs involved in the recovery of the
Black Saturday Bushfire. However, the answers are inconclusive.
locates in Murrindindi, Victoria, Australia.



Fig. 3. There are 125 customers, 8 TDWMS candidates, and 1 depot in the Kinglake town.

Table 1
The summary of the information about TDWMSs.

TDWMS
candidates

Capacity
(tonnes)

Establishment cost
(AUD*)

Operation cost
(AUD*/day)

126 400 4000 100
127 500 5000 100
128 600 6000 100
129 300 3000 100
130 800 8000 100
131 400 4000 100
132 800 8000 100
133 600 6000 100

* 1 AUD = 0.79 USD in the year 2009.
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Base on the discussion, the construction cost of each TDWMS can-
didate is assumed to be ten times its capacity in Australia dollars
(AUD) and the operation cost is assumed to be 100 AUD/day. The
assumed data are not aimed to represent the real cost, but demon-
strate the model developed in Section 3.2. The labour cost is not
included since the data is not available in this case study but can
be easily merged to the operation cost if the data is available in
the further work. Table 1 summaries this information.

4.2.3. Other data
The model also requires other datasets to solve the problem,

including a road network, operation cost of vehicles, recycling
rates, the number of demolition machines, the number and capac-
ities of collection and transportation vehicles. In particular the road
network is collected from VicRoads,1 which is used to create an uni-
directional graph that has a topological relationship between edges
(road segments) and nodes (vertexes of the segments) and weights
are the distances of the edges. The collection and transportation
costs are 5 AUD/km and 10 AUD/km, respectively (Yang et al.,
2016). In our case, all the waste generated in the bushfire was cate-
gorised into a single waste classification by the Environmental Pro-
tection Agency of Australia to speed up the waste clean-up and
minimise hazards to people and the environment (Brown et al.,
2010). Thus, the amount of total volume to be recycled in our the
case study is 0. Regarding demolition machines and vehicles, we
assume 10 demolition machines are used to demolish the damaged
buildings. The number of vehicles is chosen to be 25 in total accord-
ing to (Brown et al., 2010). In this case, 10 vehicles are used for the
collection work with a capacity of 10 tonnes and the reminder 15
vehicles take the responsibility to transport the waste with a capac-
ity of 30 tonnes.
1 The statutory road and traffic authority in the State of Victoria, Australia.
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To decide the approach used to solve the problem of the case
study area. We also generated artificial instances in small, medium,
and large-scales to compare their performance.
4.3. Artificial instances

Artificial instances are randomly generated in a 2 km � 2 km
grid which is the similar to the size of the case study area men-
tioned in Section 4.1. The locations of customer nodes, the depot
and TDWMSs are randomly generated. The location of the landfill
is defined as a 10 km � 10 km area far away from the other nodes.
The demand and demolition time of a customer is generated by fol-
lowing the same rationale in the case study. Finally, four groups of
the instances are generated with 10, 25, 50, and 100 customer
nodes, respectively. Each group includes 10 different instances
with the same configuration as summarized in Table 2. In small
instances (with 10 customer nodes), the number of TDWMS candi-
dates, demolition machines, collection vehicles, and transportation



Table 2
Configurations of four groups of the simulated instances, including the numbers of
customer nodes, TDWMS candidates, demolition machines, collection vehicles, and
transportation vehicles.

No.
groups

Customer
nodes

TDWMS
candidates

Demolition
machines

Collection
vehicles

Transportation
vehicles

1 10 3 2 2 2
2 25 3 3 3 3
3 50 5 3 4 6
4 100 8 8 8 12
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vehicles are smaller compared to large-scale instances (with 100
customer nodes).
5. Numerical analysis

5.1. Analysis of the simulated instances

The model presented in this paper are solved by Gurobi Solver
which uses branch-and-bound algorithm to solve MIP. Readers
interested in branch-and-bound algorithm are referred to the
Table 3
Numerical results of artificial instances.

Instances Best known
results
(AUD)

A1 A2

Gap to
Best

Solver
Gap

CPU
(seconds)

P
(days)

Gap to
Best

S
G

10-1 8.80 � 104 0.01% 1.18% 3600 40 0 0
10-2 9.12 � 104 0 0.01% 1425 40 0.22% 0
10-3 9.38 � 104 0 0 1434 43 0.03% 0
10-4 8.14 � 104 0 0.58% 3600 44 0.02% 0
10-5 8.90 � 104 0 1.05% 3600 44 0.01% 1
10-6 9.15 � 104 0 1.03% 3600 33 0.24% 1
10-7 8.66 � 104 0 0.01% 771 34 0.01% 0
10-8 8.04 � 104 0 0.01% 923 34 0.14% 0
10-9 8.74 � 104 0 0.84% 3600 48 0 0
10-10 9.86 � 104 0 1.97% 3600 35 0.53% 0
25-1 2.13 � 105 9.85% 11.47% 3600 128 0 0
25-2 2.20 � 105 15.06% 16.21% 3600 119 0 0
25-3 2.10 � 105 – – 3600 – 0 0
25-4 2.21 � 105 5.48% 6.80% 3600 78 0 0
25-5 2.17 � 105 9.15% 10.91% 3600 127 0 0
25-6 2.18 � 105 8.63% 10.42% 3600 120 0 0
25-7 2.13 � 105 3.38% 5.16% 3600 114 0 0
25-8 2.02 � 105 – – 3600 – 0 0
25-9 2.02 � 105 – – 3600 – 0 0
25-10 2.06 � 105 – – 3600 – 0 0

Instances Best known
results
(AUD)

A1 A2

Gap to
Best

Solver
Gap

CPU
(seconds)

P
(days)

Gap to
Best

S
G

50-1 4.26�105 – – 3600 – 0
50-2 4.02�105 – – 3600 – 0
50-3 4.26�105 – – 3600 – 0
50-4 4.31�105 – – 3600 – 0
50-5 4.07�105 – – 3600 – 0
50-6 4.08�105 – – 3600 – 0
50-7 4.22�105 – – 3600 – 0
50-8 4.15�105 13.57% 17.44% 3600 150 0
50-9 4.13�105 – – 3600 – 0
50-10 4.16�105 12.65% 16.42% 3600 140 0
100-1 9.25�105 – – 3600 – 0 1
100-2 8.83�105 – – 3600 – 0 1
100-3 9.09�105 – – 3600 – 0 1
100-4 9.26�105 – – 3600 – 0 1
100-5 9.17�105 – – 3600 – 0 1
100-6 9.11�105 – – 3600 – 0 1
100-7 9.51�105 – – 3600 – 0 1
100-8 9.30�105 – – 3600 – 0 1
100-9 9.41�105 – – 3600 – 0 1
100-10 8.92�105 – – 3600 – 0 1
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paper (Clausen, 1999). In the solver, two parameter can be used
to terminate it. The first one is the time limitation, as long as the
running time (CPU) reaches the limitation the Solver will stop no
matter a feasible solution is find or not. For example, in Table 3,
no feasible results was obtained for instance 25-3 in A1 within
the time limitation which is set to 3600 s. The other parameter is
optimality gap. To understand optimality gap, we need to intro-
duce the Solver Gap. Solver Gap is the percentage difference
between the lower and upper objective bound, which defines the
best and worst results we can get. The smaller the Solver Gap,
the closer the result is to the optimised result. The Solver will ter-
minate with an optimal solution when the Solver Gap is less or
equal than the optimality gap. For instance, instance 10-2 in Table 3
obtained the optimised solution with a Solver Gap equals to 0.01 in
1425 s (less than the limitation time). In the integrated approach
(A1), the optimality gap is set to 0.01% for all the instances. In
the decomposition-model approach (A2), the limitation time is
3600 s for SP1 and SP2 in total. In A3, we used the integrated model
(A1) to solve the problem initialised with feasible solutions
obtained from the decomposition approach (A2). Both A1 and A2
have 3600 s to solve the problem. The objective considered in this
section is to minimise the total cost. Table 3 summaries the results
A3

olver
ap

CPU
(seconds)

P
(days)

Gap to
Best

Solver
Gap

CPU
(seconds)

P
(days)

.53% 3600 40 0 0.70% 3600 40
37 42 0 0 517 40

.01% 104 43 0 0 1538 43

.58% 3600 44 0 1.90% 3600 44

.05% 3600 44 0 1.05% 3600 44

.02% 3600 35 0 1.02% 3600 33

.01% 47 34 0 0 1586 34

.01% 211 35 0 0.01% 516 34

.53% 3600 48 0 0.53% 3600 48

.95% 3600 40 0 1.37% 3600 35

.21% 3600 71 0 1.70% 3600 71
362 64 0 1.33% 3600 64

.22% 3600 70 0 1.56% 3600 70
632 65 0 1.46% 3600 65

.43% 3600 70 0 3.44% 3600 70

.42% 3600 71 0 2.01% 3600 71

.01% 3600 63 0 1.42% 3600 63

.23% 3600 65 0 1.77% 3600 65

.47% 3600 64 0 1.81% 3600 64

.23% 3600 61 0 3.82% 3600 61

A3

olver
ap

CPU
(seconds)

P
(days)

Gap to
Best

Solver
Gap

CPU
(seconds)

P
(days)

0.12% 3600 109 0 3.94% 3600 109
0.11% 3600 92 0 4.00% 3600 92
0.12% 3600 106 0 3.77% 3600 106
0.23% 3600 116 0 4.46% 3600 116
0.25% 3600 105 0 3.99% 3600 105
0.37% 3600 94 0 4.24% 3600 94
0.12% 3600 98 0 3.88% 3600 98
0.01% 1296 96 0 4.51% 3600 96
0.03% 3600 111 0 3.83% 3600 111
0.82% 3600 114 0 4.30% 3600 114
1.73% 3600 111 0 13.18% 3600 111
1.19% 3600 125 0 12.65% 3600 125
0.97% 3600 100 0 12.41% 3600 100
2.21% 3600 101 0 13.68% 3600 101
2.52% 3600 101 0 14.01% 3600 101
1.05% 3600 110 0 12.67% 3600 110
4.49% 3600 120 0 15.88% 3600 120
2.74% 3600 107 0 14.14% 3600 107
5.85% 3600 132 0 – 3600 132
0.07% 3600 104 0 10.64% 3600 104
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obtained from the three different approaches. The first column
shows reference numbers of the instances. The second one pre-
sents the best result obtained from three different approaches.
‘Gap to the best’ is the difference between the result obtained from
each approach and the best obtained result, ‘Solver Gap’ is the gap
from the solver which is explained above, ‘CPU’ is the running time
of the solver, and ‘P’ is the total time required to finish the clean-
up.

In most of the small instances (with 10 customer nodes), A1
outperforms A2. However, it is difficult for A1 to get feasible solu-
tions for 40% instances with 25 customer nodes, 80% instances
with 50 customer nodes, and 100% instance with 100 customer
nodes. A2 obtains a satisfactory performance in all instances
regarding the ability of getting a feasible solution and the quality
of solutions for medium- and large-scale instances. In comparison,
A3 is the best approach since it always obtains the best solution. In
small instances, A3 can improve the initial solution provided by A2.
However, in larger instances, A1 is not able to improve the solu-
tion. Taking the 100-9 instance as an example, it is even unable
Table 4
Numerical results of the case study.

TDWMSs capacity 100% of the data provided in Table 1

Scenarios Parameter Best known Result (AUD) Objective: Minimize cost

Gap to best Solver Gap CP

CT 1-1 m = 10 1.22 � 106 0.82% 6.66% 36
|K| = 10 1.21 � 106 0.68% 6.38% 36
|K 0| = 15 1.21 � 106 0.07% 5.87% 36

CT 1-2 m = 5 1.22 � 106 0.10% 6.46% 36
|K| = 10 1.22 � 106 0 5.71% 36
|K 0| = 15 1.22 � 106 0 5.85% 36

CT 1-3 m = 5 1.23 � 106 0.05% 6.83% 36
|K| = 5 1.23 � 106 0.03% 7.20% 36
|K 0| = 8 1.22 � 106 0.09% 6.06% 36

Scenarios Parameter Best known Result (AUD) Objective: Minimize time

Gap to best Solver Gap CP

TC 1-1 m = 10 1.17 � 106 602.60% 0 13
|K| = 10 1.17 � 106 601.11% 0 12
|K 0| = 15 1.17 � 106 534.45% 0 14

TC 1-2 m = 5 1.21E � 106 40.55% 0 66
|K| = 10 1.21 � 106 519.34% 0 61
|K 0| = 15 1.21 � 106 63.75% 0 70

TC 1-3 m = 5 1.21 � 106 170.31% 0 83
|K| = 5 1.21 � 106 166.70% 0 94
|K 0| = 8 1.21 � 106 33.66% 0 82

TDWMSs capacity 50% of the data provided in Table 1

Scenarios Parameter Best known Result (AUD) Objective: Minimize cost

Gap to best Solver Gap CP

CT 2-1 m = 10 1.23�106 0 7.05% 36
|K| = 10 1.21�106 0.11% 5.53% 36
|K 0| = 15 1.22�106 0 6.56% 36

CT 2-2 m = 5 1.23�106 0.09% 6.96% 36
|K| = 10 1.23�106 0.06% 6.56% 36
|K 0| = 15 1.23�106 0.07% 6.59% 36

CT 2-3 m = 5 1.22�106 0.05% 6.53% 36
|K| = 5 1.22�106 0 6.51% 36
|K 0| = 8 1.21�106 0.16% 5.55% 36

Scenarios Parameter Best known result Objective: Minimize time

Gap to best Solver Gap CP

TC 2-1 m = 10 1.17�106 538.47% 0 10
|K| = 10 1.17�106 551.69% 0 77
|K 0| = 15 1.17�106 541.05% 0 14

TC 2-2 m = 5 1.21�106 77.06% 0 62
|K| = 10 1.21�106 133.28% 0 61
|K 0| = 15 1.21�106 48.39% 0 60

TC 2-3 m = 5 1.21�106 29.45% 0 85
|K| = 5 1.21�106 62.91% 0 85
|K 0| = 8 1.21�106 28.98% 0 63
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to find a lower bound with the initial solution. The comparison
of the solver gap of A2 and A3 indicates that solutions obtained
from A2 are close to the optimal solutions. To confirm the perfor-
mance of A2, one instance is selected from each group to run A1
for much longer time (36,000 s) when the initial solution has been
obtained from A2 (running for 3600 s) by using the third approach.
It shows that there is no further improvement in the solution, com-
paring to the results of A1 in the third approach that has the time
limitation at 3600 s. The results also indicate that the sequences of
customers that have been assigned to each machine are not signif-
icant regarding the minimisation of the total cost. Therefore, A2 is
selected to solve the problem in the case study in Section 5.2.

5.2. Analysis of the case study

In the case study, the objectives are to minimise the total cost
and the total clean-up time. In the literature, most multi-
objective optimization problems are solved by converting multiple
objectives into a single objective (Hu and Sheu, 2013) or using
Objective: Minimize time with cost constraint

U (seconds) P (days) Gap to best Solver Gap CPU (seconds) P (days)

00 219 0 0 1480 87
00 210 0 0 2484 87
00 187 0 0 1952 87
00 218 0 0 1768 173
00 186 0 0 2156 173
00 193 0 0 1502 173
00 228 0 0 3600 182
00 239 0 0 3600 177
00 209 0 0 2216 173

Objective: Minimize cost with time constraint

U (seconds) P (days) Gap to bestSolver Gap CPU (seconds) P (days)

78 87 0 0.10% 3600 87
32 87 0 0.09% 3600 87
43 87 0 0.10% 3600 87
6 173 0 3.73% 3600 173
3 173 0 3.83% 3600 173
7 173 0 3.74% 3600 173
2 173 0 3.70% 3600 173
9 173 0 3.63% 3600 173
5 174 0 3.69% 3600 174

Objective: Minimize time with cost constraint

U (seconds) P (days) Gap to best Solver Gap CPU (seconds) P (days)

00 238 0.02% 0 1597 87
00 167 0 0 1837 87
00 214 0.02% 0 2235 87
00 240 0 0 2154 173
00 223 0 0 3273 173
00 214 0 0 3600 178
00 209 0 0 2157 173
00 213 0 0 2031 174
00 185 0 0 3600 174

Objective: Minimize cost with time constraint

U (seconds) P (days) Gap to best Solver Gap CPU (seconds) P (days)

68 87 0 0.10% 3600 87
0 87 0 0.10% 3600 87
21 87 0 0.10% 3600 87
1 173 0 3.77% 3600 173
4 173 0 3.79% 3600 173
5 173 0 3.69% 3600 173
7 173 0 3.88% 3600 173
7 173 0 3.69% 3600 173
1 173 0 4.64% 3600 173



Fig. 4. Total number of trips travelled in the network in the entire clean-up period for waste collection stage.
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heuristics algorithm such as non-dominated sorting genetic algo-
rithm II (Onan et al., 2015) to solve the problem. However, both
aforementioned methods cannot guarantee the quality of the
results. In this study, to minimise both the cost and time, two sets
of experiments are included. In the first one, the cost is minimised
first, then the results are set as the initial solution to minimise the
time with the constraint that the total cost cannot exceed the min-
imised cost (scenarios named as CT x-x). In the second set of the
experiments, the priorities of the two objectives are exchanged,
i.e., the time is minimised firstly and the cost is minimised with
a time constraint secondly (scenarios named as TC x-x).

We also conducted sensitivity analysis to check the uncertainty
of the results. The parameters selected for the analysis are the
number of demolition machines (m), the numbers of collection
vehicles (|K|) and transportation vehicles (jK 0j), and the capacity
of the TDWMS candidates. To test the uncertainty, each combina-
tion of parameters is repeated three times. The time limitation is
3600 s and the solver gap is 0.01% for all the experiments. Table 4
presents the results. The terms in this table are consistent with
those in Table 3. The best-known result is the best result obtained
from the two approaches regarding the total cost. The table is sep-
arated into two major parts according to the capacity of the
TDWMS candidates (100% (scenarios named as CT 1-x or TC 1-X)
versus 50% (scenarios named as CT 2-x or TC 2-x) of the original
capacity). Two sets of the experiments are considered within each
capacity, and three combinations of the parameters are included in
each test group.

To check the feasibility of the solutions, we visualized the
results using the shortest paths between origins and destinations
(ODs) in GIS. To calculate the shortest paths between ODs, all the
nodes in the network are mapped to the start or end points of
the routes in the network. The visualization shows that the opti-
mization results is feasible in the real network, which can be used
to facilitate route planning in the post disaster waste management.
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Fig. 4 shows the total number of trips travelled in the network in
the entire clean-up period for waste collection from customer
nodes to TDWMSs using the results from scenario TC1-1. The
routes of the waste transportation cannot be show in the map since
the final disposal sites are very far away from the case study area.

In terms of the multiple objectives (total clean-up time and
total cost), the optimization results are feasible regarding the
two objectives and they are not contradictory. The reason is that
the second part of the total cost, which is the operation cost of
TDWMSs, is related to the total clean-up time. However, they are
not in line with each other because the operation cost is not the
main contribution of the total cost. Thus, it cannot guarantee the
total time is minimised by minimising the total cost especially
when the results is not optimised. For example, when we minimise
the total cost, the total time can reach 219 days in scenarios CT 1-1,
while the actual minimised the total clean-up time is 87 days. To
the contrary, if we minimise only the total time, we will get a total
cost that is more than 6 times larger of the optimised total cost in
scenarios TC 1-1. Therefore, the best approach is to minimise the
total time first, then optimise the cost with the time constraint.
Furthermore, by comparing the results obtained in different sce-
narios, total time highly depends on the number of demolition
machines. The number of collection and transportation vehicles
and the capacity of TDWMS has minor impacts on total cost and
total clean-up time.
6. Conclusion

The study develops a reverse logistics system for post-disaster
waste clean-up, aiming at minimising the cost and time involved
in the system. The problem is formulated with a Mixed Integer Pro-
gramming model. The proposed system is different from previous
work in several ways. First, we solve the problem from a realistic
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and executable perspective, which considers the arrangement of
buildings demolition and the location selection of TDWMSs. Sec-
ond, the study concerns economic impacts on the waste clean-
up, by incorporating the TDWMSs establish cost, operation cost,
and waste collection cost into the model. This is particularly
important for local governments and enterprises since they have
to allocate reasonable amount of the budgets in advance. Third,
the study also emphasizes on a timely post-disaster reconstruction
by minimising the entire clean-up time with a minimization of the
overall cost additionally. We also proposed two different models
and three approaches to obtain an optimal result.

The numerical results indicate that the integrated model (A1)
can only be used to solve small-scale problems. The decomposed
algorithm (A2) can address all the instances generated and achieve
satisfactory results. The third approach A3, in which the solution
getting from A2 is sent to A1 as the initial solution to improve
the results, indicates that the solutions obtained from A2 are close
to the optimal solutions. The results from the case study demon-
strate that the best approach is to minimise the total time followed
by the optimisation of the cost with the time constraint. Besides,
the total time highly depends on the number of demolition
machines. Furthermore, the results obtained from the case study
can facilitate the local municipalities making decision. First, the
location selection results of TDWMSs from the model can act as a
good reference for the decision when they need set up TDWMSs
for post-disaster waste management. Second, the estimated time
and cost can help to set the budget and target clean-up period
for the disaster management. Thirdly, the arrangement of building
demolition and the schedule of each collection and transportation
vehicle in each day can provide useful information for the decision-
makers to develop the detailed waste clean-up plan.

Given the limitation of the available data regarding both quan-
tity and quality, this work does not consider the different cost for
different vehicles and the environmental impacts. We recommend
integrating the selection of the number and type of vehicles and
environmental impacts as well as total clean-up time and cost in
the post disaster waste management with the consideration of
the impacts of waste recycling rate as a worthwhile topic for the
future research.
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