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ABSTRACT
Waste clean-up after a disaster is one of the most critical tasks in
the response stage of disaster management. We develop a model to
minimise the cost and duration of disaster waste clean-up consider-
ing using Temporary Disaster Waste Management Sites (TDWMSs),
which can store and process waste before it is sent to the final dis-
posal sites. The problem that arises can be seen as a Multi-Period
Two-echelon Location Routing Problem (MP-2ELRP) in which the
main decisions are the location of the TDWMSs and the routing of
vehicles in both echelons. In this paper, we propose both a mixed-
integer program and a Genetic Algorithm (GA) to model and solve
the problem. Computational tests indicate: (i) the performance of
proposed GA is robust; (ii) the use of TDWMSs can reduce both
total waste clean-up cost and duration; and (iii) the capacities of
TDWMSs have a significant impact on the total waste clean-up time
and duration.
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1. Introduction

Disasters can generate a large amount of waste and debris (Baycan 2004; Brown, Milke, and
Seville 2011b; Xiao, Xie, andZhang2012; Ishimura, Takeuchi, andCarlsson 2014). Thegener-
ated volume froma single event can reach 5–15 times the annual waste normally produced
by affected communities (Brown,Milke, and Seville 2011b). The clearance, removal, and dis-
posal of such large amounts of debris are costly and time-consuming operations. Indeed,
they account for about one-fourth of disaster recovery costs (FEMA 2007) and can last for
many years (Brown, Milke, and Seville 2011b).

The disaster management cycle consists of several stages, including mitigation, prepa-
ration, response and recovery (UNISDR 2009). Waste clean-up occurs in the last two stages,
with the cleaning of roads in the response phase (Fetter and Rakes 2012) and the removal
of debris from affected areas in the recovery phase (FEMA 2007). In the response stage of
disaster management, the goal of waste clean-up is to open blocked roads to ensure the
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routes for rescue, evacuation, and relief are accessible. In the recovery stage, themajor task
of disaster waste management is cleaning all the waste generated in disaster affected area
to make sure the recovery operations go well. The modelling of open blocked routes dur-
ing the response stage has been addressed by Sakuraba et al. (2016); Pramudita, Taniguchi,
and Qureshi (2014); Özdamar, Aksu, and Ergüneş (2014); Çelik (2015); Sahin, Kara, and
Karasan (2016); Berktaş, Kara, and Karaşan (2016). In this research, we focus on the disas-
ter waste clean-up in the response stage, which includes a large amount of waste removal
operations.

Planning complex removal operations requires proper coordination between collec-
tion, processing and disposal of waste. To improve the efficiency of the overall pro-
cess, one study suggested establishing temporary disaster waste management sites
(TDWMSs) (FEMA 2007), which can be used to temporarily store and process the waste.
Thus, it is vital to achieve a dynamic re-balance, particularly when final disposal sites are far
away from the collection points or when they have limited capacities. The other study pro-
posed a simple mathematical model to decide on the location of TDWMSs, the assignment
of collection points to TDWMSs, and the choice of the recycling technologies (Fetter and
Rakes 2012). However, the model has an ambiguous capability in optimising the disaster
waste clean-up. Therefore, our study aims to improve the efficiency ofwaste clean-up in the
response stage of disastermanagement byminimising the total cost and duration of waste
clean-up considering the optimisation of disaster waste clean-up. Essentially, we need to
solve a two-echelon location routingproblem (2E-LRP)withmultiple periods,which include
optimising the collection routes between disaster affected areas, the TDWMSs and trans-
portation routes between TDWMSs and the final disposal sites, and the location selection
of TDWMSs for the whole waste clean-up period.

To achieve this, the main challenge is providing cycles between TDWMSs without visi-
tation of the depot, which is associated by the determination of routes in the presence of
TDWMSs. To tackle this problem,wepropose new linear constraints that are able to capture
this feature and incorporate them into a full mixed-integer program. We also develop fast
heuristics to obtain feasible solutions within acceptable computation time for large scale
problems.

The rest paper is structured as follows. Section 2 presents a literature review. Section 3
provides detailed description of the problem. Section 4 presents the core of the proposed
mathematical formulation. Section 5 summarises the developed heuristic algorithms and
Section 6 discusses the case study and instance generation. The following section analyses
the computation results. Conclusions are presented in Section 8.

2. Literature review

In this section, we review previous disaster waste clean-up strategies (Section 2.1), sum-
marise the research focused on the optimisation of waste clean-up in the disaster recovery
(Section 2.2), and discuss the methods used to solve 2E-LRP (Section 2.3).

2.1. Disaster waste clean-up strategies

The choice of an appropriate disaster waste clean-up system is case-dependent, espe-
cially after disasters in which many different stakeholders are involved. The usage (or not)
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Table 1. Comparison of disaster waste management systems in different instances.

Instance Strategies Remarks Reference

Hanshin-Awaji
Earthquake

Some governments use
TDWMSs

The sort of waste can facilitate
management; The method for
waste transportation should be
improved; The choose and use of heavy
construction machines is important in
TDWMSs

Nakamichi and
Inoue (1995)

Cedar & Paradise
fires, 2003

Bin program; Property
clearing program; Two
temporary recycling
facilities

Average recycling rate was about 54%;
Total cost of waste management
reduced to a large extent

County of San
Diego (2005)

Flood in 2000 in the
USA

Door-to-door garbage
collection on a fee-for-
service basis

Catastrophic flooding in 2000 and the
implementation of a ‘garbage tax’
increased pressure on the city to
improve garbage collection

Kruks-
Wisner (2006)

Victoria Bushfire,
2009

A central contract was signed
to clean-up

A small percentage of metal and most
concrete were recycled; Waste was
collected to four existing landfills and
one new landfill directly

Brown, Milke, and
Seville (2011c)

Hurricane Katrina,
2005

Kerbside collection; On-site
separation; Applied
TDWMSs

Demolition waste sent to disposal sites
directly

Brown and
Milke (2011)

2010 Canterbury
and 2011
Christchurch
Earthquakes

Established facilities;
Specifically for disaster
waste; Waste separated in
TDMWS

Different systems for different waste
sources

Brown and
Milke (2012)

L’Aquila Earth-
quake,
2009

Waste separated in TDMWS
when it was handled
by Civil Protection
Department but changed
to on-site separation when
the municipality took the
responsibility

Waste management works were
separated into three categories
according to the severity of building
damage

Brown et al. (2010)

Samoan Tsunami,
2009

Individual government
and international NGOs
involved

No overall coordination and waste
management strategy from the
international community; Not include
separation before collection; Most of
the waste ended in landfill

Brown, Milke, and
Seville (2011d)

Marmara
earthquake,
Turkey

Recycling plant; 17 Dump
sites

High level of reinforcement, bars in the
demolition waste causes operational
problems in plant; Illegal dumping at
coastal line

Karunasena
et al. (2009)

2014 South Carolina
storm

A TDWMSs set up before the
storm events

Use experienced storm clean-up
contractors; Recycled wood waste

Emerson (2014)

of intermediate facilities such as TDWMSs is a central aspect of differentiation between
different strategies.

Table 1 presents a brief review of the different strategies used in the literature and high-
lights the main aspects of the existing approaches. Situations in which TDWMSs were used
present higher recycling rates. The 2003 Cedar & Paradise fires waste clean-up is a proper
example of high recycling rates that can be obtained in these cases. The report indicated
that more than 50% of the waste could be recycled. Generally, on top of the increasingly
recycling rates, TDWMSs have some other advantages, including improving the flexibil-
ity of operations and reducing the volume of waste as well as shortening waste collection
times (FEMA 2007). In Section 7.3, the performance of two different disaster waste clean-up
systems (with and without TDWMSs) are compared.
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2.2. Modelling in disaster wastemanagement

Disaster waste management modelling is necessary to improve the efficiency of disaster
waste clean-up in the recovery stage (Cheng, Zhang, and Thompson 2018). In general, the
problem in disaster waste management can be described using a reverse logistics sys-
tem (Hu and Sheu 2013) which includes logistics activities such as location of TDWMSs
and route planning in waste collection and transportation (Zhang et al. 2019). Hu and
Sheu (2013) proposed a mathematical model to minimise environmental and operational
risk, and psychological trauma experienced by residents in a disaster waste manage-
ment system. In a recent paper published by the same author, traffic impacts is added as
another objective in the model (Hu et al. 2019). However, in both papers, the selection
of TDWMSs location was not considered in the model. To select candidates for TDWMSs,
Cheng and Thompson (2016) proposed a land use suitability assessment method. Fetter
and Rakes (2012) developed a decision model TDWMSs location selection with recycling
incentives to support disaster debris cleanup operations. In addition to the decision of
TDWMSs location, Onan, Ülengin, and Sennaroğlu (2015) also included the assignment of
customer nodes between TDWMSs.

Regarding the route planning in disaster waste management, most models addressed
routing planning by focusing on the response stage, which aim to open blocked
roads to support evacuation, rescue and relief. For example, Pramudita, Taniguchi, and
Qureshi (2014) proposed a model to minimise waste clean-up cost in the response phase
by optimising waste transportation routing considering the blocked access by waste.
Çelik (2015) developed a model to determine the sequence to clean roads to satisfy relief
demand. Sahin, Kara, and Karasan (2016) also aimed to provide emergency relief supplies to
disaster-affected regions as soon as possible by unblocking roads after disasters. Further-
more, Berktaş, Kara, and Karaşan (2016) used a model to minimise the total time spent to
open blocked roads to reach all the critical nodes.

2.3. Relevant solutionmethods for 2E-LRP

Table 2 summarises methods for the 2E-LRP from different studies. Both exact algorithms
and heuristics algorithms have been applied to solve the problem in different papers.
In general, exact algorithms can only solve small instance problems (Crainic, Sforza, and
Sterle 2011). Thus, most of the papers applied tailored or generalist heuristic algorithms
to solve this problem. The Greedy algorithm is normally used to generate initial solutions.
For example, Nguyen, Prins, and Prodhon (2012) applied three greedy randomised heuris-
tics to generate initial solutions, which were improved by two variable neighbourhood
descent procedures. Heuristics such as Tabu-search, the genetic algorithm, and local search
are usually applied for improving initial solutions. Nguyen, Prins, and Prodhon (2010) and
Wang et al. (2017) developed local search algorithm to improve initial solutions. Dalfard,
Kaveh, and Nosratian (2013) introduced hybrid genetic algorithm and simulated annealing
for solution improvement. To solve multiple objective problems, the non-dominated sort-
ing genetic algorithm (NSGAII) based on heuristics are the typical used (Wang et al. 2020b).
For instance, two recent paper proposed NSGA-II based algorithms to solve a collaborative
two-echelonmulti-centre vehicle routing problem (Wang et al. 2020b) and a green logistics
location-routing problem with eco-packages (Wang et al. 2020a).
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Table 2. A summary of papers on 2E-LRP formulation.

Formulation Algorithm Reference

No Mathematical Formulation Tree-Tour Heuristic Jacobsen and Madsen (1980)
Two-index ILP No solution algorithm Laporte and Nobert (1988)
No Mathematical Formulation Tabu-search Heuristic Boccia et al. (2010)
Three-index MILP Heuristics (Greedy, local search, and Tabu-list) Nguyen, Prins, and

Prodhon (2010)
One-index, two-index, and three
index MILP

XPRESS MIP Solver Crainic, Sforza, and Sterle (2011)

Two-index MILP Branch-and-Cut, Large-Neighbourhood Search Contardo, Hemmelmayr, and
Crainic (2012)

Three-index ILP Heuristics (Greedy, learning process, path relinking,
and variable neighbourhood descent)

Nguyen, Prins, and
Prodhon (2012)

Three-index MILP Heuristics (Hybrid genetic algorithm and simulated
annealing)

Dalfard, Kaveh, and
Nosratian (2013)

Three-index MILP Heuristic Rahmani, Oulamara, and
Cherif (2013)

No Mathematical Formulation Heuristics (Local search) Rahmani, Cherif-Khettaf, and
Oulamara (2015)

Two-index MILP Heuristics (Large neighbourhood based) Breunig et al. (2016)
Three-index MILP Cplex solver for small instance, Heuristics (Nearest

neighbour, Best Sequential Insertion, and Hybrid
Clustering)

Rahmani, Ramdane Cherif-
Khettaf, and Oulamara (2016)

Three-index MILP Heuristic Vidovic et al. (2016)
ILP Multi-phase hybrid heuristics Wang et al. (2017)
MILP Heuristic (dynamic programming, improved K-

means clustering, and improved NSGAII)
Wang et al. (2020b)

MILP Heuristic (Clarke–Wright saving method-based
NSGAII and Lagrangian relaxation)

Wang et al. (2020a)

Notes: ILP= Integer Liner Programming, MILP=Mixed Integer Liner Programming.

To sum up, the majority of papers related to disaster waste management modelling
didn’t consider the decision of location of TDWMSs and route planning in waste collec-
tion and transportation together, especially in the recovery stage of disaster management.
Onepaper that consideredboth TDWMSs location selection andwaste collection and trans-
portation assumed that the waste generated from each customer node is more than the
capacity of collection vehicles (Cheng et al. 2021). Therefore, there is no need to consider
the sequence of visiting customers for collection stages in a single vehicle route, which
makes the problem much easier to formulate and solve. However, in many disasters, the
capacity of vehicles is larger than the waste generation demand from each customer node.
In this case, developing a model to solve the problem which captures the aforementioned
features in disasterwaste clean-up is necessary. Furthermore, none of the algorithms devel-
oped for 2E-LRP considered long operational time, which is an important capability since
ourmodel operates longduration of the clean-ups. To bridge the gap,wepropose amathe-
maticalmodel to solve thewaste clean-upproblem for thewhole response stage of disaster
management considering: (i) the location selection of TDWMSs; (ii) the routing of waste
collection between waste generation nodes and selected TDWMSs; (iii) cycles of collection
vehicles between TDWMSs without visitation of the depot; and (iv) the routing of waste
transportation between TDWMSs and final disposal sites.

3. Problem description

In this section, we analyse the differences between disaster waste clean-up and periodic
municipal waste management collection (Section 3.1), and describe the specifications of
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the waste clean-up problem investigated in this paper, positioning it within the existing
literature (Section 3.2).

3.1. Differences betweenmunicipal solid wastemanagement and disaster waste
clean-up

A typical municipal solid waste (MSW) management system includes demand points that
can be either residential or commercial buildings, transfer stations which can provide
reduction, separation, or recycling operations to waste, and final disposal sites that can be
recycling facilities, landfill sites, or incinerators. At the first sight, it might seem that MSW
collection and transportation methods could be directly applied to disaster waste clean-
up. There is abundant literature, since the MSW management has already been studied
extensively (Lu et al. 2015).

There are, nevertheless, significant differences betweenMSWmanagement and disaster
waste clean-up (Fetter and Rakes 2012). The volume of the waste to be collected is proba-
bly themain difference. Because of the huge volume ofwaste generated fromdisasters, the
capacity of local municipalities can be exceeded and, thus, additional contractors that are
not a part of the MSW management are needed. In addition, in MSW collection, the loca-
tion and amount of waste are known while in the aftermath of a disaster, the quantity and
location of waste are unknown and estimation methods are not accurate. This affects the
selection of TDWMSs and the arrangement of clean-up vehicles.

The standards to deal with disaster waste are also different in two scenarios. Disaster
waste usually results in mixtures, which makes it difficult to comply with municipal solid
waste separation anddisposal protocols followedunder normal conditions. Normally, there
can be policy waivers in order to reduce the duration of disaster waste clean-up operations
(Brown, Milke, and Seville 2010a). Furthermore, in MSW management, waste transfer sta-
tions are permanent facilities which are determined when the system is designed, while in
recovery situations, TDWMSs are temporary facilities that have to be established after dis-
aster happens. Indeed, although TDWMS candidates are identified before disasters, it is an
operational decision to use either one or all of them. The last additional difference is that
after the clean-up of disaster waste, the selected TDWMSs should be restored to allow their
previous use to be resumed (FEMA 2007).

The differences between the two types of waste management systems make disaster
waste clean-up an unique problem from the conventional MSW problem. When consider-
ing TDWMSs, the disaster waste clean-up problem can be seen as a two-stage process. In
the first stage, waste is collected fromwaste generation nodes and sent to the TDWMSs. In
the second stage, they are transported to final disposal sites from TDWMSs, after necessary
treatments such as separation and compression.

3.2. Problem definition

To differentiate between the problem demonstrated in this research and the problem that
has been addressed in Cheng et al. (2021), we classify disasters into small disasters and large
disasters according to the amount of waste generated at the demand nodes. We assume
that in small disasters, the waste generated from each demand node is generally smaller
than the capacity of a collectionvehicle. In largedisasters, thewastegenerated froma single
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demand node is much larger than the capacity of collection vehicles. The focus of Cheng
et al. (2021) is large disasters, while our aim is to solve thewaste clean-up problem for small
disasters. The complete process of small disaster waste clean-up can be seen as a reverse
two-echelon routing problem.

The Two-Echelon Routing Problem (2ERP) has been rigorously defined and described as
a two-echelon, synchronised, scheduled, multi-depot, multiple-tour, heterogeneous vehi-
cle routing problem with time windows (Crainic, Ricciardi, and Storchi 2004). The first
application of 2ERP can be traced back to the 1980s, in the context of newspaper distribu-
tion (Jacobsen andMadsen 1980). There is a systematic reviewon 2ERPs (Cuda, Guastaroba,
and Speranza 2015), which classified the problem into three categories: the two-echelon
location routing problem (2E-LRP), the two-echelon vehicle routing problem (2E-VRP), and
the truck and trailer routing problem (TTRP). In 2E-LRP, the satellites to be opened have to
be selected from a set of possible candidates. In comparison, the set of satellites has been
determined in 2E-VRP. In a TTRP, transportation is organised as a set of trucks and trailers
that need to satisfy the following requirements. A subset of customers should be served
by a truck alone, and the rest of customers can be visited either by a truck alone or a vehi-
cle (a truck or a trailer). According to this classification scheme, the problem described in
this paper belongs to the 2E-LRP since we include location selection for TDWMSs in our
problem.

In this study, rather than the delivery of freight to customers, the goal is to collect waste
fromwastegenerationnodes,whicharedefinedas customernodes in classical VRP. The first
echelon comprises the links between waste generation points (customers) and TDWMSs
(satellites). The second echelon connects the TDWMSs (satellites) and final disposal sites
(depots), and those connecting pairs of TDWMSs (satellites). Besides, the vehicle depot, a
parking site for collection vehicles, is also considered. In the 2E-LRP, the decisions involve
the TDWMSs locations connecting the first echelon (in which waste is collected fromwaste
generation points) to the second echelon (in whichwaste is sent to the landfills). According
to a well developed notation (Laporte 1988; Crainic, Sforza, and Sterle 2011), the 2E-LRP in
this study is a challenge because location decisions have to be made in the first echelon
and routes are allowed in both echelons.

Like in most 2E-LRP, here we take into account the maximum route durations and the
capacity of both vehicles and location facilities. Additionally, the problem has some signif-
icant features that have seldom been considered in the literature. Firstly, the problem is
a multi-period problem since the huge quantities of the waste require a long collection
horizon. This implies that some sort of waste inventory management must be imple-
mented to model the problem properly. Moreover, sub-routes forming cycles including
a TDWMS can be feasible. Therefore, this is the most challenging modelling issue for this
problem. The use of sub-cycles without including the depot has been considered in the
case of so-called Lasso solution for the VRP with delivery and pick-ups (Gribkovskaia, Hal-
skau, and Myklebost 2001; Hoff et al. 2009). In a Lasso solution, the first customers on the
route can be visited twice. On the first visit, only the delivery demands are performed
to create more available space on the vehicle. On the way, back to the depot, the same
customers are visited the second time to perform the pick-up service. In our case, sub-
cycles starting and ending at the same TDWMS or paths starting and ending at different
TDMWS are allowed since visiting to a TDWMS has an effect of renewing the capacity of the
vehicle.
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Figure 1. Disaster waste management system.

The above problem is defined as the Multi-Period Two-Echelon Location Routing Prob-
lem (MP2ELRP) with multi-trips. The study has two objectives that minimise both the total
cost and the total clean-up time. Figure 1 presents the problem in a schematic way. In the
first echelon, collection vehicles start from the vehicle depot, collect waste from customers
and unload this waste at a selected TDWMS. As mentioned above, multiple sub-trips can
be performed before returning to the depot and several TDWMSs can be visited in a sin-
gle complete route, such as the route 0 → C1 → C2 → C3 → T1 → C4 → C5 → T3 → 0
(Figure 1). In the second stage, transportation vehicles are responsible for transporting
waste from TDWMSs to the final disposal sites. In this echelon, transportation vehicles also
start from the vehicle depot and travel to TDWMSs to provide service. Transportation vehi-
cles may also take different routes on a single day depending on the route durations. The
numbers on the transportation routes represent the sequence of routes for a transporta-
tion vehicle. For instance, a transportation vehicle may follow the route 0 → T1 → F1 →
T3 → F1 → 0 (Figure 1).

4. Model formulation

In this section, we propose a simplified mixed integer program to formally describe the
main characteristics of theproblemapproached in this paper. As expected, given the review
above, this model can only be used to solve small instances. We, therefore, propose heuris-
tics to solve the full problem emphasised above. We use a Genetic Algorithm (GA), and a
Greedy Algorithm for the problem and the simplifiedmodel. This benefits for the simplicity
of implementation and satisfactory capability in obtaining high-quality solutions for similar
problems (Nguyen, Prins, and Prodhon 2010, 2012; Dalfard, Kaveh, and Nosratian 2013).

4.1. Assumptions

We assume that waste clean-up starts after the disaster, when residents have returned to
their homes and take waste from their residences. This means that all the customers are
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available at the beginning of the process. As mentioned earlier, inventory management at
TDWMSs is needed in order to ensure that their capacities are respected. These capacities
constraints are validated at the end of each day.

4.2. Simplifiedmodel

Before solving the full problem proposed, we present solutions for a simplified problem. In
this approximation, the second stage is not included. Thus, the problem is a multi-period
multi-trip, location routing problem, which focuses on how tomake a better arrangement of
the first echelon of the full problem. Since even the classical location routing problem is an
NP-hard problem, such a simplification is still a difficult optimisation problem. Based on the
concept of classical LRP, the following decisions should be made.

• Determining the location and quantity of selected TDWMSs.
• Determining howmuch waste is to be carried back to each facility each day.
• Determining how many vehicles to use each day, considering the number of available

vehicles.
• Determining the routes of each vehicle on a given working day.

In our specific problem, the following additional decisions are required.

• Determining which customers should be served each day.
• Determining the routes of each vehicle through all days in the planning horizon.

We propose a formal mathematical description of the problem presented above. We
assume that road network and the amount of waste to be collected are known. Let
G = (N, E) be an undirected graph representing the area of interest. Let N = {0, 1, . . . , n}
be the set of nodes, where each node represents a collection point, a TDWMS or the depot,
i.e. N = 0 ∪ C ∪ J, where 0 represents the depot where trucks are originally parked, C ⊂ N
is the set of demand nodes and J ⊂ N represents the candidate sites for temporary waste
management facilities.

Each node i ∈ C has an associated demand di representing the demand of waste to
be collected at node i. Moreover, each node j ∈ J has associated parameters oj, pj, and qj
representing the fixed cost of building TDWMSs, its daily operation cost and its capacity,
respectively. We also define E as the set of links in the undirected network. For each edge
(i, j) ∈ E there are two associated parameters: cij denoting the cost associatedwith a vehicle
traversing edge (i, j), and tij presenting the time a vehicle takes to traverse the edge. Finally,
the problem also defines a set of vehicles. Each vehicle k ∈ K has an associated capacity Q.
These parameters are summarised in Table 3, along with a few additional parameters.

To model cycles between TDWMSs without visitation to the depot, we define a section
as a subtour visiting collection points and starting at a depot or a TDWMS and finishing at a
TDWMS or the depot. For example, in Figure 1, the vehicle tour 0 → C1 → C2 → C3 →
T1 → C4 → C5 → T3 → 0 contain three sections. The first section is 0 → C1 → C2 →
C3 → T1, T1 → C4 → C5 → T3 is the second section, and T3 → 0 is the third section. The
numbering of route sectionsmakes it possible for vehicles to visit TWDMSsmore than once
while tracking the source of waste unloaded in each TDWMS to make sure the capacity
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Table 3. A summary of parameters and sets used in the formulation.

Parameters/sets

N set of nodes in the network (N = 0 ∪ C ∪ J)
0 node associated with the depot
C set of demand nodes
di demand associated with node i ∈ C
J demand associated with node i ∈ C set of TDWMSs candidate nodes
oj fixed cost of building facility j ∈ J
pj daily operation cost of facility j ∈ J
qj capacity of facility j ∈ J
E set of edges
cij cost associated with the traversal of arc (i, j)
tij time to traverse of arc (i, j)
K set of available vehicles
Q capacity of vehicle k ∈ V
T set of operation days
S set of sections in one trip

Table 4. A summary of variables in the formulation.

xijdks binary variable equals to 1 if arc (i, j), i, j ∈ N is traversed by vehicle k ∈ K in its sth
section in the trip during day d ∈ T , otherwise 0

yj binary variable equals to 1 if TDWMS j ∈ J is built, otherwise 0
zjd binary variable equals to 1 if TDWMS j ∈ J opens on day d ∈ T , otherwise 0
μjdks continuous variable representing the amount of waste vehicle k ∈ K brings back to

TDWMS j ∈ J after its sth section in day d ∈ T
τi continuous variable representing the time customer node i ∈ C is visited
σjd continuous variable representing storage of the waste in TDWMS j ∈ J at the end of

day d ∈ T
Wjd the total amount of processed waste leaving TDWMS j ∈ J on day d ∈ T

constraints for TDWMSs are not broken. Given this notation, we develop a mixed integer
programming formulation for the problem with variables presented in Table 4.

The primary goal is to minimise the total clean-up cost:

Min :
∑

i∈N

∑

j∈N

∑

d∈T

∑

k∈K

∑

s∈S
(cijxijdks) +

∑

j∈J
(ojyj) +

∑

d∈T

∑

j∈J
(pjzjd) (1)

The objective function (1) contains three components: the first term minimises the cost of
transportation from the waste generation points (customer nodes) to the TDWMSs. The
second term refers to the total fixed charge for building the TDWMSs. The third term is
associated with the cost of operating the TDWMSs.

Subject to degree constraints:
∑

i∈C
x0idk1 ≤ 1, ∀d ∈ T , k ∈ K , (2)

∑

i∈C

∑

s�=1,s∈S
x0idks = 0, ∀d ∈ T , k ∈ K , (3)

∑

j∈J

∑

s�=1,s∈S
xj0dks =

∑

i∈C
x0idk1, ∀d ∈ T , k ∈ K , (4)

∑

i �=j,i∈N∑
d∈T

∑
k∈K

∑
s∈S

xijdks = 1 ∀j ∈ C, (5)
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∑

i∈N
xijdks =

∑

i∈C∪J
xjidks, ∀j ∈ C, d ∈ T , k ∈ K , s ∈ S, (6)

∑

i∈C
xijdks =

∑

i∈C∪0
xjidks+1 ∀j ∈ J, d ∈ T , k ∈ K , s ∈ S. (7)

Constraints (2) and (3) ensure that all vehicles start their trips at the depot. Constraint (4)
balances the number of vehicles leaving the depot and the number of vehicles coming
back from the TDWMSs. Constraint (5) ensures that each demand node will be visited once
and only once. Applied with Constraint (6), it ensures that the number of vehicles leaving
a certain node equals to the number of vehicles coming in that node. To modelling the
sub-tours Constraint (7) starts a new section of the route when a TDWMS is visited.

Constraints on daily facility capacity

∑

i∈N

∑

j∈C
xijdksdj =

∑

j∈J
ujdks ∀d ∈ T , k ∈ K , s ∈ S, (8)

∑

i∈C
Mxijdks ≥ ujdks ∀d ∈ T , k ∈ K , s ∈ S, (9)

∑

k∈K

∑

s∈S
ujdks ≤ qj − σjd−1 + Wjd ∀j ∈ J, d ∈ T , (10)

σjd =
∑

k∈K

∑

s∈S
ujdks − Wjd + σjd−1 ∀j ∈ J, d ∈ T , (11)

Wjd ≤ σjd−1 ∀j ∈ J, d ∈ T . (12)

Constraint (8) calculates the amount ofwaste brought back to TWDMSandConstraint (9)
ensures the amount of waste cannot exceed the maximum capacity of the vehicle. BigM is
a constant which can be the capacity of vehicles (Q). Constraints (10) and (11) ensure that
the capacity of each TDWMS will not be exceeded and record the amount of waste stored
at the end of each day. Constraint (12) ensures that thewaste stored in a TDWMS at the end
of the dth day will be cleared at the (d + 1)th day.

Constraints on daily facility operation

σjd ≤ Mzjd ∀j ∈ J, d ∈ T , (13)

yj ≤
∑

d∈T
zjd ∀j ∈ J, (14)

Myj ≥
∑

d∈T
zjd ∀j ∈ J, (15)

zjd ≤ zjd+1 ∀j ∈ J, d ∈ T . (16)

Constraint (13) ensures that they can be stored in a TDWMS j only when it is opened in
a given day. The amount of waste stored at the end of the day cannot exceed its capacity.
BigM is a constant, denoting the capacity of TDWMS j. Constraints (14) and (15) guarantee
that a TDWMS can only be open if it is selected. Here, bigM is themaximumwaste clean-up
duration. Constraint (16) ensures that TDWMSs should open everyday during the clean-up
to make sure resources are used reasonably.
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Subtour elimination constraints

τi ≥
∑

d∈T

∑

k∈K
x0idk1 ∀i ∈ C, (17)

τi ≤ τj −
∑

d∈T

∑

k∈K

∑

s∈S
xijdks + M(1 −

∑

d∈T

∑

k∈K

∑

s∈S
xijdks) ∀i ∈ C, j ∈ C. (18)

Constraints (17) and (18) are used to eliminate sub-tours, which make sure a vehicle will
only visit the next customer node when there is enough time. In Constraint (18), big M is
the last time step of a day.

4.3. Full problemmodelling

Themodel presented in the previous section captures the core features of the problem but
does not include the second echelon. A fullmodel of the problem is presented in Appendix.

5. Solution algorithm

We propose a GA to solve the two echelon problem formulated in the previous section.
The main idea is to heuristically divide the decisions in this algorithm, in order to reduce
the search space. This is achieved by setting up a chromosome encoding only the location
decisions, i.e. the encoding vector has one binary slot for each TDWMS candidate site. This
partial solution is completed heuristically and the obtained solution cost is used to estimate
the individual fitness value. In the following, we describe the main algorithmic decisions
associated with the GA in Section 4.2, and we discuss on the fitness evaluation procedure.
In all algorithms presented, the notations are listed below.

n: number of generations,
m: number of individuals in each generation,
l: number of genes in an individual,

α: crossover rate,
β : mutation rate,
b: maximum cost can be used for the TDWMSs establishment,

cM: maximum cost that can be used for the whole clean-up,
C: set of customer nodes,
J: set of TDWMSs candidates,
F: set of final disposal sites,

Tw : working hours a vehicle can provide a day,
K1: set of collection vehicles,
K2: set of transportation vehicles,
Q1: capacity of collection vehicles,
Q2: capacity of transportation vehicles,
r: recycling rate of the waste,

Tl1: load time of collection vehicles,
Tul1 : unload time of collection vehicles,
Tl2: load time of transportation vehicles,
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Tul2 : unload time of transportation vehicles,
c: set of arc cost,
o: set of TDWMSs establishment cost,
p: set of TDWMSs operation cost,
q: set of TDWMSs capacity,
d: set of customer nodes demand,
D: set of arc distance,
σ : amount of waste stored in final disposal sites.

5.1. GA specialisation and parameters

The main routine used in our approach is presented in Algorithm 1, which receives the
following input parameters:

geneticInput = {n, m, l, α, β , b, cM, C, J, F, Tw , K1, K2, Q1, Q2, CT , r, Tl1, T
ul
1 ,

Tl2, T
ul
2 , c, o, p, q, d, D}

In a nutshell, the method creates an initial random solution (line 1) and runs the main
loop for the desired number of iterations (lines 3–49). In each iteration, individuals are eval-
uated that includes a call to the Greedy fitness estimator (lines 4–12) and they go through
an elitist survival procedure (lines 13–16). Standard GA procedures are then applied to the
population. Then, the individuals are subject to a roulette wheel selection (lines 17–29).
Selected individuals then go (with probability α) through a one point crossover (lines
30–37). Each individual then goes (with a probability β) through amutation stage, in which
the status of one single gene is changed (lines 38–48). Finally, the best solution returns to
the user when all iterations are completed (lines 50–52).

5.2. Fitness evaluator

In the GA described by Algorithm 1, individuals are evaluated in an approximative fash-
ion in order to save computational time. This evaluation is described in Algorithm 2, which
receives inputs from the main routine as the following parameters:

greedyInput = {C, J, F, Tw , K1, K2, Q1, Q2, r, Tl1, T
ul
1 , Tl2, T

ul
2 , c, d, D, o, p, q}

The evaluation algorithm first initialises its parameters according to the solution being
assessed (lines 1–4). The idea of the procedure is to complete the solution given by the
selected TDWMSs by finding collection (first echelon) and transportation (second echelon)
routes for each day in the planning horizon.

Thewhile loop in lines 5–16 is the core of themethod and remains being executedwhile
there are still customer nodes to be visited. When the loop is visited, a new day is added
to the waste clean-up solution (line 6). For each given day, the available vehicles leave
the depot and visit a series of customers and TDWMSs. The decisions on which customers
should be visited by each vehicle and the order onwhich these visits should occur are taken
within the CreateRoute call in line 13. The decisions on the second echelon routes are taken
within the Stage2 call in line 15. The last call is also repeated after the collection ends and
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Algorithm 1: Genetic Algorithm
input: geneticInput

1 P0 = m individual randomly generated (Each gene has 50% probability of getting set at 0);
2 k = 0;
3 while k ≤ n do
4 (Evaluate);
5 for i ∈ Pk do
6 J = {gene ∈ i | gene == 1};
7 if

∑
j∈J oj ≤ b then

8 fitnessi = cM − Greedy(greedyInput);
9 else
10 fitnessi = 0;
11 end
12 end
13 (Select individual for next generation);
14 Pk = rank(Pk) from largest to smallest according to fitness;
15 k = k + 1;
16 Pk = Pk−1(1 : m);
17 (calculate the selection rate for each individual in the population for the wheel selection);
18 sumFitness = ∑m

i=1 fitnessi ;
19 accumulateProb = 0;
20 for i = 1 : m do
21 selectionProbi = accumulateProb + fitnessi/sumFitness;
22 accumulateProb = selectionProbi ;
23 end
24 for i = 1 : m/2 do
25 (Selection);
26 for j = 1 : 2 do
27 r = rand(0, 1);
28 individualj = {i ∈ Pk|selectionProbi−1 < r ≤ selectionProbi}
29 end
30 (Crossover);
31 rc = rand(0, 1);
32 if rc ≤ α then
33 rpc = rand(1, l) (l is number of genes in an individual);
34 temp1 = concat(individual1(1 : rpc); individual2(rpc − 1 : l));
35 temp2 = concat(individual2(1 : rpc); temp(rpc − 1 : l));
36 Pk = [Pk ; temp1; temp2];
37 end
38 (Mutation);
39 rm = rand(0, 1);
40 if rm ≤ β then
41 rpm = rand(1, l);
42 for j = 1 : 2 do
43 tempj = individualj ;
44 tempj(rpm) = |tempj(rpm) − 1|;
45 Pk = [Pk ; tempj];
46 end
47 end
48 end
49 end
50 bestIndividual = argmax{fitnessi|i ∈ Pk};
51 J = {gene ∈ bestIndividual | gene == 1};
52 return Greedy(greedyInput)
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Algorithm 2: Greedy

input: C, J, F, Tw , K1, K2, Q1, Q2, r, Tl1, T
ul
1 , Tl2, T

ul
2 , c, o, p, q, d, D

1 C′ = C (assign all the customer nodes to C’);
2 σj = {0 | j ∈ J};
3 day = 0;
4 totalCost = 0;
5 while C’ �= ∅ do
6 day = day + 1(start a new day);
7 V1 = K1;
8 TDWMScapacityj = {qj − σj | j ∈ J};
9 availableStorage = TRUE;

10 while V1 �= ∅ AND availableStorage do
11 k = k ∈ V1 (choose any vehicle from the set of available vehicles);
12 V1 = V1 − {k};
13 availableStorage = CreateRoute(C′, k, Q1, Tw , Tl1, σ , D, d, q, totalCost);
14 end
15 Stage2(σ , J, F, K2, Tw , Tl2, T

ul
2 , r, Q2, c, totalCost);

16 end
17 while σ �= ∅ do
18 day=day+1;
19 Stage2(σ , J, F, K2, Tw , Tl2,T

ul
2 , r, Q2, c, totalCost;

20 end
21 period = day;
22 totalCost = totalCost + ∑

j∈J oj + period
∑

j∈J pj;
23 return totalCost

while there is waste being processed in the TDWMSs (lines 17–20). The CreateRoute and
the Stage2 routines are described in Algorithms 3 and 4, respectively.

Algorithm 3 decides in a route for a vehicle in the first echelon. After the parameters
such as capacity and route time are initialised (lines 1–5), the main loop is repeated while
the route duration has not been violated (lines 6–50). In lines 7–18, the nearest neigh-
bour algorithm is implemented to decide on the first section of the collection route. The
algorithm leaves this loop when there is no customer can be visited either because the
capacity of the vehicle or the route duration limit has been violated. In lines 20–49, the
algorithm decides on a TDWMS to visit. All TDWMSs with enough capacity are considered
(line 20). If no TDWMS has enough capacity, no route is generated (line 48). Otherwise,
a TDWMS is selected to empty the current vehicle (lines 22–46). In detail, the algorithm
computes the route time length (lines 22–25). If it violates themaximum route length dura-
tion, the last visited node is removed iteratively until the constraint is respected. Then, in
lines 39–46, the node demands, TDWMSs capacities and current position of the vehicle are
updated.

Algorithm 4, in turn, takes decisions on the second echelon routes. The available vehi-
cles, waste to be collected in the TDWMSs and the set of TDWMSs are initialised in lines
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Algorithm 3: CreateRoute

input: C′, k, J, Q, Tw , Tl , Tul , σ , d, D, q, totalCost
1 enoughTime =TRUE;
2 time = 0;
3 r = 0 (r is the last visited node which starts from the depot ‘0’);
4 routek = r;
5 currentLoad = 0;
6 while enoughTime do
7 while Q − currentLoad > 0 AND time < Tw do
8 candidateC′ = {i ∈ C′|di ≤ capacity − currentLoad};
9 if candidateC′ �= ∅ then
10 i = argmin{Dri|i ∈ candidateC′};
11 time = time + tri + Tl ;
12 if time < Tw then
13 currentLoad = currentLoad + di ;
14 r = i;
15 routek = (routek , r);
16 end
17 end
18 end
19 (J’ is the set of all TDWMSs with enough capacity to receive the waste carried by the current

loaded vehicle);
20 J′ = {j ∈ J|τj + currentLoad ≤ qj};
21 if J′ �= ∅ then
22 position = length(routek);
23 r1 = routek[position];
24 j1 = argmin{Dr1 j|j ∈ TDWMSavailable};
25 time = time + tr1 j1 + Tul + tj10;
26 if time > Tw then
27 enoughTime = FALSE;
28 while time > Tw do
29 currentLoad = currentLoad − dr1 ;
30 J′ = {j ∈ J|σj + currentLoad ≤ qj};
31 position = position − 1;
32 r2 = routek[position];
33 j2 = argmin{Dr2 j|j ∈ J′};
34 time = time − tr1r2 − tr1 j1 − tj10 + tr2 j2 + tj20;
35 r1 = r2;
36 j1 = j2;
37 end
38 end
39 routek = routek[1 : position];
40 di = {0 | i ∈ routek};
41 totalCost = totalCost + ∑

(i,j)∈routek costij ;
42 C′ = C′ − routek ;
43 j = j1;
44 r = j;
45 σj = σj + currentLoad;
46 currentLoad = 0;
47 else
48 return FALSE;
49 end
50 end
51 return TRUE;
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Algorithm 4: Stage2

input: σ , J, F, K2, Tw , Tl2, T
ul
2 , r, Q2, c, totalCost

1 V2 = K2;
2 TDWMSdemand = {σj(1 − r) | j ∈ J};
3 J′ = J;
4 J′ = {j ∈ J|TDWMSdemandj ≥ Q2};
5 while F �= ∅AND V2 �= ∅ do
6 k = k ∈ V2 (choose any vehicle from the set of available vehicles);
7 V2 = V2 − {k};
8 time = 0;
9 r = 0;

10 enoughTime =TRUE;
11 while enoughTime AND F �= ∅ do
12 j = argmax{TDWMSdemandj|j ∈ J′};
13 F = argmin{Djf |f ∈ F};
14 time = time + trj + Tl2 + tjf + Tul2 ;
15 enoughTime = time ≤ Tw ;
16 if enoughTime then
17 TDWMSdemandj = TDWMSdemandj − Q2;
18 totalCost = totalCost + crj + cjf ;
19 r = f ;;
20 J′ = {j ∈ J|TDWMSdemandj ≥ Q2}
21 end
22 end
23 end
24 J′ = J;
25 while F �= ∅ AND V2 �= ∅ do
26 k = k ∈ V2 (choose any vehicle from the set of available vehicles);
27 V2 = V2 − {k};
28 J′ = {j ∈ J|TDWMSdemandj > 0};
29 (F is the set of TDWMSwith waste to be collected);
30 (we assue that the final disposal sites always have enough space for all the waste,

thus we always set the capacity of them to the total waste stored in TDWMSs and
the storgae in the final facilities to 0);

31 Lstorage = {0|f ∈ F};
32 CreateRoute(J, k, F, Q2, Tw , Tl2, Lstorage, TDWMSdemand, D,∑

j∈J′ TDWMSdemandj, totalCost);

33 end
34 σ = TDWMSdemand;
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Figure 2. The location of the study area.

1–3, respectively. The rest of the algorithm decides on the routes between the TDWMSs
and the final disposal sites. First, in lines 5–23, the vehicles are used to perform routes
back and forth from the TDWMSs to the final disposal sites. When the waste stored at the
TDWMSs becomes smaller than a full truck load, a routing approach similar to the one pre-
sented above is effected, treating the TDWMSs as customer nodes and the landfill as the
final destination and calling the previous routing algorithm CreateRoute (line 31).

The approach described above can be easily changed to minimise the waste clean-up
duration. In this case, the greedy algorithm described in Algorithms 2–4 is asked to return
the number of periods needed as fitness value, instead of the cost. Clearly, a combination
of objectives can also be easily implemented.

6. Empirical evaluation

To approximate realistic disaster waste clean-up instances, the study collected data cover-
ing Maribyrnong, which is a Melbourne suburb about 8 km northwest of the city’s Central
Business District as shown in Figure 2. Maribyrnong had a population of 10,165 in the 2011
Census. The area is bounded by the river that gives name to the suburb, being a flood haz-
ard zone. Historically, this area experienced major floods in the years of 1906, 1916, 1974,
1983, 1987, 1993, 2000, 2005, and 2011. As an example, the flood ofMay 1974 resulted in an
inundation of 4.2m,which impacted on 3.85 km2 of urbanised land and resulted in damage
to 370 houses and businesses (SES 2018).

Although a significant number of floods have occurred in the study area, there are
limited data related to post-flood waste management. In the following, we explain the
rationale behind the procedures: (i) customer nodes locations and demands, (ii) TDWMSs
candidate sites and capacities, (iii) final disposal sites locations, and (vi) vehicles quantities
and capacities.



TRANSPORTMETRICA A: TRANSPORT SCIENCE 19

C
ol
ou

ro
nl
in
e,
B/
W

in
p
rin

t

Figure 3. Inundation map and derived graph of the case study area.

6.1. Main assumptions

Customer nodes: To generate customer node locations and demands, we used the MIKE21
model (Warren and Bach 1992) to simulate a flood and estimate the water depth in the
affected area. Figure 3 depicts the inundation map of the study area, which contains 165
affected buildings. To simulate the waste demand in each building, we used formulas pro-
vided in Hirayama et al. (2010), which assume that 0.62 tons and 4.6 tons of waste are
generated per household if the flood does not reach or reaches the floor level, respectively.
These estimates are expected to have a 30% error (FEMA 2007).

TDWMSs candidate sites: According to FEMA (2007), existing disposal or recycling facili-
ties close to the disaster affected area are ideal locations for TDWMSs. Other sites, such as
parks, vacant lots, and sports fields are also feasible candidates. Using this criteria, 10 candi-
dates of the TDWMSs were identified using the land suitability assessment method (Cheng
and Thompson 2016). The capacity of each candidate was estimated bymeasuring the size
of each site in ArcGIS 10.2.

Final disposal sites location: We used as landifill location, the position of the largest
existing Melbourne landfill site.

Vehicles quantities and capacities: We assume two sets of vehicles. The first set, with
smaller capacities, is used in the first echelon while the second set is used in the second
echelon.

6.2. Base case study data

The base case study uses the simulated data which affected 165 buildings. Therefore, we
consider the case with 165 customer nodes. The actual demand at each node is a random
value obtained with the expression:

di = rand[0.7a, 1.3a], ∀i ∈ C (19)
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Table 5. Data related to candidate TDWMSs.

No. Location Total capacity (tonnes) Capacity each day (tonnes) Fixed cost/AUD

166 Maribyrnong Park 80 40 4000
167 Fairbairn Park 100 50 5000
168 Walter St. Reserve 120 60 6000
169 Public land 60 30 3000
170 Pipemakers Park 160 80 8000
171 Robert Barret Reserve 80 40 4000
172 Maribyrnong Reserve 160 80 8000
173 Aborfeldie Park 120 60 6000
174 Moonee Valley Transfer Station 100 50 5000
175 Fairbain Reserve 120 60 6000

in which a is the estimated waste generated (Hirayama et al. 2010) and a 30% relative error
is considered.

As for the candidates of TDMWSs, they were obtained by visual inspection of the area
map and are listed in Table 5, which contains the site location, the total estimated capacity
(based on the site area), the daily processing capacity, and the installation costs. The pro-
cessing capacity was estimated as half of the total capacity in each site. In terms of the cost
of a candidate TDWMS, the fixed costs considered corresponded to land preparation and
recovery costs, estimated at 20 AUD/m2. The operation cost is assumed to be 500 AUD/day
since the major cost in operating TDWMSs is the labour cost, which is not highly impacted
by the capacity of TDWMSs in our case. However, if it considersmore complex operations in
TDWMSs that require expensive machines (e.g. compression), then the operation cost may
depend on the capacity of TDWMSs. Figure 3 shows all the nodes considered in this study.

The network structure is obtained in ArcGIS 10.2 using road network data obtained from
Vicroads (the statutory road and traffic authority in the State of Victoria, Australia). Col-
lection variable costs are assumed to be 10 AUD/km and include drivers’ salary and fuel
consumption (Bumpus 2007). Finally, in the instances generated we considered two sets of
trucks: 5 smaller truckswith capacities of 20 tons for the collection routes in the first echelon
and 2 larger vehicles with capacities of 30 tons for the second echelon.

6.3. Artificial instances

In this section, two groups of instances are generated using the same rationale as the
one explained above to address the following problems: (i) comparing the performance of
developed heuristics algorithm proposed in Section 5 and the simplified MIP model devel-
oped in Section 3; and (ii) testing the robustness of the algorithm for the full problem and
making decisions of algorithmic parameters for the case study.

First echelon instances: The first group contains data only for the first echelon and has
seven instances. One of these instances has the original 165 customer nodes. For the
remaining six instances, only part of the nodes of this original instance are considered.
For the first of these partial instances, the first 10 nodes are considered. The second partial
instance contains the first 20 nodes, and so on.

Complete instances: The second group of instances contains data for the complete prob-
lem. These instances have the same dimensions (1 depot, 165 customers, 10 TDWMSs
candidates, and 1 final disposal site) as the original case study. Nevertheless, we randomly
generate node locations in a 2.5 km by 2.5 km square.
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Table 6. Results of mixed integer model and heuristics algorithms.

Solver (Gurobi) Heuristics

Instance Number of customer nodes Obj Solver Gap CPU Obj Gap CPU (s)

1 10 4864.7 0% 5min 5067.4 4.00% 8.34
2 20 6987.7 13.40% 30min 7128.7 1.98% 16.20
3 30 8901.4 14.50% 72min 8425.7 −5.65% 23.53
4 40 10,169.5 15.60% 7 h 9796.5 −3.81% 30.52
5 50 12,070.5 14.80% 20 h 10,880.0 −10.94% 38.21
6 60 13,590.9 16.70% 38 h 11,981.0 −13.44% 54.05
7 165 NA NA 48 h 20,125.0 NA 127.03

7. Computational results

Three experiments have been conducted to evaluate the performance of both the MIP
model developed for the first echelon and of the GA presented for the complete prob-
lem. The first two experiments investigate the capability of the developed algorithms to
obtain feasible solutions in a reasonable amount of time. The third experiment analyses
the characteristics of the solution obtained for the case study in terms of the applicability
and robustness.

7.1. Solution algorithms comparison for the simplifiedmodel (first echelon)

The GA was developed in MATLAB 2016b and Table 6 presents the computational perfor-
mance in the Gurobi 6.5 solver with an operational system having an Intel Core I7-47700 @
3.40HZwith 16GBRAM. The stopping criteria is a gap smaller than 20% for theGurobi solver
and 40 generations for the GA (with a population size of 20 individuals). Both algorithms
were used to solve the seven first echelon instances described above, and the objective is
to minimise the total cost. In the table, CPU is the computational time of the algorithms.
The Solver Gap is the gap we get from the Gurobi solver versus the Gap of GA means the
difference between the result obtained from GA and the solver.

It shows that, for Gurobi, CPU has a significant and non-linear growth with the increase
of the number of the customer nodes, suggesting that this solution may be inapplicable
and unpredictable if the size of the problem is remarkably large. In comparison, our devel-
oped GA has a much better performance in the same condition, resulting in a mild and
almost linear growth. Notably, it only costs around 2min even for the largest instance, hav-
ing a compelling advantage when the solver has already spent 48 h but cannot find even
a feasible solution for the first echelon of the problem. This means that our approach has
achieved a significant improvement in computational complexity. In the other perspective,
the optimal solution obtained from the GA is also better than the solver.

7.2. Complete instances

Each complete instance is solved 10 times for three different sets of algorithmic parame-
ters (namely, population size and number of generations) (Table 7). In the table, the Gap
is computed with respect to the best known solution value (i.e. the best result out of the
30 times repetitions of the algorithm), while CPU is the time required to solve the problem.
The results suggest that the algorithms are robust because they have obtained similar and
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Table 7. Results of artificial instances.

Population size = 20, Population size = 40, Population size 100,
generation = 40 generation = 20 generation = 80

Instance Aveg. Gap Aveg. CPU (s) Aveg. Gap Aveg. CPU (s) Aveg. Gap Aveg. CPU (s)

1 0.57%± 1.34% 104.39± 2.65 0.41%± 1.31% 106.19± 1.78 0.54%± 1.27% 100.53± 1.86
2 0.23%± 0.71% 102.19± 2.00 0.02%± 0.02% 104.02± 1.62 0.01%± 0.02% 101.79± 1.82
3 0.32%± 0.52% 100.37± 1.49 0.48%± 0.80% 104.23± 2.42 0.19%± 0.61% 98.24± 1.59
4 0.24%± 0.66% 100.23± 1.27 0.29%± 0.68% 104.89± 2.05 0.52%± 1.64% 99.51± 1.69
5 0.56%± 1.31% 104.26± 0.89 0.72%± 1.33% 105.65± 0.83 0.80%± 1.69% 103.44± 1.89
6 0.35%± 0.57% 100.29± 0.81 0.47%± 0.61% 107.21± 2.19 0.32%± 0.70% 102.38± 3.14
7 0.48%± 0.84% 95.71± 1.32 0.43%± 0.66% 99.11± 0.61 0.35%± 0.66% 97.68± 3.11
8 0.08%± 0.27% 108.01± 1.86 0.44%± 1.12% 110.51± 1.64 0.52%± 1.37% 101.12± 1.96
9 0.10%± 0.22% 108.92± 3.64 0.16%± 0.25% 109.01± 2.06 0.40%± 0.39% 105.33± 2.00
10 0.10%± 0.17% 102.07± 2.20 0.33%± 0.70% 107.02± 2.95 0.03%± 0.11% 99.51± 1.35
Average 0.30%± 0.76% 102.64± 1.20 0.37%± 0.83 105.78± 3.50 0.37%± 4.01% 100.95± 3.03

Table 8. Results of three different objective functions.

Scenario 1 Scenario 2 Scenario 3
Scenarios (min total cost) (min total period) (min total distance)

Total time 10 4 5
TDWMS operation cost (AUD) 5000 12,000 10,000
TDWMS selected [0,0,0,0,0,0,1,0,0,0] [0,0,1,1,1,1,0,1,1,0] [0,0,0,1,1,0,1,0,0,1]
TDWMS fixed cost (AUD) 8000 32,000 25,000
Total travel distance (m) 1,403,859 1,389,536 1,335,538
Travel cost (AUD) 14,038.59 13,895.36 13,355.38
Total cost (AUD) 27,038.59 57,895.36 48,355.38

acceptable solutions with small variations. It also shows that the CPU is reasonably short
for a MP2ELPR, which CPU is comparable to simpler versions of the 2E-LRP (Prodhon and
Prins 2014).

7.3. Case study results and analysis

In these experiments, we analyse different system configurations that were obtained by
changing the objective function. The full case study is used and three different objectives
are considered: (i) cost minimisation, (ii) clean-up duration minimisation, and (iii) travel
distance minimisation.

Table 8 presents the main characteristics of the solutions obtained in these three sim-
ulations. As expected, given the very different nature of the objectives, the solutions are
also very different structurally. When cost is minimised, a single TDWMS is open since the
TDWMS is responsible for a large percentage of the clean-up expenses. When clean-up
duration is minimised, the system then heavily relies on the TDWMSs to increase the time
efficiency of the solution. Finally, some trade-off solution is obtained when route distance
is the focus of the minimisation.

We also use the case study data to analyse the effectiveness of the TDWMSs in improving
operational efficiency. The Greedy Algorithm proposed earlier is modified to obtain a solu-
tion that does not use TDWMSs. This solution is compared to the solution obtained with
these intermediate facilities. Table 9 shows a side-by-side comparison of the main charac-
teristics of the two solutions, by minimising the total cost including the disposal cost and



TRANSPORTMETRICA A: TRANSPORT SCIENCE 23

Table 9. Results comparison of the two systems.

System 1 System 2 Difference
(no TDWMS) (with TDWMSs) (System 2 – System 1)

Clean-up time at first echelon(days) 6 5 −1
Total clean-up period (days) 6 6 0
Total travel distance (m) 3,197,869 1,524,798 −1,673,071
Waste disposal cost (AUD) 20,277.10 14,193.97 −6083.13
Recycling revenue 0 5886.9 5886.9
Waste travel cost (AUD) 31,978.69 15,247.98 −16,730.71
TDWMS fixed cost (AUD) 0 15,000 ([1,0,0,1,0,0,1,0,0,0]) 15,000
TDWMS operation cost (AUD) 0 9000 9000
Total cost (AUD) 52,255.79 47,555.05 −4700.74

Table 10. Experimental factors.

CV Number-TV Number CV Capacity-TV Capacity (tonnes)

3–3 10–20
4–2 10–30
5–1 20–20
5–2 20–30

30–30

thewaste recycling revenue. It is clear that the systemwith TDWMSs can operate faster and
at lower costs than its counterpart that does not use this type of facility.

The last set of experiments analyses the sensitivity of the solutions to various input
parameters such as the TDWMSs capacities, and the number and distribution of vehicles.
To investigate the impacts of the total capacity of TDWMSs, we consider the solutions in
the first scenario (costminimisation) in Table 8. In that solution, a single TDWMS is selected.
We analyse the impact of varying the capacity of TDWMSs from 50 to 250 tonnes (in incre-
ments of 50 tones). We also consider different combinations of collection vehicles (CV) and
transportation vehicles (TV) numbers and capacities (Table 10).

Figures 4–6 demonstrate the results of this analysis. In all figures, the x-axis shows the
parameter combination in the form of a X-Y-W-Z, in which X is the number of CV, Y is the
number of TV, W is the capacity of a CV and Z is the capacity of a TV. Figure 4 analyses
the total travel distances for different combinations of the parameters. It indicates that the
total travel distances can generally be reduced by increasing TDWMSs or vehicle capacities.
In Figure 5, the same analysis is made when considering the total clean-up duration as the
metric. For the parameters in these simulations, the TDWMSs capacities are themost impor-
tant factor. Ultimately, Figure 6 replicates the experimentwith the total cost as theobjective
function. In the last case, as for the total cost, TDWMSs capacities play an important role
and the solutions are also sensitive to the size and quantity of the vehicles. Particularly, the
heuristic nature of the algorithms might also play a role in the obtained results.

8. Implication, analysis and discussion

According to the results we obtained from the artificial instances, the MIP model we
developed is feasible to solve the multi-period two-echelon location routing problem
proposed for small disaster waste clean-up which have not been addressed in the litera-
ture. Furthermore, the developed heuristics algorithm is efficient and robust to solve large
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Figure 4. Impact of vehicle number, vehicle capacity and TDWMSs capacity on total travel distance.
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Figure 5. Impact of vehicle number, vehicle capacity and TDWMSs capacity on clean-up duration.

scale problems. Moreover, the developed algorithm can be flexibly modified for the waste
clean-up system without TDWMSs.

The optimisation results considering different objectives in the case study area indicates
that total waste clean-up cost and duration cannot be achieved at the same time. If the
decision-makerswant to clean thewaste generated after disasters as soonaspossible,more
TDWMSs are needed. If the main objective of decision-makers is to minimise the total cost,
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Figure 6. Impact of vehicle numbers, vehicle capacities and capacity of TDWMSs on total cost.

they need to accept a longer waste clean-up duration. The obtained optimisation results
can help decision-makers to make a balanced decision between the total clean-up time
and duration. The comparison between waste clean-up system with and without TDWMSs
confirmed that a disaster waste clean-up system considering TDWMSs can achieve both
lower cost and shorter waste clean-up duration. The finding is in line with FEMA (2007),
in which the authors claimed that TDWMSs is can make the disaster waste management
systemmore efficient.

The results of the sensitivity analysis indicate the importance of TDWMSs capacity, which
can affect both total travel distance, and total waste clean-up duration and cost. The
capacity of vehicles only has an impact on total travel distance and total cost. Thus, the
decision-makers can choose to improve the capacity of TDWMSs or vehicles based on their
main goal of the post-disaster waste clean-up.

9. Conclusions

This paper investigates post-disaster waste clean-up operations, which can be seen as a
multi-period two-echelon location routing problem. Our main objective is to analyse the
effect of storage andprocessing facilities knownas TemporaryDisasterWasteManagement
Sites (TDWMSs). The use of these facilities gives origin to the two-echelon structure. In the
first echelon, waste is collected from the demand locations and taken to the TDWMSswhile,
in the second echelon, waste is transferred from the TDWMSs to the final disposal sites.

We propose a mixed integer program to model the problem to determine where to
locate the TDWMSs and the collection and transportation routes in the first and second
echelon, respectively. The main innovation of the model is the use of original constraints
that allow routes to contain cycles in the first echelon. These cycles are reasonable since
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trucks can revisit the TDWMSs multiple times on the same day without going back to the
depot.

The model presented also accounts for TDWMSs capacities and waste inventory man-
agement. The model is able to solve small to mid-sized instances of the first echelon of the
problem. These solutions are used to validate the performance of a GA that has been devel-
oped in our study. The heuristic algorithms are applied to instances derived from a case
study. Thedataof the case study is generated toestimatedemand locations andamounts as
well as TDWMSs locations and capacities, according to strategies that have been proposed
in the literature. Results obtained from different instances also indicated the robustness of
the algorithm with respect to different parametric choices such as the population size.

From amore practical point of view, the analysis of the obtained solutions confirms that
TDWMSs can help to reduce operational cost and waste clean-up duration. Moreover, we
observe that operations can be highly sensitive to TDWMSs capacities and to the number
and capacities of vehicles. The main contributions of this study are: (i) we developed a MIP
model and heuristic algorithm to solve the complex MP2ELRP for waste management, and
the test suggests that they are efficient, flexible and robust; (ii) we conducted a case study
to confirm that the use of TDWMSs is more efficient in disaster wastemanagement; and (iii)
we designed scenarios analysis and sensitivity analysis to help decision-makers to propose
an optimised waste clean-up plan.

Future work will investigate alternative algorithmic methods for solving this problem,
possiblywith proof of optimally. Onepossibility is to use decompositionmethods to decou-
ple the two echelons and communicating via the information on the quantity of waste at
each TDWMS at the end of each day.
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Appendix

To model the problem, two graphs G1 and G2 are defined. The first one is a graph G1 = (N1, E1),
defined as follows. A depot 0, a set of customers nodes C = {1, 2, . . . , n} and a set of candidate
TDWMSs J = {n + 1, n + 2, . . . , n + m} are identified as the nodes of the graph: N1 = {0} ∪ C ∪ J,
edges E1 is the set of arcs (i, j), ∀i, j ∈ N1. The second graph G2 = (N2, E2) is defined as follows.
A depot 0, a set of candidates TDWMSs J = {n + 1, n + 2, . . . , n + m}, and the sets of final disposal
sites F = {n + m + 1, n + m + 2, . . . , n + m + f } are identified as the vertices of the graph G2. So that
N2 = {0} ∪ J ∪ F, edges E2 is the set of arcs (i, j), ∀i, j ∈ N2. In addition,N = N1 ∪ N2, E = E1 ∪ E2. The
following symbols are defined for the model: Parameters:

K : set of all vehicles,
K1 : set of collection vehicles,
Q1 : capacity of collection vehicles (unit: tonnes),

[S1, L1 ]: start time and end time of collection vehicles (unit: min),
K2 : set of transportation vehicles,
Q2 : capacity of transportation vehicles (unit:tonnes),

[S2, L2 ]: start time and end time of transportation vehicles (unit: min),
di : demand associated with node i ∈ C,
b : budget for total TDWMSs establishment (unit: AUD),
qj : capacity of TDWMS j, j ∈ J (unit: tonnes),
tij : travel time of arc (i, j), (i, j) ∈ E (unit: tonnes),
γi : operating time in node i, i ∈ N (unit: min),
cij : cost associated with the traversal of arc (i, j),
pj : daily operation cost of facility j ∈ J,
oj : fixed cost of TDWMS j, j ∈ J (unit: AUD),
r : recycling rate (unit: %),
T : set of clean-up periods that can be used.

Variables:

xijdk1 : binary variable equals to 1 if collection vehicle k1, (k1 ∈ K1) services node, j, (j ∈ C) from
i, (i ∈ N1) in day d, d ∈ T , otherwise 0,

αijdk2 : times of vechile k2, (k2 ∈ K2) use arc (i, j) in day d, (d ∈ T),
yj : binary variable equals to 1 if TDWMS j, (j ∈ J) is selected and 0 otherwise,
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Uidk1 : remaining capacity of a collection vehicle k1, (k1 ∈ K1) just after having served to customer,
i, (i ∈ C) in day d, d ∈ T

σjd : amount of waste stored in TDWMS j, (j ∈ J) at the end of the day in day d, (d ∈ T), σj0 =
0, ∀f , f ∈ F

Wjfdk1 : amount ofwaste transported fromTDWMS j, (j ∈ J) to final disposal site f , (f ∈ F)by vehicle
k2, (k2 ∈ K2) in day d, (d ∈ T)

τidk1 : time when vehicle k, (k ∈ K) arrives at node i, (i ∈ N) in day d, (d ∈ T),
δd : binary variable equals to 1 if all the waste has been cleared at the end of day d, (d ∈ T).

Objectives:

min
∑

j∈J
pjyj(|T| −

∑

d∈D
δd + 1) +

∑

j∈J
ojyj +

∑

i,j∈N1

∑

k1∈K1

∑

d∈T
cijxijdk1

+
∑

i,j∈N2

∑

k2∈K2

∑

d∈T
cijαijdk2 (A1)

min |T| −
∑

d∈T
δd + 1 (A2)

Subject to:

∑

j∈J
ojyj ≤ b, (A3)

δd ≤
d∑

d′=1

∑

j∈C∪J

∑

k1∈K1
xijd′k1 , ∀i ∈ C, d ∈ T , (A4)

∑

d∈T

∑

j∈C∪J

∑

k1∈K1
xijdk1 = 1, ∀i ∈ C, d ∈ T , (A5)

∑

i∈C

∑

k1∈K1
x0idk1 =

∑

j∈J

∑

k1∈K1
xj0dk1 ≤ |k1|, ∀d ∈ T , (A6)

∑

i∈N1

xijdk1 =
∑

i∈N1

xjidk1 , ∀j ∈ N1, d ∈ T , k1 ∈ K1, (A7)

0 ≤
∑

i∈C
x0idk1 =

∑

j∈J
xj0dk1 ≤ 1, ∀k1 ∈ K1, d ∈ T , (A8)

xijdk1 − yj ≤ 0, ∀i ∈ C, j ∈ J, d ∈ T , k1 ∈ K1, (A9)

0 ≤ Uidk1 , ∀i ∈ C, d ∈ T , k1 ∈ K1, (A10)

xijdk1(Uidk1 − dj) ≥ 0, ∀i, j ∈ C, i �= j, d ∈ T , k1 ∈ K1, (A11)

S1 ≤ τidk1 ≤ L1, ∀i ∈ C, d ∈ T , k1 ∈ K1, (A12)

τidk1 + tij + γj − τjdk1 ≤ (1 − xijdk1)M, ∀i, j ∈ C, i �= j, d ∈ T , k1 ∈ K1, (A13)
∑

j∈J

∑

k2∈K2
α0jdk2 =

∑

f∈F

∑

k2∈K2
αf0dk2 ≤ |K2|, ∀d ∈ T , (A14)

∑

i∈N2

αijdk2 =
∑

i∈N2

αjidk2 , ∀j ∈ N2, d ∈ T , k2 ∈ K2, (A15)

0 ≤
∑

j∈J
α0jdv2 =

∑

f∈F
αf0dk2 ≤ 1, ∀d ∈ T , k2 ∈ K2, (A16)
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αjfdk2 − Myj ≤ 0, ∀j ∈ J, f ∈ F d ∈ T , k2 ∈ K2, (A17)

τidk2 + tij + γj − τjdk2 ≤ (1 − αijdk2)M, ∀i, j ∈ J ∪ F, d ∈ T , k2 ∈ K2, (A18)

S2 ≤ τidk2 ≤ L2, ∀i ∈ J ∪ F, d ∈ T , k2 ∈ K2, (A19)

0 ≤ σjd ≤ qjyj , ∀j ∈ J, d ∈ T , (A20)

σjd = σjd−1 −
∑

k2∈K2

∑

f∈F
Wjfdk2

+ (1 − r)
∑

k1∈k1

∑

i∈C
xijdk1(Q1 − Uidk1), ∀j ∈ J, d ∈ T , (A21)

σj|T| = 0, ∀j ∈ J, (A22)

Wjfdv2 ≤ αjfdk2Q2, ∀j ∈ J, f ∈ F, d ∈ T , k2 ∈ K2, (A23)
∑

f∈F

∑

k2∈K2

∑

d∈T
Wjfdk2 = (1 − r)

∑

k1∈K1

∑

i∈C

∑

d∈D
xijdk1(Q1 − Uidk1), ∀ j ∈ J. (A24)

Equation (A1) is the objective of the upper-level problemwhich aims to minimise the total cost of
waste clean-up. The first term is TDWMSs operation cost and the second term is TDWMSs establish-
ment cost. The last two terms are waste collection and transportation cost respectively. Equation (A2)
is another objective which aims to minimise the total clean-up time. Constraint (A3) denotes that
the total investment on TDWMSs cannot exceed the budget. Constraints (A4) make sure that δd can
be 1 only when all the customer nodes have been served. Constraints (A5) are degree constraints to
ensure every customer node must be serviced once and only once. Constraints (A6) are to make sure
the number of collection vehicles used every day will not exceed the maximum number of available
collection vehicles. Constraints (A7) are degree constraints which ensure the continuity of collection
vehicle routes. Constraints (A8) ensure that every collection vehicle must leave and go back to the
depot no more than once per day. Constraints (A9) ensure that a TDWMS can provide service to col-
lection vehicles only when it is open. Constraints (A10) make sure that load on collection vehicles
do not exceed their capacity. Constraints (A11) are non-linear constraints ensure that a vehicle will
serve the next customer node only when it has enough capacity for it. Constraints (A12) and (A13)
are time windows and subtours elimination constraints for the first stage. Constraints (A14) ensure
the number of transportation vehicles used at any given day will not exceed the maximum number.
Constraints (A15) are degree constraints which ensure the continuity of second waste transportation
vehicle routes. Constraints (A16) make sure a transportation vehicle can not be used more than once
per day. Constraints (A17) ensure that a TDWMS can provide service to transportation vehicles only
when it is open. Constraints (A18) and (A19) are time windows and subtours elimination constraints
for the second stage. Constraints (A20) avoid capacity violations at the TDWMSs. Constraints (A21) cal-
culate the amount of waste stored in a TDWMS at the end of a day. Constraints (A22) ensure all waste
will be cleared at the end of the planning period. Constraints (A23) ensure the capacity of transporta-
tion vehicles can not be exceeded. Constraints (A24) are waste input-output balance constraints for
TDWMSs.
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