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Abstract
The massive lockdown of global cities during the COVID-19 pandemic is substantially improving
the atmospheric environment, which for the first time, urban mobility is virtually reduced to zero,
and it is then possible to establish a baseline for air quality. By comparing these values with
pre-COVID-19 data, it is possible to infer the likely effect of urban mobility and spatial
configuration on the air quality. In the present study, a time-series prediction model is enhanced to
estimate the nationwide NO2 concentrations before and during the lockdown measures in the
United States, and 54 cities are included in the study. The prediction generates a notable NO2

difference between the observations if the lockdown is not considered, and the changes in urban
mobility can explain the difference. It is found that the changes in urban mobility associated with
various road textures have a significant impact on NO2 dispersion in different types of climates.

1. Introduction

In December 2019, the pandemic outbreak of severe
acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) emerged in Wuhan, China, after which more
than 10 million cases are confirmed and 500 000
deaths are resulted by 1 July 2020, and the pan-
demic also spread in over 250 countries in the
world. Despite the progressive increase in the num-
ber of confirmed cases every day, the situation has
become relatively stable in some countries after the
massive lockdown is adopted and strict travel control

measures are taken since March 2020 (Kucharski et al
2020). Due to the global lockdown, the coronavirus
disease 2019 (COVID-19) has undermined world-
wide economies and triggered a global crisis due to
great loss in the socioeconomic domain described by
the United Nations (UNnews 2020). It was predicted
that global trade will decline by 13%–32% and the
annual global gross product is projected to decline
by 24% (CRS 2020). Additionally, a strict lockdown
in China reduced global GDP by 3.5% and Chinese
GDP by 21% (Guan et al 2020). Notwithstanding, the
socioeconomy is chronically and devastatingly hit by
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the disease, and the environment has responded to
the pandemic instantly (Fan et al 2020). The level of
nitrogen dioxide (NO2) is substantially reduced in the
wake of COVID-19 (Mahato et al 2019). In Central
China, NO2 emission is decreased by 30% on a year-
after-year basis during the Lunar New Year compared
with the period from 2005-2019 (Earth Observat-
ory 2020). The reduction of air pollution includ-
ing NO2 is first identified appeared in Wuhan, and
such phenomena are found in more and more cities
and countries, and eventually it becomes a worldwide
phenomenon (Venter et al 2020). Among 31 major
cities in the world, a significant decline in NO2 has
been observed in almost two-thirds of the study area
after the lockdown, including New York, Rome and
Paris, implying that the transportation and anthro-
pogenic activities in the cities mentioned above were
massively lessened (Shrestha et al 2020). Epidemiolo-
gical evidence suggested that the high incidence of
respiratory disease and many death tolls should be
attributed to the deteriorated air quality (Brauer et al
2010). For example, approximately 4.6 million indi-
viduals died from the disease annually due to the low
air quality, as reported by the World Trade Organisa-
tion (Cohen et al 2017), and the lung tissue can be
damaged by prolonged exposure toNO2, which is one
of the contributors to the morbidity of asthma and
lung cancer (Greenberg et al 2016, Khaniabadi et al
2017). Thus, it is of great significance to the enhance-
ment of the atmospheric environment by grasping the
evolutionary patterns of NO2 and its causal factors
appropriately (He et al 2020).

Road traffic can be regarded as the major con-
tributor to NO2 (Palmgren et al 2007, Keuken et al
2009, Mohegh et al 2020). The rise of NO2 concen-
tration might cause a certain type of diesel particu-
late produced by heavy vehicles such as buses, whereas
nitrogen is produced by the gasoline-fuelled passen-
ger cars, particularly sensitive to long-range transport
decomposition (Carslaw et al 2005, Heeb et al 2008).
According to an observation of the vehicle emis-
sion factors, it is found that the decreasing trend of
NO2 emission is the smallest and insignificant among
other pollutants throughout the 12 years study period
in Switzerland (Hueglin et al 2006), which suggests
that the road traffic emission ratio in NO2 increased
during this period. A similar outcome means that
NO2 from the traffic emission is the key factor for
generating ambient NO2 concentration (Kurtenbach
et al 2012). As such, NO2 concentration will not be
reduced substantially if only the NOx exhaust sys-
tem is improved without a significant reduction of
traffic-related NO2 emission. It is found that NO2

had diurnal and seasonal variation as a function of
traffic volumes alongside a major arterial (Kendrick
et al 2015) and the traffic signals were related to the
roadside air quality in Tokyo (Minoura et al 2010).
Some studies also found that the change in NO2 con-
centration is highly dependent on the traffic capacity

and fuel decomposition, as well as the vehicle speed
and fleet composition (Tang et al 2019). Nevertheless,
it is reckoned that the improved air quality is mainly
a result of the favourable meteorological conditions
rather than the minimized anthropogenic activities
because the pollutant diffusivity was an important
factor closely related to meteorology (Wang et al
2020).

Another factor that contributes to NO2 emission
is traffic characteristics. By investigating the correla-
tion between NO2 and its emission factor, research-
ers speculated that the deviation of the contributing
factors NO2 emission resulted from the variability of
the local road condition, the traffic pattern and the
fleet composition (Chan et al 2004, Liu et al 2012).
The road 300 km or above in length was featured by
higher NO2 concentration as shown by a study con-
ducted in the Netherland (Velders et al 2009), and
the study result is consistent with another finding
that a higher NO2 exposure was associated with the
road length variability in Shanghai (Meng et al 2015).
Moreover, the spatial distribution and the local vari-
ability of NO2 concentration (Wang et al 2020) are
analytically explored, and the results show that the
local variation was mostly driven by regional differ-
ences between the ten most urbanized areas in the
United States, which was consistent with the basic
conditions of these urban regions, that is, comparat-
ively denser traffic and frequent anthropogenic emis-
sion. Therefore, different spatio-temporal locations
and the traffic characteristics have a significant influ-
ence on the level of NO2, even though some of the
emission features result from specific industrial activ-
ities. In theUSmetropolitan cities, the local NO2 con-
centrations can be improved by reducing the road
traffic even if there is a variability of estimation error
in NO2. Therefore, no effective prediction model
has been developed for national NO2 concentration
yet (Lee et al 2019).

As a reliable and accurate method for math-
ematical modelling, auto-regressive integrated mov-
ing average (ARIMA) has been widely applied to
short-term time-series trend analysis and its frequent
application in the prediction frommultiple perspect-
ives. For instance, it was adopted in the study try-
ing to make an accurate forecast of wind speed at
wind power plants and ensure the overall stability and
security of the power system (Singh et al 2019). Like-
wise, the time-series trend is explored to predict the
capacity of electricity generation (Haiges et al 2017).
In other disciplines, the statistical tool was adopted to
detect financial crisis events that act as the precursor
of the market regime (Faranda et al 2015). Apart
from the modelling platform of geographic informa-
tion systems (GIS) for spatial clustering and statistical
analysis, the spatial distribution and the association
between infectious diseases and NO2, and between
the traffic flow and the number of people moving
trajectory are also identified (Yongjian et al 2020).
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The assessment of the traffic related-GIS parameters
such as the lengths of the major road segment and the
traffic intensity can help reveal the long-term trend
of NO2 and their emission ratio related to the road
traffic activities, and the impact on NO2 can be visu-
alized using the GIS platform (Shon et al 2011). With
the use of predictive data based on ARIMA, the spa-
tial transmissions of the pandemic disease can be
forecasted regarding the spatial allocation of medical
resources and the implementation of mitigating con-
trol measures (Lakhani 2020, Singer et al 2020).

This paper is organized as follows. Section 2
enhances a time-series prediction model to predict
NO2 concentrations accurately and proposes four
indices to present the characteristics of roadnetworks.
Section 3 introduces data collection, presents the
changes of NO2 concentration after lockdown, and
explores the impacts of road networks and regional
climates on NO2 concentration. Finally, section 4
makes a discussion and conclusion.

2. Methods

2.1. NO2 difference between observation and
prediction
The NO2 concentration records before lockdown will
be used to train historical patterns that contain sea-
sonal and cyclic time-series information, and the
SARIMAX model will be used to predict the NO2

concentration. In this case, a prediction following
historical patterns will not integrate with the new
evolution after lockdown measures. Under the cir-
cumstance, two definitions are proposed to investig-
ate the evolution:

• NO2 difference denoted by ∆d calculates the dif-
ference between the observed and predicted NO2

concentration at a station after lockdown; and
• NO2 change denoted by ∆c calculates the differ-
ence of the mean NO2 concentration before lock-
down and that after lockdown based on observa-
tion or prediction.

Particularly, ∆d can be significant as a result of
the changes of urbanmobility during the implement-
ation of lockdownmeasures. Thus, we can investigate
the relationship between∆d and the changes of urban
mobility (∆m) subject to a baseline before lockdown.

2.2. Seasonal autoregressive integrated moving
average with eXogenous factors (SARIMAX)
The general ARIMA model consists of three parts,
namely autoregression (AR), differencing (I) and
moving average (MA), and the model can be presen-
ted as follows:

ARIMA(p,d,q), (1)

where p denotes the order of auto-regressive model, d
represents the order of difference, and q is the order

of moving average model. Nonetheless, seasonal
patterns cannot be established by introducing an
ordinary ARIMA model. To address this problem,
the seasonal auto-regressive integrated moving aver-
age (SARIMA) includes the seasonal parameters for
the auto-regressive, differencing and moving average
terms, and the time step for modelling the periodic
time-series pattern:

ARIMA(p,d,q)(P,D,Q)t, (2)

where P denotes the order of seasonal auto-regressive
model, D denotes the order of seasonal differencing,
Q is the order of seasonalmoving averagemodel, and t
refers to the time step parameter for seasonality. Fur-
thermore, Seasonal Autoregressive IntegratedMoving
Average with eXogenous factors (SARIMAX) can be
used to analyse the time-series data with additional
variables in the regression operation (Valipour 2015):

ARIMAX(p,d,q)(P,D,Q)t. (3)

In this study, the time-series NO2 measurements
of 56 stations in the US were modelled using the
SARIMAX model based on the exogenous weather
variables including air temperature, air pressure,
relative humidity, wind speed and percentage of
cloud coverage. Since there might be more than
one seasonal pattern for the time-series NO2 data,
six Fourier series with different periods were also
included as exogenous variables (number of days =
{15, 30, 90, 180, 365}), and 7 days (one week) was
deemed to be the seasonal time step t in the SAR-
IMAX model.

Before the SARIMAX modelling is performed,
the randomness and normality were tested with
Ljung–Box test and Jarque–Bera test. The Augmented
Dickey–Fuller test and the Osborn, Chui, Smith, and
Birchenhall tests were performed to determine the
seasonally varying parameters (d and D) of the time
series respectively. Canova-Hansen test was conduc-
ted to determine the time step parameter (t) for sea-
sonality. Then, a stepwise approach (Hyndman et al
2008) was adopted for optimizing the other paramet-
ers (i.e. p, q, P, andQ) of the SARIMAmodel by min-
imizing theAkaike information criterion (AIC) value.
The optimized parameters were introduced for the
NO2 prediction in this study. Python 3.7 and the stats-
models package (State SpaceMethods 2020)were used
for training and prediction.

2.3. Impacts of road networks on vehicle emission
As traffic is one of the major sources of NO2, in the
present study, four indices are adopted to explain
the characteristics of road networks in a 3 km-radius
circular area centred at each air quality monitor-
ing station (figure 1(a)), which are used for cor-
relation analysis between NO2 difference after lock-
down. The four indices are enumerated as follows:
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Figure 1.Methods to estimate the impact of road networks on NO2 at stations. (a) The nodes and edges of a road graph g centred
at an air quality station with a 3 km radius. (b) The dispersion of NO2 from an intersection to the station following a Gaussian
distribution function. (c) The distances between the intersections of road networks and the station.

(1) nnd denotes the number of road intersections,
(2) cnd presents the number of the road segments
at all the intersections, (3) srd stands for the total
length of the road networks, and (4) nrd is the num-
ber of the road segments. It is crucial for propos-
ing nnd since vehicles often stop at the intersections
because of the traffic lights, which leads to the accu-
mulation of a considerable amount of the emissions
during idling (Minoura et al 2010). In comparison,
cnd shall be more representative than nnd because
the number of roads connecting at each intersec-
tion is counted that may indicate temporary stopping
more confidently. For example, vehicles are more
likely to be parked at an intersection of two roads
than a single road with the same traffic volume. srd
also plays a big part since it affects traffic flows fun-
damentally. The four indices are thus organized as
i= {nnd, cnd, srd,nrd}. In the study, G denote a topo-
logical graph of roads that edges E= {e} connect with
each other by associating with the nodesO= {o}, get-
ting G= {E,O}. Notably, nnd is different from the
number of nodes denotes by num(O) because only
two edges connecting through a node means they are
the same road essentially, which is caused by the data
format. Thus, nnd and cnd are counted when a node at
least associates with at least edges.

However, based on the four indices, it is estim-
ated that the dispersion of vehicle emissions at road
networks has homogeneous impacts on stations’ air
quality when the spatial distance between them is
taken into consideration. Tomake a better estimation,
in the present study, it is assumed that the dispersion
of each index follows a Gaussian distribution from
each element of the index to the station (figure 1(b),
equation (4)):

y= y0 +Ae−
(x−xc)2

2w2 . (4)

In the function, y0 denotes the offset and xc is the
centre, both equalling 0 to present a normalized
Gaussian. A is the amplitude to denote the magnitude
of the element, w implies the width to control the
speed of the dispersion, and x stands for the distance

from the element to the station (figure 1(c)). When
computing nrd and srd enriched with the Gaussian
function, x is the distance from the middle point of
the road segment to the station, as an approximation.
Then, the total impacts of all the elements of an index
at a station can be accumulated (equation (5)):

Y=
∑

y=
n∑

m=1

g(Am,xm,w). (5)

A set of abbreviations and their definitions are
summarized in table 2 for clear presentation of this
study.

2.4. Data
Daily NO2 observations at 56 stations in 54 cities
across the US are derived from the Air Quality Open
Data Platform during a period from June 2014 toMay
2020 (AQODP 2020), which are complemented by
the geographical coordinates. The weather data taken
as exogenous factors in the SARIMAX model are col-
lected from OpenWeatherMap (Open Weather 2020)
with the coordinates of the 56 NO2 stations. The
COVID-19 Community Mobility Reports fromGoogle
provides daily mobility changes in percentage sub-
ject to the baseline on 15 February 2020 (Google
2020), indicating user mobility in Google Maps dur-
ing the COVID-19 pandemic. Mobility is aggregated
and anonymized as six categorical purposes, includ-
ing retail and recreation, groceries and pharmacies,
parks, transit stations, workplaces, and residences.
The originally collected NO2 data and the mobility
data have the same temporal resolution on one day, so
that preprocessing is not needed. The study is based
on the data collection between 15 February 2020 and
6 May 2020, which is the last day of the NO2 data.
Road networks in the US are acquired from Open-
StreetMap (2020).

3. Results

3.1. NO2 change after lockdown
Figure 2 presents 56 NO2 stations in the US, cover-
ing a large geographical space, and table 1 summarizes

4
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Figure 2. Locations of 56 air quality stations across the United States. Each circular area has a 3 km radius centred at the stations,
which are presented as the red dots with IDs. The densities of the road networks are diverse across the whole area.

Table 1. The station IDs are listed in six different climate types.

No. Climate Station ID

1 Costal 5, 7, 19, 20, 25, 33, 34, 44, 53–55
2 Inland 1–4, 6, 8–18, 21–24, 26–32, 35–52, 56
3 Arid 3, 4, 8, 9, 11, 13–15, 24, 26, 28, 32,

42, 50
4 Humid 1–2, 5–7, 10, 12, 16–23, 25, 27, 29–31,

33–41, 43–49, 51–56
5 Hot 1–3, 5–7, 10, 11, 13–23, 25–27, 29–31,

33, 35–39, 42–44, 46–49, 51, 53, 55
6 Cold 4, 8, 9, 12, 24, 28, 32, 34, 40, 41, 45, 50,

52, 54, 56

six climate types that prevail at the stations according
to National Weather Service (2020). The stations are
located in various micro-environments with different
road networks, and they are located in urban or rural
areas of those cities that implement lockdown when
the COVID-19 pandemic becomes quite severe. The
training has been done at each station since June 2014.
Then, the SARIMAX model is used to predict daily
NO2 at each station from the start of lockdown to the
end of lockdown.

Two predictions are made, with one prediction
period starting 60 days (n= 60) before the lockdown
and ending a number of days after the lockdown
(until 6 May 2020), and the other prediction period
is starting 30 days (n= 30) before the lockdown and

Table 2. Definitions of the abbreviations used in this study.

No. Abbre. Definition

1 ∆d NO2 difference: the predicted NO2

concentration minus the observed
NO2 concentration at a station after
lockdown

2 e relative error:∆d divided by the
observed NO2 concentration

3 ∆c NO2 change: the mean NO2 concen-
tration after lockdown minus that
before lockdown

4 ∆cp NO2 change in percentage:∆c divided
by the mean NO2 concentration
before lockdown

5 ∆m the mean change of urban mobility
subject to a specific day before lock-
down; {∆mw,∆mr ,∆mt} are the
changes of mobility for workplace,
recreation, and public transit

6 nnd the number of road intersections
7 cnd the number of the road segments con-

necting at all the intersections
8 srd the total length of the road networks
9 nrd the number of the road segments
10 ∆mrd ∆mrd = srd ·∆mw

ending a number of days after the lockdown. Figure 3
visualizes prediction results of two selected sites that
the red curves (observation) present a seasonal and
periodical pattern, which are lower than the blue

5
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Figure 3. Prediction of the two selected sites. (a) Site located at Del Norte, New Mexico. (b) Site located at Greenville, South
Carolina.

curves (prediction). The difference between the blue
and red curves (i.e. NO2 difference) confirms our
hypothesis that the prediction has not incorporated
the disruption of lockdown and can be explained by
the reduction of mobility.

Figure 4(a) provides the distribution of the mean
relative errors (e) of the prediction at all the stations.
Evidently, the errors before lockdown (b) are smaller
than after lockdown (a), with the medians at e= 0.13
for n= 60 and e= 0.12 for n= 30, respectively. It sug-
gests that satisfactory prediction accuracy is achieved
prior to the lockdown accordingly. When the lock-
down was activated, the medians become larger at
e= 0.22 for n= 60 and e= 0.20 for n= 30, which
indicates that it is challenging to obtain accurate
prediction caused by disruptive lockdown measures.

Besides, both errors for n= 30 are slightly smaller
than that for n = 60, probably because n= 60 has a
longer prediction time while n = 30 allows an addi-
tional 30 day training that better incorporates the
most recently seasonal variation into the prediction.

To probe into the impact of the lockdown meas-
ures, in the present study, the NO2 changes before
and after lockdown for the 56 stations based on
prediction (p) and observation (o) are calculated,
respectively. It is found that many stations have
undergone a substantial reduction after lockdown
in view of the changes of absolute values (∆c)
(figure 4(b)), which become more significant when
conversion into percentages that ∆cp equals ∆c
divided by the mean concentration before lockdown
(figure 4(c)). Specifically, the observation suggests
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Figure 4. Relative errors of NO2 prediction and statistics of NO2 change. The numbers in each plot are the medians of statistics at
the 50th percentile. The training has been implemented since 2014 at each station and the two predictions start from 60 days
(n= 60) and 30 days (n= 30) before the lockdown dates. (a) Relative errors of the predicted NO2 concentrations (e) at the 56
stations respectively before (b) and after (a) lockdown. (b) NO2 changes (∆c) obtained from prediction (p) and observation (o).
(c) NO2 changes in percentage (∆cp) obtained from prediction (p) and observation (o).

Figure 5. Changes of urban mobility and NO2 difference in each individual city. (a) Absolute decrease of urban mobility for
workplace (|∆mw|). (b) NO2 change (∆c) after lockdown, corresponding to the city in the x-axis of (a).

that half of the NO2 measurements decreased at least
with −1.45 mgm−3 for n= 30 and −2.41 mgm−3

for n= 60 (figure 4(b)), which is equivalent to a
23.08% and 30.38% reduction of the NO2 concen-
tration before lockdown. Meanwhile, the predicted
number is slightly larger than the observation.

According to the COVID-19 Community Mobil-
ity Reports from Google that provides relative urban
mobility subject to a baseline before lockdown in each
city, all the involved cities have shown a huge decrease
in the mobility for workplace with |∆mw|> 20%,
in which Seattle, Ashburn, Burlington, and Min-
neapolis have witnessed the largest reduction with
|∆mw| equalling 41%, 38%, 36%, and 33%, respect-
ively (figure 5(a)). By inspecting each station, the
observation suggests that a considerable reduction of
NO2 after lockdown is realized in most cities, while a

tiny increase is found in four cities quite unexpectedly
(figure 5(b)). Notably, the changing trend of |∆mw|
is unclear with the decrease of ∆c, which stimulates
our motivation to explore the influential factors.

3.2. Association between urbanmobility and NO2
difference
Considering the vehicle emission is one of the largest
resources of NO2, a significant reduction of urban
mobility during the pandemic is supposed to have
impacts on the changes of NO2 in cities, which
focuses on a detailed investigation by contrast with
other studies at regional and national scales. Based
on the COVID-19 Community Mobility Reports, the
Pearson correlation analysis between the NO2 differ-
ence (∆d) and the averaged mobility changes (∆m)
is made, in categories of n= 30 (figure 6(a)) and
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Figure 6. The Pearson correlation coefficients (R) and the significance (p) between the changes of the three mobilities (∆m) and
NO2 difference (∆d) after lockdown. (a) Correlations obtained from n= 30. (b) Correlations obtained from n= 60.

Figure 7. Pearson correlation coefficient (R) between∆d and three indices to represent innate characteristics of road networks.
The buffer areas represent the confidence intervals. (a) The number of the road intersections nnd. (b) The total number of road
segments connecting at all the intersections cnd. (c) The total length of road networks srd.

n= 60 (figure 6(b)). It shows that the mobility for
workplacedecreases significantly in all cities (−40%⩽
∆mw ⩽−15%), which validates a moderate and neg-
ative correlation with∆d in both groups (the Pearson
correlation coefficient R=−0.47, p<0.05). Similarly,
the mobility for recreation has shown a considerable
decrease in a vast majority cities (−30%⩽∆mc ⩽
1%), having a weak and negative correlation with∆d
(R=−0.37 for n= 30 and R=−0.40 for n= 60). In
comparison, the greatest decrease in transit mobility
is observed in almost all the cities (−50%⩽∆mt ⩽
5%), which contributes to a weak and negative correl-
ation (R=−0.32 for n= 30 andR=−0.34 for n= 60)
(figure 6).

As an expectation, a small increase of ∆mc =
0.94% and∆mc = 5.95% is revealed in the recreation
mobility for the Cedar Bluff State Park in Kansas and
the transit mobility for Murphy Ridge in Wyoming,
respectively. It is reasonable since some populations
may deliberately choose not to travel to crowded loc-
ations and move to rural areas as temporary resid-
ences such as parks. Three implications can also be
induced by the results. Firstly, the lockdown policy

helps reduce urban mobility for recreation, transit,
and workplace greatly during the pandemic, lead-
ing to a considerable reduction of NO2. Secondly,
the correlations between ∆m and ∆d, even though
not robustly significant, suggest the validation of the
hypothesis that the difference of NO2 has resulted
from the changes in urbanmobility. Last but not least,
other factors such as road characteristics or local cli-
mates may also affect the changes of NO2 since the
current correlations are not significantly strong.

3.3. Impacts of road networks on NO2
concentration
As the urban mobility restraint by road networks,
in the present studies, it is proposed that the road
characteristics, such as the density of road networks,
may have notable impacts on emission. Therefore,
three static indices are put forth to represent road
characteristics i= {nnd, cnd, srd}: (1) the number of
road intersections nnd, (2) the total number of the
road segments connecting at all the intersections
cnd, and (3) the total length of the road networks
srd. Figure 7 demonstrates the correlations between
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Figure 8. Pearson correlation coefficient (R) between the four indices of road networks (cnd, nnd, srd, nrd) and∆d. w in the x-axis
represents the width of the Gaussian function used to estimate the impact of the four indices on weather stations, and R in the
y-axis has p ⩽ 0.01. (a)–(d) Correlations are based on n= 30 and n= 60.

i and ∆d, categorizing into two groups of n= 30
and n= 60. It is pointed out that both groups obtain
somewhat strong and positive correlations that the
coefficients R= {0.54, 0.54, 0.60} for n= 30, resulting
a better performance than (∆m,∆d) in figure 6. It
can be explained that a larger indicator in i makes a
more significant effect on the changes of NO2 after
lockdown, suggesting that road networks’ character-
istics can greatly affect∆d. However, the three indic-
ators treat intersections and roads with homogeneous
impacts on the air quality stations, regardless of the
spatial distance between the roads and stations.

To make the indices more representative, we used
a Gaussian function y=

∑
g(A, x,w) to estimate the

dispersion ofNO2 from the vehicle emission, inwhich
A represents the magnitude of the road property, x
denotes the distance from roads to the NO2 station,
and w indicates the width of the function. In addi-
tion, another road index named nrd is initiated, which
means that the dispersion associated with the road
follows the Gaussian distribution but ignoring the
characteristics of the road length to compare with
the performance of srd. Figure 8 shows the coefficient
curves between i= {nnd, cnd, srd,nrd} and ∆d, com-
paring between n= 30 and n= 60. Overall, all the
curves grow steadily and approach the upper bounds
gradually with an increase of w. Particularly, cnd and
nnd share the same growing trend with the increase
of w that their Rmax < 0.55 (figures 8(a) and (b)).
Also, cnd is insignificantly larger than nnd with the
same w and the same group n= 30 or n= 60. Com-
paratively, srd and nrd perform better than cnd and
nnd regarding the correlation coefficients R. Mean-
while, srd overtakes nrd notably for both n= 30 and
n= 60, and srd shows the most prominent correlation
with Rmax ≈ 0.60 when w= 3 km (figures 8(c) and
(d). Two phenomena can be observed from the figure.
On the one hand, srd obtains the strongest impact on
∆d, which is convincing since srd incorporates the
NO2 source from roads and NO2 dispersion follow-
ing the Gaussian distribution into the correlation. For
instance, a long road is likely to produce more NO2

while a short distance to the station is related to a
greater amount of NO2. On the other hand, w= 2.25
km is an empirical distance that road networks start
to have a rather weak impact on∆d.

3.4. Impacts of regional climates on NO2
concentration
The present study considers that regional climates can
also affect the dispersion of NO2. It is based on the
evidence that air temperatures were used to describe
urban heat islands and climate largely determines the
magnitude of urban heat islands (Zhao et al 2014,
Manoli et al 2019). As both air temperatures andNO2

are air properties essentially, NO2 concentrationsmay
also be influenced by climate. To explore the com-
bined impacts of urban mobility and road networks
in partition of different climates, the correlation ana-
lysis is performed in different climates, namely, arid
and humid climates, hot and cold climates, and coastal
and inland climates (figure 9(a)). The correlation
analysis is performed between ∆d and ∆mrd = srd ·
∆mw, where srd follows the Gaussian function with
w= 3 km that obtains the largest R and ∆mw is the
change of workplacemobility as discussed in figure 6.
Generally, results obtained from n= 30 (figures 9(b)–
(d)) and n= 60 (figures 9(e)–(g)) are almost the same
that (∆d,∆mrd) are strongly correlated. Particularly,
the correlations are more prominent in the arid, hot,
and coastal climates with R= {−0.84,−0.65,−0.77}
than in the humid, cold, and inland climates, namely
R= {−0.60,−0.64,−0.64} (figures 9(b)–(d)). In
contrast, correlations based on n= 60 are slightly
weaker than n= 30. That is to say, the arid, hot, and
coastal climates tend to facilitate the dispersion of
NO2 based on a given urban mobility and road net-
works. It is also found that ∆mrd shows the most
prominent correlation with ∆d, and the significance
of the correlations decreases from ∆mrd with the
Gaussian distribution, srd with the Gaussian distribu-
tion (figure 8(d)), srd (figure 7(c)), to∆mw (figure 6)
when they are in the same condition. It suggests
that the dynamic mobility constraint by static road
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Figure 9. Pearson correlation coefficient (R) between∆d and∆mrd estimated by the Gaussian function (w= 3 km). The buffer
areas symbolize the confidence intervals. (a) Stations are located at a place with six types of the climate. (b)–(d) R is derived from
n= 30. (e)–(g) R obtained on the condition of n= 60. (b), (e) Stations are in the arid and humid climates. (c), (f) Stations are in
the hot and cold climates. (d), (g) Stations are in the coastal and inland climates.

networks significantly affects the changes of NO2 in
a large geographical space.

4. Discussion and conclusion

An accurate estimation of the time series of NO2

is essential to predict and investigate the impact
of the community mobility on the urban micro-
environment. The study refines an established NO2

prediction model and estimates the NO2 concentra-
tions without the disruption of COVID-19, which
is achieved by incorporating the seasonal and cyc-
lic variations based on years of historical data before
2020. Correlation analysis in this study is performed
based on the hypothesis that the predicted level of
NO2 after lockdown is larger than the observed level
because the lockdown policy leads to less frequent
use of vehicles and thus less NO2 emission while the
prediction still follows historical patterns that have
not incorporated the dramatic decrease of NO2 after
lockdown. Therefore, the changes of urban mobil-
ity have shown a causal relation with the difference
of NO2 concentrations between the prediction and

observation. The study also suggests that the pro-
posed prediction and analysis method can be used to
evaluate the environmental impacts when confront-
ing the COVID-19 pandemic and other public health
events.

The results suggest that part of the difference
between predicted and observed values is the result of
the disruptive lockdown measures. During the lock-
down period, there are strong and negative correla-
tions between∆d and∆mrd in group of different cli-
mates because ∆mrd considers the changes of urban
mobility, the total length of the roads, and the dis-
persion following a Gaussian distribution. Twomajor
findings have been generalized as follows. Firstly, a
great reduction of urban mobility associated with the
recreation, transit, and workplacemay result in a con-
siderable decrease inNO2 in a large geographical area.
Secondly, the local climate is also one of the vital
factors that have distinct impacts on the dispersion
of NO2. Specifically, the impacts are more prominent
for stations in areas where the arid, hot, and coastal
climates prevail, since the three climates’ correlations
are considerably stronger. It is probably because the
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arid and hot climates would cause uneven air temper-
atures, which promotes wind ventilation and reduces
theNO2 density, and it is also the case with coastal cit-
ies where there are wind cycles between the land and
sea. Some features of local weather in terms of daily
wind directions and strengths can also mitigate NO2

concentrations.
The SARIMAX model considers meteorological

conditions by establishing exogenous weather vari-
ables, such as wind speed and air pressure, optim-
ized by minimizing the AIC value to achieve accur-
ate prediction. Since this study aims to investigate
the impacts of mobility on NO2 concentration, we
do not analyse the meteorological influence in detail.
Alternatively, we have categorized the analysis into six
climate types, which is used as background climate
associating with meteorological conditions, to obtain
generic phenomenon at a large geographical extent.
The prediction with 30 and 60 days before lockdown
suggests that instantly seasonal variation influences
prediction accuracy, while their effect is insignificant
when associating with mobility indicators to explain
NO2 concentration.

In conclusion, the proposed NO2 difference
between prediction and observation is an effective
indicator to explain the improvement of the air qual-
ity after lockdown. The proposed ∆mrd can explain
the NO2 concentration comprehensively by consider-
ing the source of dynamic urban mobility, the spatial
constraints of road networks, and physical dispersion
process. The proposed analysismethod can be used to
investigate other air quality indicators and other dis-
ruptive infectious diseases.
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