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A B S T R A C T

The revolution in mobility-sharing services brings disruptive changes to the transportation landscape around the
globe. The authorities often rush to regulate the services without a good knowledge of these new options. In
Singapore and some other cities, dockless bike-sharing systems rose and fell in just one year and were followed
by the booming of docking scooter-sharing systems. This study conducts a comparative analysis of bike-sharing
and scooter-sharing activities in Singapore to help understand the phenomenon and inform policy-making. Based
on the collected data (i.e., origin-destination pairs enriched with the departure and arrival time and the GPS
locations) for one month, this study proposed methods to construct the paths and estimated repositioning trips
and the fleet sizes. Hence, the spatio-temporal heterogeneity of the two systems in two discrete urban areas was
investigated. It explored the impact of the fleet size, operational regulations (dockless versus docking), and
weather conditions on the usages. We found that shared scooters have spatially compact and quantitatively
denser distribution compared with shared bikes, and their high demands associate with places such as attrac-
tions, metros, and the dormitory. Results suggest that scooter sharing has a better performance than bike sharing
in terms of the increased sharing frequency and decreased fleet size; however, the shareability still has potential
to be improved. High repositioning rates of shared-scooters indicates high maintenance cost for rebalancing and
charging. Rainfall and high temperatures at noon suppress the usages but not conclusively. The study also
proposes several initiatives to promote the sustainable development of scooter-sharing services.

1. Introduction

Transportation has been undergoing a remarkable transformation in
the past few years from planned public transit to customized individual
mobility, such as ride-hailing (Vazifeh, Santi, Resta, Strogatz, & Ratti,
2018), car-sharing (Jorge & Correia, 2013; Martin, Shaheen, & Lidicker,
2010), ride-sharing (Alonso-Mora, Samaranayake, Wallar, Frazzoli, &
Rus, 2017; Santi et al., 2014), and even the upcoming aircraft-sharing
(Teo, 2019). However, the car-centric mindset has imprisoned us into
unpleasant situations from congestion to parking shortages and pollu-
tion (Kan, Wong, & Zhu, 2020; Zhu, Wong, Guilbert, & Chan, 2017). As
an alternative and refreshing approach, the first- or last-mile riding on
shared-bikes (SBs) or electric shared-scooters (SSs) is increasingly be-
coming popular for citizens, since they allow fast and cheap short-trip
in street blocks without any waiting-or-congestion caused delay
(McKenzie, 2019; Shen, Zhang, & Zhao, 2018a; Wen, Chen, Nassir, &
Zhao, 2018).

With the development of new techniques such as mobile payment
and big-data computing, the sharing economy has penetrated the bike-
sharing market with new dockless bike-rental services (Shen et al.,
2018a; Shen, Zhang, & Zhao, 2018b). This service allows users to locate
and unlock a bike through smartphones and return it anywhere (al-
lowed for parking) when a trip is completed. However, like a short flash
of fireworks, the dockless sharing systems have confronted many
challenges and some of them have already failed due to the reasons
such as unsustainable business model, over-sized fleets, and vandalism
(Ma, Lan, Thornton, Mangalagiu, & Zhu, 2018;Shen et al., 2018b ; Xu
et al., 2019).

In the last two-years, scooter sharing has bloomed and shown its
competitiveness in labor-saving and faster travelling compared with
bike sharing (Hardt & Bogenberger, 2019; McKenzie, 2019), which
becomes prominently superior in tropical cities as high temperatures
have negative impacts on bike utilization (Shen et al., 2018b). Having
learned a lesson from the challenges confronted by bike-sharing
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services that severe obstacle of public space may occur in a dockless
system, the latest operations on scooter sharing have transformed from
dockless systems to the adoption of the deterministic docking stations
(Today, 2018). As such, a foreseeable problem may also be tackled. In a
dockless system, the battery distance of scooters is limited to a few
kilometers and SSs would be abandoned if the electricity is used up on
halfway so that extra manpower is needed to recycle these scooters at a
considerably high cost. Nevertheless, a vague image about the perfor-
mance of a scooter-sharing system is still unclear comparing with a
bike-sharing system.

Thus, this study aims to investigate the performance of the widely
established dockless bike-sharing service versus recently operated
scooter-sharing service with docking stations and hence reveal the pros
and cons of the two services. To discover the similarities and differences
between the two systems operated in the same urban areas and weather
factors, our focus is to investigate the performance in terms of usage
rates and fleet size management when transforming from SBs to SSs. As
Singapore is one of the earliest adventurers on operating micro-mobility
(Shen et al., 2018b; Xu et al., 2019), we collected usage information of
SBs and SSs and constructed their trips using GPS locations at origins
and destinations for one month in two study areas in Singapore. Then,
we make a comparative analysis of the two services by focusing on the
spatial-temporal distribution represented by seven proposed indices,
quantitative changes about trips over weekdays and weekends, and
weather influence on demand. Lastly, we summarize the findings and
propose four initiatives for the sustainable development of micro-mo-
bility.

The paper is organized as follows. Section 2 presents a review of the
revolution of bike-sharing and scooter-sharing systems. Section 3 in-
troduces the pre-processing of the data collected in Singapore and
Section 4 introduces the estimation methods. Section 5 conducts a
comparative analysis between the two systems in three different as-
pects. Then, we propose several initiatives to tackle the revealed pro-
blems in Section 6, followed by a conclusion in Section 7.

2. Literature review

2.1. Spatio-temporal analysis

Many studies have been conducted to reveal spatio-temporal pat-
terns of micro-mobility. In New York City, the arrival and departure
rates of SBs at one station were associated with bicycle flow rates be-
tween the nearby stations (Faghih-Imani & Eluru, 2016). One of the
most recent studies compared SBs and SSs operated in Washington, D.C.
and found that SBs were primarily used for commuting between homes
and offices while SSs were for recreation (McKenzie, 2019). We will
also make similar comparisons between the two services in Singapore
but our focuses will in two discrete areas that potentially leads to dif-
ferent purposes of the trips.

Focusing on Singapore, one study used an eigendecomposition
method to reveal usage patterns of SBs at several discrete places (Xu
et al., 2019). The results show that substantial variations of the usages
occurred across urban locations on weekdays, especially between 8 and
9 am; while usage became more uniform in weekends. Another study
found that higher utilization of SBs positively correlated with larger
fleet sizes with a decrease of the marginal impact (Shen et al., 2018b). It
also emphasized that utilization of SBs was rather low in Singapore,
which could be one of the major reasons that SBs was not profitable.
This observation motivates us to find out whether the performance is
improved in the case of a dock-based scooter-sharing service compared
to the dockless bike-sharing service. Besides, our study will not only
investigate spatio-temporal usage patterns but also reveal the reasons
behind the performance differences and transformation from SBs to SSs.

2.2. Influential factors on shared trips

Further studies investigated the impacts of various influential fac-
tors on the usages of micro-mobility. For instance, socio-demographics
(population density and median household income in Washington, D.C.,
and age, gender, and station accessibility in Minneapolis-St. Paul) and
exogenous variables (transportation network infrastructure and point of
interests in New York City) were investigated, both of which influenced
the utilization of SBs (Buck & Buehler, 2012; Faghih-Imani & Eluru,
2015; Wang & Lindsey, 2019). It was also found that moral obligations
incorporated in users' intentions promote responsible usage sig-
nificantly (Si, Shi, Tang, Wu, & Lan, 2020), while further studies in-
vestigated the role of financial incentives in shaping user behavior (Lu,
An, Hsu, & Zhu, 2019; Zhang, Meng, & Wang, 2019). In addition, many
models were proposed to explore the impacts of built environments
(e.g., residential and commercial densities, and land use mixture) on
the usage of SBs through correlation analysis (Faghih-Imani & Eluru,
2016; Liu & Lin, 2019; Shen et al., 2018b; Xu et al., 2019). In Singapore,
it was found that locations associated with a higher density of public
housing could make fewer shared trips in the morning versus more
shared trips in the evening (Xu et al., 2019). However, our study will
not consider these factors because they only change in a longer tem-
poral scale, thus are not expected to influence any difference in the
usage of SBs to SSs.

Weather, as the other factor that may determine usages of micro-
mobility, cannot be ignored. It was found that rainy and cold days have
a decline in trips of SBs in Toronto and SSs in Munich (El-Assi,
Mahmoud, & Habib, 2017; Hardt & Bogenberger, 2019), and the same
trend was discovered with respect to hot weather for SBs in Singapore
(Shen et al., 2018b). One important reason could be that riding bikes in
high temperatures and under great sunshine is an exhausting exercise
that will affect activities thereafter, such as working in the office. In
comparison, riding scooters require much less effect, thus we expect the
effect of hot weather to be less important; we explicitly explore this
question in the current study.

Apart from the influential factors suggested in the above studies, the
operational strategy either with or without docking stations is also one
of the most distinctive characteristics of the rental services that may
determine the landscape of the micro-mobility (Gu, Kim, & Currie,
2019; Shen et al., 2018b). Dockless systems are highly flexible but the
utilization of dockless SBs in Singapore was unsatisfactory even though
the fleet size was already large enough. One reason might be that SBs
were either left in remote locations or vandalized. In comparison, dock-
based systems show advantages in managing and utilizing SBs or SSs at
determined locations even though they have lower flexibility and pre-
sent an explicit challenge of rebalancing the fleets among stations. A
recent study compared dock-based bike-sharing with dockless scooter-
sharing services, and found that shared trips were similar in spatial
distribution while substantially difference in temporal patterns
(McKenzie, 2019). In contrast, our current study compares dockless
bike-sharing with station-based scooter sharing, a case which, to the
best of our knowledge, was not considered before in the literature.

2.3. Impacts of micro-mobility

Micro-mobility also has positive and negative impacts. For example,
SSs and even SBs provide a faster means of travel in urban areas during
the rush hour comparing with automobiles (Faghih-Imani, Anowar,
Miller, & Eluru, 2017; McKenzie, 2020). A study found that life cycle
cost of plug-in electric scooters is significantly lower than internal
combustion engine mopeds with rather a small amount of carbon
footprints (Chang, Wu, Lai, & Lai, 2016). It suggested that greenhouse
gas emission, air pollution, noise pollution can be reduced completely
with e-scooters (Cao & Shen, 2019; Voinov, Morales, & Hogenkamp,
2019) or bikes (Kou, Wang, Chiu, & Cai, 2020). In addition, one study
investigated the social impacts of gasoline powered mopeds on traffic
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accidents in Netherlands, and suggested that the affected population
will be increased from 30% at present to 38%–53% in the future as
these mopeds share the same lanes with bicycles (Voinov et al., 2019).
In a worse situation, pedestrian injuries caused by e-scooters or mopeds
have been reported since pedestrians are unaware of them when they
are approaching (Badeau et al., 2019; Sikka, Vila, Stratton, Ghassemi, &
Pourmand, 2019; Voinov et al., 2019). In this regard, effective fleet-size
management is vital to minimize the number of SSs for both environ-
mental protection and pedestrian safety, which has not been empha-
sized by other studies. Therefore, an explicit understanding of the
spatio-temporal usage patterns is an urgent need for making urban
planning and policies or laws to promote sustainable development of
the micro-mobility.

3. Data

3.1. Study area

In the past few years, Singapore has experienced the waves of rapid
expansion and decline of dockless bike-sharing followed by the
blooming of dock-based scooter-sharing services. SBs reached the peak
of their popularity in 2017–2018 with multiple operators (e.g., Mobike,
oBike, ofo, SG Bike, GBikes, and ShareBikeSG) flooding the market with
bicycles, but faded quickly as they faced problems mainly with low
utilization and frequent complaints about bikes parked in wrong loca-
tions. More recently, multiple companies entered the market of scooter-
sharing services (e.g., Neuron Mobility, Telepod, GrabWheels, Beam,
and ScootBee). Compared with the bike-sharing, these services were
more helpful, allowing scooters only in limited and designated areas
and requiring users to park the scooters at fixed stations or face a
penalty, e.g., Neuron charged users 5 SGD for improperly parking
scooters. The maximum speed was restricted in 25 km/h for safety and
a full battery could support a continuous trip around 45 km.

In line with these rapid changes, our data comes from two distinct
time periods, where the respective services were widely available and
used. Since SSs became available by the time when SBs declined,
comparing the two services for the same time period would introduce
significant bias due to external economic factors, we believe it is more
meaningful to compare the two services for time periods when usage
was significant. At the same time, since scooter-sharing was only im-
plemented in discrete areas, we restrict the geographic extent of our
study to two areas where both shared-bikes (SBs) and shared-scooters
(SSs) operated to make a fair comparison (Fig. 1). Study area in the
South West (SW) district is 2.0 km × 2.6 km with a variety of land uses
with the scooter operator focusing on serving the educational institu-
tions (university campus) in this areas; study area in the Marina Bay
(MB) district is 3.0 km × 3.5 km and mainly has office blocks in the
downtown area.

3.2. Dataset collection

We have built a scraping tool and deployed it in dedicated servers to
monitor the scooter in bike-sharing systems. For each round of scraping,
the tool firstly obtains all stations in the system. Then, for each station,
it further queries which scooters are being parked. Both scooters and
stations can be identified based on their unique IDs. By continuously
scanning the systems, we can understand when a scooter is rented or
returned, and which station it is rented from or returned to. In the case
of SBs, there are no stations, but the positions of the bikes are reported.
The trips can thus be inferred. However, it should be noted that the trip
is not associated with any personal information. In the interest of
privacy, this study does not release operator details. Bike-sharing and
scooter-sharing data has been collected in both SW and MB for four
weeks. Bike-sharing is from 01 August 2017 to 28 August 2017, and
scooter-sharing is from 01 February 2019 to 28 February 2019.

Several factors can influence on the usage of SBs and SSs, such as

climate, land use, and pricing mode having long-term impacts versus
weather, seasonal variation in tourism, and major events having short-
term impacts. We consider that long-term impacts has little effect on
comparing the patterns of SBs and SSs in this study because (i) seasonal
variation in Singapore is not significant throughout a year as it is almost
on the Equator line, (ii) land use in well-developed urban areas where
the study focuses on has very little changes in the two years, and (iii)
rental prices of SBs and SSs are fairly cheap that attract different users
constantly. Since the number of the tourists has only a slight variation
between 1.1 and 1.2 millions (SVA, 2019) without major events in the
two months, we do not consider it an important factor for investigation
as well. In comparison, weather can have instant and significant impact
on the usage of SBs and SSs. Therefore, the two sharing systems are
generally comparable even though the data was collected at different
times.

Dockless bike-sharing data in the two areas is from a single operator
while dock-based scooter-sharing data in the two areas are from two
different operators, respectively. Therefore, the data can be organized
into four sets, i.e., ℛ = {RSB

MB,RSB
SW,RSS

MB,RSS
SW}. For SBs in both

areas, r = {id, to, td,o,d} (∀r ∈ RSB), which means that each trip r was
recorded by the bike ID id, departure time to and arrival time td, de-
parture location o and arrival location d in GPS locations. For SSs in MB,
r = {id, to, td,o,d,bo,bd} (∀r ∈ RSS

MB), meaning that r is enriched with
the departure battery bo and arrival battery bd in percentage; however,
it has no explicit station information. For SSs in SW,
r = {id, to, td,o,d,bo,bd, io, id} (∀r ∈ RSS

SW); in addition to the MB data, it
also contains the departure station ID io and arrival station ID id. As the
location of SBs and SSs during the trips were not reported, road net-
works were obtained from OpenStreetMap (OSM, 2019) to construct
paths of the trips.

Locations of scooter stations are only available in MB and recorded
as LMB. To obtain LSW, we propose a simple and effective method. Since
the origin lo and destination ld in RSS

SW are associated with the station
IDs of io and id, a tuple can be built as s = {〈l, i〉}, which are filled by
two complete sets of {〈lo, io〉} and {〈ld, id〉}. As shown in Fig. 2, s are
mainly located in educational institutions and visualized in the group of
i and they are distributed as a set of spatial clusters due to GPS errors.
Then, LSW can be estimated as the centroids of the clusters of {l} ca-
tegorized by {i}. We further verified these locations with field in-
vestigations; comparison on locations of estimated and real station lo-
cations suggests that the result is trustworthy. Besides, origins and
destinations of SSs that are within a 200 m radius from the nearest
station are also viewed as the cause of GPS errors since rare users re-
turned SSs only a few steps away from stations based on our observa-
tion in both study areas; thus, they are relocated to the node of the
station in this scenario.

To investigate the weather impacts on on-demand mobility, rainfall
and air temperatures in the two months were collected online (RWRS,
2019). In the dataset, weather stations have an even distribution that
recorded rainfall and air temperatures continuously with a frequency of
5 to 15 min. Particularly, two stations (S71 in SW and S118 in MB)
recording rainfall and the other two stations (S116 closest to SW and
S108 closest to MB) recording air temperatures were selected. Hence,
the number of origins/destinations and rainfall/air temperatures during
the same hour of a day for 28 days can be organized as a tuple for the
calculation of Pearson correlation coefficients.

4. Estimation methods

4.1. Construction of the paths

A probable path from o to d needs to be assigned for each r since
continuous locations during each trip are not available. To achieve this,
a weighted and undirected graph is refined from OpenStreetMap. The
edges of the graph contain all the possible sidewalks and pedestrian
paths excluding steps, bike paths, and roads except highways (as almost
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Fig. 1. Two comparative study areas in Singapore. One is in the South West district, and the other one is in the Marina Bay district.

Fig. 2. Locations of scooter-stations and clusters of demands associated with station IDs.
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all roads in Singapore are associated with sidewalks). In addition, we
have noticed that users carried bikes or scooters and continued riding
when their planned routes were interrupted by a few steps. Therefore,
some of theses edges are topologically connected through manual
editing when they are disconnected to increase the accessibility.
Assuming that all the trips always follow the shortest path (denoted by
p) on the road network, edge weights were set to be equal to the lengths
of road segments.

In general {〈o,d〉} in ℛ randomly shift away from the edges of the
graph because of the GPS accuracy issue. Therefore, the complete set of
{o} and {d} are repositioned onto the closest node in the graph and are
associated with the corresponding node ID for the shortest path com-
putation. Next, ℛ is refined, by checking the condition that both o and
d in each r are in the study area.

The shortest path computation and spatio-temporal analysis were
implemented as a set of hierarchical SQL functions in a spatial database
management system (DBMS) of PostgreSQL 11.4 (PostgreSQL, 2019),
with the support of pgRouting v2.x which provides geospatial routing
functionality (pgRouting, 2019) (such as the Dijkstra's algorithm used
in this study) and PostGIS 2.5 which provides a series of functions for
2D/3D geometrical computation (PostGIS, 2019). DBeaver 5.3
(Dbeaver, 2019) has been utilized as an administrative and manage-
ment tool for the database development.

4.2. Estimation repositioning trips

Both SBs and SSs were repositioned to rebalance the distribution of
the fleets so as to meet the on-demand mobility. However, repositioning
trips of SBs were not recorded in RSB. Alternatively, a bike-sharing re-
positioning trip can be detected if there is an obvious displacement
between the destination and origin of two consecutive trips that share
the same bike ID id. To account for possible GPS location shifting, a
repositioning trip is constructed if the displacement is at least 200 m in
this study. However, the departure and arrival time of the repositioning
trip cannot be specified, which fall in a fuzzy interval between (td, to) of
two consecutive trips. For SSs, both real trips made by users and re-
positioning trips were recorded in RSS. Benefiting from bo and bd in
r ∈ RSS, a trip can be classified into one of the three scenarios: (i) a real
trip made by a user if bo < bd, (ii) a rebalance trip if bo = bd, and (iii) a
charging trip possibly affiliated with the rebalance purpose if bo > bd.

4.3. Estimation the fleet sizes

Since SSs are operated in two discrete areas, it is easy to obtain their
fleet sizes by counting the distinct number of scooter-IDs in MB and SW.
The static fleet size of SBs can also be estimated using the same method
as their trips are recorded when both o and d are in one site. However,
SBs are operated in the whole of Singapore so that the fleet size of SBs
in a smaller area may vary continuously over time. In a short time, such
as an hour of a day, the fleet size can only be computed for bikes that
have been in service, filtering out a large number of unused ones.
Therefore, the static fleet size derived from a long time (i.e., four
weeks) is more reliable.

5. Comparative analysis

5.1. Spatio-temporal distribution

Seven indices are proposed to describe the performance of the two
sharing services: fs is the fleet size of bikes/scooters, d(fs) is the density
of the fleet size, n(r) is the number of the real trips over 28 days, f(r) is
the sharing frequency per bike/scooter per day, r(rp) is the overall the
repositioning ratio, r(rb) is the repositioning ratio for rebalancing, and r
(c) is the repositioning ratio for charging. Table 1 presents seven sta-
tistics to describe the performance of bike-sharing and scooter-sharing
systems in the two study areas. The table shows that bike sharing has a

significantly larger fleet size than scooter sharing in both areas, i.e.,
4412 versus 348 in MB and 1144 versus 463 in SW. Consequently, it
makes 420 bikes versus 67 scooters per km2 in MB and 109 bikes versus
89 scooters per km2 in SW. Even though bike sharing has a larger
number of real trips than scooter sharing in MB (i.e., 58,109 versus
11,445 over 28 days); a bike is used on average only at 0.47 times per
day, while a scooter achieves a higher utilization of 1.17 times per day.
In comparison, bike sharing has a smaller number of real trips than
scooter sharing in SW (i.e., 13,582 versus 40,830 over 28 days); the
difference in utilization is even more striking with a bike being used on
average at 0.47 times per day, while scooters are used 3.15 times per
day at a much higher rate than even SSs in MB. One reason is the at-
tractive promotion that provided half the standard rate at 50 cents for
30-min use or 30-min or even unlimited free-ride.

Based on the proposed method above, a number of repositioning
trips of SBs (5809 in MB and 1431 in SW for 28 days) are detected so
that their repositioning ratios of r(rp) are 10.00% for MB and 10.53%
for SW (Table 1). This means that 10 SBs in MB or SW are repositioned
for every 100 real trips. In contrast, r(rp) is 14.50% for SSs in SW, and it
is significantly larger at 58.48% in MB, which is composed of 26.88%
for rebalancing and 31.60% for charging (also possibly for rebalancing).
The ratio at 31.60% is significantly high, which means that charging of
SSs can be a great challenge since it is difficult to bridge national gird to
all the stations in the downtown area.

Furthermore, Fig. 3 visualizes the “heatmap” of the paths produced
by SBs and SSs in the two areas, i.e., path segments on the map are
colored according to the number of times they travelled by bikes or
scooters, accumulated over 28 days. Overall, it shows that usage of SBs
in MB is more dispersed compared to SW. On the other hand, usage of
SSs is more concentrated in both areas. In MB, hotspot paths have al-
most the same spatial distribution for SBs and SSs. However, in SW,
hotspot paths shift from the west (residential communities) to the
center (the campus of a university). One main reason is that the op-
erational area of SSs does not include the residential neighbourhoods so
that the comparison is essentially between two different locations: bikes
along the coast and scooters on the campus. Moreover, SSs have sig-
nificantly higher usage in the campus than SBs, contrary to the down-
town area where the two are more comparable. This may be due to the
steep slope on the campus, which makes it difficult to ride a bike. Be-
sides, several phenomena can be revealed.

First, the fleet size is reduced dramatically. Operators made in-
appropriate competition by flooding SBs into entire Singapore (e.g., MB
has 420 bikes in 1 km2), which, however, could easily cause over-oc-
cupation and disruption of public spaces. The operators were closed
down due to the unsustainable business model and all the SBs were
removed from Singapore consequentially. With the arising of SSs,
government learned a lesson from SB experience and regulated the new
operators so that the fleet size of scooters has been controlled effec-
tively.

Second, the sharing frequency is increased but there is still space to
be improved. The transformation of the dockless bike-sharing system to
the dock-based scooter-sharing system restricts the flexibility of a
sharing system apparently, since routes are constrained between sta-
tions and spatial distribution of the mobility is contracted as shown in
Fig. 3. However, also because of this reason, users can access scooters in
the locational-determined dock-based stations more easily. As a result,
the sharing frequency increases from less than 0.5 to more than 3 times
per day. Nevertheless, a scooter used on an average of 3 times a day
means that SSs may not be used most of the time, and the shareability
still needs to be improved to create a profitable sharing system.

Third, the high repositioning ratio means a large number of “unreal-
demand” trips and indicates costly and manpower-extensive main-
tenance, since employees have to collect and transport scooters be-
tween stations continuously. Even though the operators have followed
regulations made by the government and charged a certain penalty
from users if they return scooters away from the stations, the
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considerably high repositioning ratio for rebalancing r(rp) (especially
for SSs in MB, which can be as high as 58.48%) may be due to two
reasons. For one reason, the penalty may not be high enough to in-
centivize users to properly return scooters. Since high demands are
associated with many tourist attractions (Fig. 4A), we intuitively sup-
pose that most users may be tourists. In this case, tourists are likely to
return scooters away from stations for the best of their convenience,
disregarding the penalty if it is affordable. Another reason might be the
operation in a small and discrete area that causes few or excess

demands at time-dependent stations more easily. Demands are unable
to be served if the requested origin-destination (OD) matrices are be-
yond the operational area or there are no scooters available at the
stations. Thus, repositions are needed to meet the demand and avoid
repeating an embarrassing situation of over-occupation of public space
and visual pollution. In SW, high demands are associated with a dor-
mitory and a metro station on the campus (Fig. 4B). This reveals that
people in the campus have regular demands overall, and they are likely
to return SSs regularly at stations to avoid the penalty.

Table 1
Statistics of the shared-bikes and shared-scooters in the two study areas.

No. Type Area fs d(fs) n(r) f(r) r(rp) r(rb) r(c)

1 SBs MB 4412 420/km2 58,109 0.47 10.00% – –
2 SBs SW 1144 109/km2 13,583 0.42 10.53% – –
3 SSs MB 348 67/km2 11,445 1.17 58.48% 26.88% 31.60%
4 SSs SW 463 89/km2 40,830 3.15 14.50% 6.63% 7.87%

Fig. 3. heatmap of the paths produced by SBs and SSs in the two study areas. Colour corresponds to the number of the paths travelled by SBs or SSs. It visualizes usage
for (A) SBs in MB, (B) SSs in MB, (C) SBs in SW, and (D) SSs in SW.
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Fig. 4. Origin-destination matrices enriched with number of the real trips of SSs in MB and SW. (A) High demands are mostly associated with tourist attractions. (B)
High demands are mostly associated with a dormitory and a metro station.

Fig. 5. Origin-destination matrices enriched with number of the repositioning trips of SSs in Marina Bay and South West areas. (A) Repositioning for rebalancing in
MB. (B) Repositioning for charging in MB. (C) Repositioning for rebalancing in SW. (D) Repositioning for charging in SW.
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Fourth, for SSs, major repositioning trips for rebalancing and
charging have a strong association between a few pairs of stations. The
repositioning trips are decomposed as rebalance trips (Fig. 5A, C) and
charging trips (Fig. 5B, D). In MB, rebalance trips are made between a
few stations while charging trips are associated with only one station,
locating at the Marina Bay Sands hotel. The same pattern occurs in SW
where rebalance trips and charging trips are associated with the Uni-
versity Town. Notably, the charging trips may also serve for the re-
balance purpose so that their spatial distributions of origin-destination
matrices display some similarity. This would make the operation ef-
fective when stations have both the charging functionality and the
largest number of repositioned scooters.

Fifth, the higher utilization of SSs is achieved at the expense of
higher rebalancing costs. According to our statistics, real trips departed
from and arrived at non-stations were unexpectedly at 28.50% and
26.32%, respectively. This means that most of the inappropriately re-
turned scooters were utilized by users. Thus, the repositioning ratios for
rebalancing and charging at 26.88% and 31.60% are mostly made be-
tween stations. This can also be confirmed from Fig. 5 that these trips
are between stations.

5.2. Quantitative changes over time

To find out quantitative changes of the trips over time, we firstly
investigate the hourly distribution of the total distance d(r) of the trips
and the number n(r) of the trips on weekdays and weekends (Fig. 6).
Overall, d(r) and n(r) in each sub-figure have almost the same trend
over days, and the highest demands are at night-time. As Singapore has
a tropical rainforest climate having no distinctive seasonal changes, it is
supposed that high temperatures and strong sunshine suppress outdoor
activities in the day-time, which thus shifts to the night-time. Specifi-
cally, the demands of SBs in MB (Fig. 6A) and SW (Fig. 6C) do not have

large changes on weekdays and weekends, while shape peaks are
smoothed on weekends specifically on Saturday. This indicates that
major trips of SBs in the two areas may be local citizens who have
regular mobility (e.g., workers in office blocks). In comparison, the
demands of SSs in MB are increased in weekends (Fig. 6B) but de-
creased in SW (Fig. 6D). This suggests a distinct usage pattern of the
users, i.e., the majority of the trips in MB could be citizens or tourists for
leisure trips, while the majority of the trips in SW could be university
students for education-related purposes. Also, Fig. 6D shows that the
highest demands always happen in the middle night from Monday to
Friday. This indicates that people may use SSs as bridging services
when public transit (e.g., buses and metro trains) are unavailable.

To compare the distribution of trip distances and durations of the
two services, Fig. 7 draws the curves of the average distance d(r) and
the number of the trips n(r) over the trip duration (minutes in the x-
axis). Overall, d(r) grows stably and approaching an upper boundary at
2 km with the increase of the trip duration versus n(r) has a dramatic
increase followed by a long and decreasing tail for SSs in all situations.
Yet, there are three patterns between SBs (Fig. 7A,C) and SSs
(Fig. 7B,D). First, trips of SBs are overwhelmingly shorter than 10 min,
while trips of SSs can reach up to 1 h in MB (Fig. 7B) and 30 min in SW
(Fig. 7D). In more detail, a larger number of the trips of SBs take around
1 min only while it can take 5 to 8 min for SSs, as shown in the red
band. For bike-sharing trips around 1 min, one of the reasons could be
that users realized that the rented bike was unusable due to some defect
after starting the trip. Second, SSs make longer distances than SBs for
trips that are shorter than 20 min; while they have almost the same
distances for trips that are longer than 20 min. For instance, for 10-min
trips, they are slightly longer and shorter than 1 km for SSs and SBs
respectively; for 30-min trips, both are slightly over 1 km. Trips shorter
than 20 min and has a linear regression roughly between the travel time
and distance, suggesting that such trips mainly follow the shortest paths
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at a constant speed from origins to destinations. This explanation is
reasonable since these SB trips were also suggested as commuting trips
in Singapore (Shen et al., 2018b; Xu et al., 2019).

Another important finding is that, when SS trips are longer than
30 min, the distances have an insignificant increase in MB or even
perform a slight decrease in SW. It means that these trips probably serve
for tourism having stops and/or detours before arrival, which thus
prolongs trip duration, but underestimates trip distances based on the
shortest path assumption. A similar explanation was provided that SBs
were mainly used for commuting and tourism, and commuting had non-
stops following the shortest paths while tourism likely had longer trip
duration because of several stops along the trip (Kou & Cai, 2019).

The above finding suggests that trips shorter than 20 min probably
follow the shortest paths so that their spatial distribution can be drawn
with a negligible obstruction of detours. Fig. 8 shows the heatmap of
trips that have duration indicated by red bands of Fig. 7, which cor-
responds to the largest number of the trips having the same trip dura-
tion shorter than 10 min. It shows that the most travelled paths of SBs in
MB are discrete along the major roads in a larger area (Fig. 8A). This
suggests that the majority of users can be citizens for short trips. An
opposite phenomenon occurs for SSs in MB that two of the most in-
tensive paths are respectively concentrated in the Singapore River and
the Marina Bay Sands hotel (Fig. 8B). This indicates that the major users
could be tourists as the two places are scenic spots. In SW, users with
SBs and SSs usually have a single travelling purpose, i.e., commuting
between residences in Fig. 7C and bridging between teaching buildings
in Fig. 7D. This makes contiguous paths that overlap with each other,
which thus forms short and hotspot paths.

5.3. Weather influence

As Singapore has a tropical rainforest climate, on-demand mobility
of SBs and SSs can be influenced instantly and significantly by short-
term weather. To account for this, rainfall and air temperatures are
used to investigate the influence by making correlation analysis. Since
on-demand mobility is also dependent on the time of a day (e.g., high

demands in the morning peak hours versus low demands at late night),
correlations are thus made in a unit of hour-of-day (hod). Fig. 9 presents
Pearson correlation coefficient between arrivals and rainfall (r(d, ra))
and departures and rainfall (r(o, ra)) (left y-axis) together with hourly
accumulated rainfall (right y-axis). It has more rainfall in August
(Fig. 9A, C) than in February (Fig. 9B, D). Because of this reason, more
occurrences of r are derived for SBs than SSs in both MB and SW.
Overall, the analysis shows moderate and negative correlations, which
suggests that rainfall hurts the demands of SBs and SSs. Also, r(o, ra) are
slightly smaller than r(d, ra) when they are negative, meaning that
fewer departures occur than arrivals during raining. Also, SBs are more
negatively correlated with rainfall than SS, which might be due to the
effect of dock-based stations that in a sense “force” users to return the
scooters at the stations even if it starts raining; on the other hand, with
a dockless bike-sharing system users may drop the bikes immediately
when it starts raining.

Furthermore, correlations between air temperatures and arrivals (r
(d, tp)) and departures (r(o, tp)) are investigated, which excludes the
rainfall time so that the impact of air temperatures will not be influ-
enced by rainfall. It shows that daily air temperatures in February
(Fig. 10B, D) have slightly larger variation than in August (Fig. 10A, C).
For SBs (Fig. 10A, 10C), both r(d, tp) and r(o, tp) are negative for 2 h
from 12:00 to 13:00 in MB and from 13:00 to 14:00 in SW. Even though
the negative correlations are weak, it suggests that high temperatures in
the middle of the day can suppress the usage of SBs. In comparison, for
SSs in MB (Fig. 10B), r(d, tp) is positive but r(o, tp) is negative at noon,
meaning more arrivals but fewer departures of scooters with the in-
crease of the temperatures. While, r(d, tp) and r(o, tp) are negative at
13:00, which means that riding of SBs and SSs can be suppressed in the
hottest time in the early afternoon. On the other hand, r(d, tp) and r
(o, tp) are positive between 16:00 to 18:00 in MB (Fig. 10A, B), and
between 15:00 to 17:00 in SW (Fig. 10C, D). This means that higher
temperatures can promote the usage of SBs and SSs in the late afternoon
when the temperatures have already cooled down below certain de-
grees. One possible explanation is that with higher temperatures,
scooters provide a more attractive alternative for walking. On the other
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hand, at noon, using a bus service becomes the most attractive option as
buses are air-conditioned and bus stops have shelters.

6. Discussion

Scooter sharing has a better performance than bike sharing in terms
of the increased utilization and decreased fleet size. However, a scooter
is still only used for 3.15 times per day on average and mostly used for
less than 20 min, which suggests that scooters are not used most of the
time every day. Also, SSs had high repositioning ratios at 15% in South
West and 58% in Marina Bay in Singapore. The repositioning is mainly
for two reasons: (i) scooters parking out of the stations are with low
accessibility by other users and/or without permission in certain public
space, and (ii) scooters need to be repositioned for battery charging.
Since the repositioning of SSs was conducted by using automobiles, it
means more vehicular trips and thus cause more greenhouse gas
emissions (Hollingsworth, Copeland, & Johnson, 2019) and con-
siderably higher operational cost. Additionally, rainfall and high tem-
peratures at noon suppress the riding of scooters, and the mobility
patterns with peak and off-peak hours make it difficult to improve the
shareability and profitability of the system. All these suggest that sus-
tainable development of a scooter-sharing system in Singapore still
faces many challenges. Several initiatives are discussed to tackle the

above problems.

1. Optimize the fleet size of stations and their locations. For instance,
as shown in the two red circles in Fig. 4A, nodes of two yellow-lines
do not associate with established stations, suggesting two sponta-
neously formed hotspots with high origins and/or destinations so
that new stations may be established there.

2. Regulate returning behaviors more strictly. An increase of the pen-
alty could induce more users to return scooters only at stations so
that less repositioning is needed and more scooters are available
with high accessibility to users. However, it may also become a
double-edged sword that more users have doubt and even antipathy
on riding shared-scooters if the penalty is significantly high. Thus,
not only financial measures should be adopted, but also training and
education for potential users becomes necessary.

3. Enable scooters to have autonomous repositioning functionality to
meet the on-demand mobility. Besides hardware devices which
allow real-time vehicle and pedestrian detection and lane detection
(Andersen et al., 2016), this would require a module that provides a
real-time, demand-aware shareability network to dispatch scooters
to the users. This can be achieved by adopting a two-stage stochastic
approximation scheme (Warrington & Ruchti, 2019) or in-
corporating into algorithms that have been used in ride-sharing

Fig. 8. The number of the travelled paths made by SBs and SSs in the red band of Fig. 7. The number of the paths made by (A) SBs in MB, (B) SSs in MB, (C) SBs in SW,
and (D) SSs in SW. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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systems (Santi et al., 2014). In this case, on-line reservation with a
temporal horizon in the future is also required to allow the com-
putation and dispatching of scooters to users.

4. Increase the effective battery life of scooters. One way is installing a
photovoltaic module on scooters so that they can have solar char-
ging during the trip and parking time (Ridden, 2019). The other way
could equip conventional dock-based stations with grid charging or
battery-exchange platforms (Chen, Cheng, Lie, & Yu, 2018), or solar
charging platforms (Shah, 2019). Charging scooters at the parking
space could be a simple and effective solution, which needs the
equipment of charging platforms connecting to either the national

grid or photovoltaic cells. However, bridging the platforms to the
national grid needs the authorization from several government de-
partments and systematic supports of the urban utility, which
challenges its wide utilization. Solar charging might become parti-
cularly effective when the national grid is hard to be accessed.
Stations should be placed at locations with large annual solar irra-
diation to maximize the generated electricity, which thus needs the
accurate estimation of annual solar irradiation in an urban en-
vironment. Solar charging has four foreseeable advantages: gen-
erating electricity autonomously, spatially optimizable at solar-
abundant locations, temporally configurable throughout the day
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Fig. 9. Pearson correlation coefficient (r in the left y-axis) between the amount of rainfall and the number of origins/destinations over hour-of-day (hod in the x-axis)
accumulated for four weeks. (A) r for SBs in MB. (B) r for SSs in MB. (C) r for SBs in SW. (D) r for SSs in SW.
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Fig. 10. Pearson correlation coefficient (r in the left y-axis) between air temperatures and the number of origins/destinations over hour-of-day (hod in the x-axis)
accumulated for four weeks, which has excluded the raining time. (A) r for SBs in MB. (B) r for SSs in MB. (C) r for SBs in SW. (D) r for SSs in SW.
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supported by storage batteries, and environmental friendly (Platt, El
Haddad, Pieber, & Huang, 2014; Tulpule, Marano, Yurkovich, &
Rizzoni, 2011, 2013).

Spatio-temporal heterogeneity of bike sharing and scooter sharing is
not only influenced by the business model (e.g., transformation from a
dockless system to a dock-based system), behaviors of users (e.g., re-
turning scooters away from stations) and weather, but also significantly
impacted by government policy. For instance, some vital measures are
directly driven by government regulations, such as controlling the fleet
size rigorously and changing the market from all the city to discrete
areas when transforming from bike-sharing to scooter-sharing. Most
recently, new problems occur that scooter-sharing has made incon-
venience and injuries since scooters share sidewalks with pedestrians.
They can be used on separate cycling paths, which severly restricts their
reach and makes the shared scooter services analyzed in our work un-
feasible. More research is thus needed on designing and developing the
proper infrastructure and regulations for the safe use of scooters so that
their benefits for urban mobility can be realized. Thus, supportive po-
licies from the government also play a very important role in the sus-
tainable development of the new transportation mode.

Lastly, observations are made from the comparison of the findings of
this study and the study in Washington D.C. (McKenzie, 2019), which
has a broad scope in the whole city with a symbiosis of SBs and SSs in
the same spatio-temporal domain. In contrast, our study focused on two
discrete areas experiencing a transformation from SBs to SSs. Never-
theless, both suggest that bike sharing is dominantly used for com-
muting while scooter sharing mainly serves for recreation or tourism
activities in the downtown area even though the two cities have an
entirely opposite operation method for SBs and SSs, i.e., dockless versus
dock-based. Since built environments such as the residential and com-
mercial densities have impacts on usage patterns of micro-mobility in
Singapore (Xu et al., 2019), it draws our attention to incorporate these
factors in the near future to promote sustainable development of the
micro-mobility services, such as optimization of locations of parking
spaces and planning of specialized paths for scooters.

7. Conclusion

This study conducts a comparative analysis to understand spatio-
temporal heterogeneity of bike-sharing and scooter-sharing mobility in
two discrete areas in Singapore. SSs have spatially compact and quan-
titatively denser distribution compared with SBs, and their high de-
mand is associated with places such as attractions, metros, and dor-
mitories. Weather in terms of rainfall and high temperatures at noon
could suppress the usage of SBs and SSs, but not dominantly. On the
contrary, higher temperatures below certain degrees Celsius in the late
afternoon may promote the riding of SSs. It is also found that SSs have a
better performance than SBs regarding the increased sharing frequency
and decreased fleet size. Benefiting from the adoption of a dock-based
system with a smaller fleet size for SSs, disruption of public space and
orders is not expected, indicating a sustainable development for SSs.
However, the relatively low sharing frequency and riding time of SSs
indicates that they are still not in use most of the time, so that several
measures as those proposed herein could be used to improve the
sharing economy in micro-mobility.
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