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A B S T R A C T

Traffic-related emissions are well-known factors in urban environment which may have adverse implication on
human health. Estimating vehicular emissions in urban areas provides an understanding of the air pollution
caused by traffic. However, existing microscopic approaches cannot simulate the traffic flows and emissions for
an entire city and most of the macroscopic approaches are usually highly complex and require priori knowledge
about vehicles' route options. This study, therefore, proposes a straightforward and robust approach to simulate
vehicular flows and estimated transport emissions at a city scale via a deterministic approach and by applying
the Cell Transmission Model (CTM) to simplify the modeling of vehicles' route selections. Under a space-time
integrated framework, we firstly simulate a time-dependent distribution of urban vehicular flows and then es-
timate pollutant emissions of Carbon Monoxide (CO), Nitrogen Oxide (NOx) and Violate Organic Compounds
(VOC) for traffic flows on weekday and weekend. Finally, the spatiotemporal patterns of traffic flows as well as
traffic emissions were visualized and illustrated under a space-time integrated framework. With accuracies of
around 67.4% to 70%, the results demonstrated the feasibility of the proposed approach for estimating city-scale
traffic flows and emissions from road transport.

1. Introduction

Road transport sector is one of the key contributors for air pollutant
emission (EPA, 2014). According to the Hong Kong Environmental
Protection Department (2016), 54% of total Carbon Monoxide (CO)
emissions were released by the road transport sector in Hong Kong.
With the adverse impact of air pollution on human health, the analysis
of the traffic emissions provides insights about the spatio-temporal
patterns and underlying process of transportation-related emissions.
However, existing microscopic approaches analyze vehicular emissions
using sampled trajectories of vehicles, which have not sufficiently
considered the volumes of traffic flows of a city. While most of the
macroscopic approaches can simulate traffic flows at a city scale, they
are usually highly complex and require priori knowledge about ve-
hicles' route options. This study, therefore proposes a straightforward
and robust approach to simulate vehicular flows and estimate transport
emissions at a city scale, through incorporating a deterministic ap-
proach and using the Cell Transmission Model (CTM).

Traditionally, information of air pollution is acquired and collected
from discrete monitoring stations or collected through large-scale fuel-
used survey data (Cai & Xie, 2007), which have several limitations in
air pollution monitoring in a city. Firstly, the air pollution monitoring
stations are spatially-restricted in which there is a lack of holistic view
of atmospheric conditions throughout a city from station-data (Nyhan
et al., 2016). Secondly, large-scale fuel-used data are often collected at
a scale of a city or even a country, leading to a rough estimation of total
emissions that vehicles might release. In addition, since the survey data
has relatively low temporal resolution, the spatio-dynamic of emissions
distribution is difficult to predict from survey data. In the past decades,
environmental agencies in the world have developed numerous emis-
sion/fuel consumption estimation models for different types of vehicles
and fuel, including the COPERT model developed by European En-
vironment Agency (EEA), the MOBILE model and MOVES model of U.S.
Environmental Protection Agency (EPA), EMFAC model released by
California Air Resources Board, and CMEM and IVE models developed
by the University of California at Riverside (Abo-Qudais & Abuqdais,
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2005; Barth et al., 2000; CARB, 2006; EPA, 2009; Ntziachristos et al.,
2000; Rakha, Ahn, & Trani, 2003; Sharma & Khare, 2001). The devel-
opment of these emission models enables the estimation of emissions at
various levels, i.e., street level, city level and country level. In order to
quantify the emissions released by different types of vehicles operating
on road networks with various traffic conditions, parameters regarding
vehicle technology and movement in these models have been acquired
from fixed sensors including video cameras (Yang, Boriboonsomsin, &
Barth, 2011) and loop detectors (Chang et al., 2013), as well as large-
scale statistics (Burón, López, Aparicio, Martıń, & Garcıá, 2004) from
past studies.

In addition to data collected from fixed sensors or archive statistics,
vehicular trajectories have been widely applied in emission estimation
in the past few years especially after the enhancement of smart phones
and GPS data. Previous studies have explored both nation-wide and
city-wide emission inventories based on GPS trajectory data and the
emission models (Kan et al., 2018; Kan, Tang, Kwan, & Zhang, 2018;
Luo et al., 2017; Nyhan et al., 2016; Shang, Zheng, Tong, et al., 2014;
Sun, Hao, Ban, & Yang, 2015; Yang et al., 2011; Zhao, Kwan, & Qin,
2017). Among them, taxi GPS data are especially popular in estimating
vehicular emissions thanks to their relatively high accessibility to re-
searchers. However, there are limitations when estimating traffic
emissions from taxi GPS trajectories. First, although taxis play an im-
portant role in urban public transportation, there is still a small sample
of the entire urban vehicle fleet. For instance, taxis only account for
2.5% of the registered vehicles in Hong Kong (Annual traffic census,
2015). With such a small share of traffic flows, the spatial and temporal
coverages of taxi GPS trajectories are limited and the dynamics of traffic
flow in a whole city is thus hard to be revealed. Second, the behaviors
of taxi drivers are often various in spatio-temporal domain. GPS tra-
jectories record behaviors of taxi drivers that would be highly affected
by the demands of taxi drivers themselves instead of traffic flow (Zhao,
Liu, Kwan, & Shi, 2018), such as taking rests, having meals, refueling,
waiting for customers, and picking up/dropping off customers. These
behaviors would interfere the detection of the movement of traffic flow
in a city. Recently, GPS data acquired by smartphones have also been
used to estimate vehicular fuel consumption (Astarita, Guido, Mongelli,
& Giofre, 2015; Gately, Hutyra, Peterson, & Wing, 2017). A most recent
study used GPS trajectories of car-hailing service from Didi Chuxing
Technology Co., a Chinese ride-sharing company, to estimate vehicular
emissions (Sun, Zhang, & Shen, 2018). Different from taxis GPS tra-
jectory data, both taxis and private cars could register in the Didi
platform and provide ride services to the public. Thus, the trajectories
from Didi contain a more mixed fleet than trajectories solely from taxis.

Since the trajectories of all vehicles in a city are difficult to be ac-
quired, most existing studies only estimate a portion of vehicular
emissions from the sampled trajectory data. However, understanding
traffic emissions of a city requires an accurate number of moving ve-
hicles on each road link during a time period. In the past decades,
significant effort has been devoted to simulating traffic flows so as to
estimate traffic emissions. Existing traffic flow simulation approaches
mainly include microscopic traffic modeling and macroscopic mod-
eling. Microscopic models simulate traffic flow at the level of in-
dividuals (Chen & Wu, 2011, Zamith et al., 2015), which is used to
examine how individual movement patterns impact traffic flows
(Sentoff, Aultman-Hall, & Holmén, 2015). For microscopic models,
several software packages have been developed, such as TRANSIMS
(Zietsman & Rilett, 2001), INTEGRATION (Rakha & Ahn, 2004) and
VISSIM (PTV Planung Transport Verkehr, 2005). The microscopic si-
mulation models and emission models have been integrated in existing
studies to estimate traffic emissions. For instance, Amirjamshidi,
Mostafa, Misra, and Roorda (2013) simulated accelerations and decel-
erations of individual vehicle in a driving cycle and estimated the
emissions under different moving patterns. Fontes, Pereira, Fernandes,
Bandeira, and Coelho (2015) used various traffic micro-simulation tools
for assessing the impacts of road traffic on the environment. Abou-

Senna, Radwan, Westerlund, and Cooper (2013) cooperated both mi-
croscopic simulation model (VISSIM) and a microscopic emission model
(MOVES) for estimating emissions in a section of an interstate highway.
Similar approaches have been applied to estimate emissions of parts of
road network such as interchanges (Xie, Chowdhury, Bhavsar, & Zhou,
2012), intersections (Jie, Van Zuylen, Chen, Viti, & Wilmink, 2013) and
roundabouts (Quaassdorff et al., 2016).

In contrast to microscopic approaches, macroscopic models estimate
traffic flows using aggregated parameters such as flow density and
average speed (Delis, Nikolos, & Papageorgiou, 2015; Spiliopoulou,
Kontorinaki, Papageorgiou, & Kopelias, 2014; Zhu, Wong, Guilbert, &
Chan, 2017). Using data collected from traffic sensors such as loop
detectors and traffic counting stations, macroscopic models assign
traffic flows to road networks. In contrast to microscopic models which
estimate individual travel behaviors, macroscopic models simulate
traffic flow patterns through assigning traffic flows to road networks.
Numerous Dynamic Traffic Assignment (DTA) models have been de-
veloped based on formulating principles of vehicles' travel options. The
DTA models assign traffic flows to road networks by assuming that
vehicles' route choices are either stochastic (Parry & Hazelton, 2012) or
deterministic (Siripirote, Sumalee, Ho, & Lam, 2015), which has been
demonstrated that it can capture more realistic characteristics of traffic
flow (Wang et al., 2018). While prior knowledge of vehicles' route
choice is not necessary in stochastic approaches, the searching cap-
ability of the stochastic approaches is relatively weak and time con-
suming. Deterministic approaches simulate vehicles' route choices
based on assumptions of vehicle's demands and preferences, which re-
quires the knowledge of designated paths for vehicles. However, in the
case of assigning all the traffic flows to road network in a city, it is
necessary to work with hundreds of thousands of vehicles. For instance,
there were 728,263 vehicles licensed in Hong Kong at the end of 2015
and the number has been increasing for the past years. As a result, the
designated paths for all vehicles can hardly be estimated at the same
time. Some studies have simplified the problem with specifications of
traffic conditions, destinations and vehicular routes (Friesz, Bernstein,
Suo, & Tobin, 2001; Javani, Babazadeh, & Ceder, 2018; Zheng & Chiu,
2011), which however, cannot adequately reflect vehicle behaviors on
road networks (Xia & Shao, 2005).

In order to tackle this problem, this study incorporates a determi-
nistic approach and assumes that vehicles take the shortest paths to
reach their destinations in a road network and adopted the Cell
Transmission Model (CTM) to simplify the modeling of vehicles' route
selections based on the Lighthill-Whitham-Richards (LWR) method
(Lighthill & Whitham, 1955; Richards, 1956). The CTM was first pro-
posed by Daganzo (1994), which is the discrete analogue of the hy-
drodynamic flow-density differential equations. The author further
extended the model by introducing three-legged junctions which can
represent more complex networks (Daganzo, 1995). The CTM can
capture the traffic revolution by solving LWR and provide relatively
realistic details about the queue formation, propagation and dissipation
of congestions through kinematic waves (Nie & Zhang, 2008). It is one
of the most comprehensive models among the existing macroscopic
traffic models (Chuo et al., 2016), which has been widely used in
modeling and resolving dynamic network problems (Lo & Szeto, 2002;
Xie & Duthie, 2015; Ziliaskopoulos, 2000). However, since the CTM
needs to solve equilibrium and optimization equations of high com-
putation complexities in order to simulate the propagation of traffic
flows, most of the existing studies have applied it on a relatively small
area, such as an intersection (Canudas-de-Wit and Ferrara, 2018), a
road (Chuo et al., 2016), or a small part of road networks (Islam, Vu,
Panda, Hoang, & Ngoduy, 2017; Levin & Boyles, 2016). Based on the
CTM, this study proposes a straightforward and robust approach for
simulating the time-dependent distribution of traffic flows and esti-
mating vehicular emissions using traffic counting data under the fra-
mework of CTM. In the proposed framework, the study area is first
divided into grid cells. Comparing to the traditional CTM in which the
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cell length is considered equal to the distance traveled by traffic flows,
the proposed approach maintains the actual lengths and topological
structures of the original road networks. In the proposed approach, the
road networks in each cell are generalized into the visiting probabilities
from possible origins to possible destinations through the shortest path
calculation between the boundaries of the cells. Based on the visiting
probabilities of each cell, four types of generated cell-based vehicular
flows are simulated, i.e., station-to-station flows, station-to-boundary
flows, boundary-to-boundary flows and boundary-to-station flows. In
addition, since the traffic emissions are summarized by cells in this
approach, the numbers and the types of vehicles instead of their ac-
curate locations in each cell are required in the traffic flow simulation,
which could significantly reduce the computational cost. Therefore, this
approach can be implemented in a large area such as the entire road
networks in a city. Since the routes of vehicles between origins and
destinations are designated in the proposed framework, the emissions
of each traffic flow are then estimated based on the volume and length
of each traffic flow. In a case study, we simulate the time-dependent
traffic flows and estimate pollutant emissions of Carbon Monoxide
(CO), Nitrogen Oxide (NOx) and Violate Organic Compounds (VOC) in
Hong Kong. The spatiotemporal patterns of traffic flows as well as
emissions are visualized and illustrated in the developed space-time
integrated framework. Results of simulation of traffic flows and esti-
mation of emissions are validated using ground truth data both from
traffic counting stations and statistics from the Environmental Protec-
tion Department of Hong Kong, with accuracies of around 78.6% and
70%.

This article is organized as follows. Section 2 introduces the data
and methodology for simulating traffic flows and estimating traffic
emissions. A case study and validation are presented in Section 3. Some
related issues and limitations of this work are discussed in Section 4.
Section 5 concludes this study and discusses the future work.

2. Methodology

This section introduces the proposed framework for simulating
traffic flows and estimating vehicular emissions at the scale of a city.
First, datasets and study area are introduced. The study area is divided
by cells with resolution of 800m×800m, which is the basic unit for
simulating traffic flows and estimating vehicular emissions. Then we
build a cell model to obtain the cell features including route lengths and
visiting probabilities of counting stations and boundaries of each cell.
The cell features obtained from the cell model determine the moving
direction of traffic flows, which are the rationale for simulating traffic
flow movement. Lastly, a flow model was proposed to simulate the
time-dependent movement of traffic flow including origin, destination,
volume as well as emissions of each traffic flow.

2.1. Data and study area

This study uses the entire city of Hong Kong as a test-bed. Traffic
counting data is obtained from 169 counting stations. In addition to the
traffic counting data, road network data is used to estimate road
transport-related emissions. The road network of Hong Kong, the dis-
tribution of counting stations and dividing cells for the study area are
illustrated in Fig. 1.

2.1.1. Traffic counting data
The traffic counting data is obtained from the annual traffic census

(ATC) provided by the Transport Department of Hong Kong (TDHK,
2015). The original traffic counting data represent the average traffic
flows for the entire year of 2015, and is recorded as the total number of
vehicles passing through each of the 169 counting stations in 24 h and
hourly percentage of the number of vehicles. The traffic flow data is
divided into three main groups, namely the average traffic flow on
Weekday (Monday to Friday), Saturday and Sunday. Based on the

annual traffic census data, hourly number of vehicles passing through
each counting station on Weekday, Saturday and Sunday is obtained
The traffic counting data is a reliable data source because it is the most
frequently updated and qualitatively accurate among different data
sources (Xie & Duthie, 2015). Recorded as hourly traffic counts in each
counting station, the traffic flow data can also reflect people's socio-
economic activities. In this study, the traffic counts are updated at each
hour, which can provide us the dynamic traffic flow information to
simulate the time-dependent traffic demands.

2.1.2. Road network in Hong Kong
Road network used in this study is obtained from OpenStreetMap,

which contains 26,337 road polylines with seven types, i.e., motorway,
trunk, major, secondary, territory, residential and services. The types of
roads are used to determine the weights and probabilities of roads
visited by vehicles. The road networks in the study area are first dis-
cretized by the cells at the boundaries of each cell, which create the sub-
road networks in each cell and the nodes on the boundaries of each cell.
With each cell as the basic unit for simulating traffic flows and asso-
ciated emissions, the topologies of the original road networks are di-
vided into two levels of topologies in the discretized road networks, i.e.,
the topologies within each cell and the topologies between the cells. For
the topologies of the road networks within each cell, the sub-road
networks still retain their own topologies and flow restrictions in-
cluding connectivity between roads, crossing, grades of roads, turn
restrictions. These features are considered when calculating the shortest
paths between nodes on the boundaries and between counting stations.
For the topologies between cells, the connectivity between cells is en-
abled by the nodes on the boundaries since the original road networks
have been generalized into cells which are the basic unit in traffic flow
simulation.

2.2. Cell model

The cell model is the basis for simulating traffic flow movement,
which derives several cell-features to determine the moving direction of
traffic flows. Fig. 2 shows the elements in a cell model. With (h, v)
denoting the horizontal and vertical coordinates, a cell model is defined
as:

=h v S B N SP V PCell ( , ) { , , , , },

In the cell model,

(1) S represents a list of counting stations in the cell, which can be
described as a list: {[ID1, (x1, y1)], …, [IDNs, (xNs, yNs)]} with ID and
locations (x, y) of each counting station. S is optional in a cell model
since not all the cells are located with counting stations.

(2) B denotes four boundaries of a cell, i.e., Bi, i ∈{North, South, West,
East}. Accordingly, since road network can intersect with each
boundary of a cell at different nodes, N denotes the intersecting
node sets for each boundary of a cell, i.e., Ni, i∈{North, South, West,
East}. For instance, the road network in Fig. 2 intersect with the cell
at seven nodes, i.e., P1—P7. The node sets on the four boundaries in
the cell are NNorth= {P7}, NSouth= {P4}, NWest= {P1, P2, P3} and
NEast = {P6, P5}, respectively.

(3) SP is the average length of the shortest paths between possible
origins and destinations in a cell. The origin and destination can
either be counting stations or boundaries of a cell. Hence, the SP
from a counting station to a boundary, from a boundary to a
boundary, from a boundary to a counting station and from a
counting station to a counting station are included in SP. The SP in
a cell is calculated based on the assumption that all vehicles tend to
reach their destinations in the shortest path, which are calculated
as:
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=SP SP Sp Ni
Ni

i North South est East( )
#

, { , , W , }Sp Bi (1)

=
×

SP SP Ni Nj
Ni Nj

i j North South West East( )
(# ) (# )
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=SP SP Ni Sp
Ni

i North South West East( )
#

, { , , , }Bi Sp (3)

= = …SP SP Sq Sp
Sq

q Ns( )
#

, 1, 2, , ( 1)Sq Sp (4)

where SP(Sp➔Ni), SP(Ni ➔Sp) are the length of the shortest path from a
counting station Sp to a node Ni and from a node Ni to a counting station
Sp. Since there may be more than one node in each boundary, ∑ SP
(Sp➔Ni) is the sum of lengths of the shortest paths from a station Sp to
each node (Ni) of a boundary. #Ni is the total number of nodes in a
boundary. Similarly, ∑∑SP(Ni➔Nj) is the sum of the length of shortest
path between each node in boundary Bi and each node in boundary Bj.

(4) V consists of the maximum speed Vmax and average speed Vave in
each cell, which are obtained as average values of the maximum
speed and average speed of all roads in the cell.

(5) P represents the visiting probabilities from possible origins to pos-
sible destinations in a cell, including PS➔Bi, PBi➔Bj, PBi➔S and PSp➔Sq.
The visiting probabilities determine the moving directions and vo-
lumes of vehicular flows in a cell. The probability that a boundary
to be visited (PS➔Bi, PBi➔Bj) is determined by the connectivity and
accessibility of the boundary, which are related to the number of
intersecting nodes. As it is shown in Eq. (5), the visiting probability
either from a counting station or a boundary to a boundary is
proportional to the number of intersecting nodes on the destination
boundary.

= =P P Nodes i
Nodes j

i j N S W E#
#

, , { , , , }S Bi Bj Bi
(5)

For the calculation of PBi➔S and PS-S, in contrast, it is obtained
through accumulating turning probabilities at road intersections in the
shortest path. In addition, since roads with high level tend to have
higher probabilities to be visited than roads with lower level, each road
is then assigned with a weight corresponding to its type (i.e., motorway,
trunk, major, secondary, territory, residential and services). The turning
probability Pi at a road intersection is thus calculated as the weights of
the road that a vehicle turns to divided by the sum of the weights of
alternative turns (U-turn is not considered in this model). Therefore, the
probability of a single turn in the shortest path and visiting probability
to Sq can be calculated as Eqs. (6) and (7) shows.

= ×
× ×

P W Turn
W Turn W Turn

(# )
( # )j

SP SP

alternative alternative trave ed traveledl (6)

= =
=

P P PSq Sq Bi Sq j

N
j1 (7)

Take the visiting probabilities in Fig. 2 for an instance, the PS-S, PB-S,
PS-B, PB-B in the cell is shown in Table 1, based on Eqs. (5)–(7).

2.3. Flow model

Based on the cell model, a flow model was proposed under the
space-time integrated framework to simulate the movement and dis-
persion of time-dependent vehicular flows. In this study, a cell is the
basic context unit for simulating traffic flows. The simulation of flows is

Fig. 1. Road networks and distribution of counting stations in the study area.

SP Sq

P1

P2

P3

P4

P5

P6

P7BN

BS

BW BE Counting station

Shorstest path (SP)
Turn on SP 

Turn traveled
Alternative turn

Intersecting node

Road network

Cell boundary

Fig. 2. Elements of a cell model.
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conducted periodically in each hour because the numbers of vehicles
are recorded by counting stations in each hour. At the beginning of each
simulation period, counting stations are considered as the origins of
traffic flows, and the original volumes of flows are the numbers of ve-
hicles recorded in each counting station. Dispersion of flows in space
and time dimensions is simulated as space-time paths of flows based on
visiting probabilities of each cell. A flow arriving at a boundary of the
current cell will generate a new flow starting from the shared boundary
of the adjacent cell.

Fig. 3 demonstrates the dispersion process of flows originated from
a counting station SP. In the figure, t0—tn is a time period for flow si-
mulation. At t0, the vehicular flow originated from SP dispersed into
four flows with different volumes. The four flows move to four
boundaries of the cell and then pass the boundaries to reach their ad-
jacent cells. Note that the time spent to move from Sp to their desti-
nations are different because the lengths between Sp and each of the
four boundaries are different. Thus, each flow needs to be tracked to
obtain exact time of arrival at its boundary. When a flow has reached
the boundary, this flow ends and becomes the original flow in the next
cell, which is further dispersed based on the visiting probabilities in the
next cell. In this way, the dispersion process is simulated and flows in
each cell are recorded during each time period.

In summary, the flow model can be described as:

= h v S B T S B TFlow {ID, Cell( , ), Origin( / , ), Destination( / , ), Speed
, Length, Volume, Emission}

O E

In the model,

(1) ID is the ID number of a flow;
(2) Cell (h, v) is the cell where the flow currently locates.
(3) Origin (S/B, TO), Destination (S/B, TE) are tuples containing both

location component (counting station S or boundary B of a cell) and
temporal component (start time TO and end time TE). Speed is the
average moving speed of the flow. Length is the distance traveled
by a flow from its origin to its destination in the cell, which is
calculated as SP in Eqs. (1)–(4).

(4) The Volume of a flow denotes the number of vehicles in the current

flow. Fig. 4 shows the dispersion process of flows in a cell which
originate from a counting station SP and end at four boundaries of
the cell. The destination and volume of each flow is determined by
the visiting probabilities PS➔Bi. Let Vs be the recorded vehicle
numbers at the counting station SP, the volume of each flow is
calculated as Eq. (8) shows, in which PS➔Bi is the visiting prob-
ability from S to Bi in Eq. (5).

= ×Volume P iVs , {North, South, West, East}S i S BiB (8)

However, the volume of each flow needs to be calibrated due to two
reasons. First, since more than one counting station can locate in the
same cell, the number of vehicles in a cell with two or more counting
stations is over-recorded. Second, since some vehicles may park at
parking lots after driving for a period of time (which cannot be detected
by counting stations), the total traffic volumes recorded by counting
stations are not consistent over time. Therefore, we need to determine
the number of parking vehicles during each hour in order to simulate
the traffic flows more accurately. To eliminate the over-recorded pro-
blem, the number of vehicles from each counting station SP is adjusted
to VSp*(1-PSP➔SQ) for the cells with two or more counting stations. To
solve the problem of inconsistency of traffic volume, we assume that the
temporal distribution of vehicles parking at parking lots is opposite to
the total number of vehicles moving on road network. First, the total
number of vehicles moving on road network is considered as the total
number of vehicles passing through a counting station during a day,
which is denoted as NS. Then we define hourly vehicular flow percent
which represent the percentage of vehicles in a cell, i.e., PS, obtained by
dividing the volume of hourly vehicular flow by Ns. After that, the
maximum, minimum and average values of Ps throughout a day can be
derived, i.e., Pmax, Pmin and Pavg, based on which the parking percent of
vehicular flow can be modeled as PPark= Pmax+ Pmin-Pavg. As a result,
the volume of flow can be revised as VSP*(1- PPark).

(5) Emission. We estimate emissions for pollutants CO, NOx and VOC
for each flow based on the attributes of volume, speed and length.
To estimate the emission of a vehicle fleet, categories of the vehicle
population is required. Since the emissions of vehicles are mainly
determined. Since the traffic counts data recorded by the traffic
counting stations cannot be distinguished between different types
of vehicles, this study assumes that the composition of vehicles in
the simulated traffic flows follows the distribution of vehicle types
provided by the Hong Kong annual traffic census (TDHK, 2015), as
shown in Table 2. Since the emissions of vehicles are mainly de-
termined by vehicle types, fuel types and travel speeds, the emis-
sions can be estimated based on the simulated traffic flows and the
composition of the vehicles.

This study adopts COPERT V emission model for estimating emis-
sions for the traffic flow. COPERT is a road transport emission inventory
model financed by European Environment Agency (EEA). It categorizes
vehicles into over 450 types according to vehicle parameters such as

Table 1
Vising probabilities of S-S, B-S, S-B, B-B of the cell in Fig. 2.

O D Visiting probability

Sp Sq 1/9
BN Sq 1/9
Sp BN 1/7
BN BS 1/7
BS BW 3/7
BW BE 2/7

Fig. 3. Simulation of flow dispersion across space.

Fig. 4. Probability of space-time path of a flow.
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technical specifications, fuel and emission standards, and obtains the
best-fit emission parameters for each type of vehicles through numerous
bench tests and mathematical modeling. The COPERT model is adopted
in this study because Hong Kong has been adopting the European
emission standard since 1995, and the emission standards of the ve-
hicles in Hong Kong in the year of 2015 mainly range from Euro II to
Euro V. Since the volume of vehicular emissions is basically determined
by vehicle's type, fuel, and moving condition, the emission parameters
in COPERT are thus suitable for the fleet in Hong Kong. The feasibility
of COPERT model in estimating emissions in Hong Kong has also been
demonstrated in some related studies(Cen, Lo, & Li, 2016; Wang, Fu,
Zhou, Du, & Ge, 2010; Xia & Shao, 2005), in which the emission factors
for different types of vehicles are directly applied. Therefore, the
emission factors in COPERT is considered valid for the traffic emissions
in Hong Kong. In COPERT, basic emission factors (g/km) for vehicles
can be calculated as in Eq. (9). The parameters a-f for each pollutant,
vehicle category, fuel and emission standard can be referred to the
COPERT handbook(https://copert.emisia.com/manual/).

= + + + + +
EF

a v b v c d v e v f v g p( / )/( ), {CO, NOx, VOC}
P

22

(9)

For each vehicular flow i, the emission is thus obtained through
taking its volume and length into account, as Eq. (10) shows.

=E EF volume i length i p, {CO, NOx, VOC}i
p P (10)

Finally, the emission of each cell during any period [ts, te] can be
obtained based on the emission for each flow. Suppose there are M
flows in cell i: f1i, …, fMi with origin time and destination times (TO1i,
TE1i), …, (TOMi, TEMi). Emissions for these flows are: E1i, …, EMi.
Therefore, the emissions for the cell i during time period [ts, te] can be
calculated as:

=Emission
ts te T T

T T
Emission

[ , ] [ , ]
[ , ]ts te

i
j

M Oj
i

Ej
i

Oj
i

Ej
i j

i
[ , ]

(11)

3. Results

The proposed method is implemented using the spatial DBMS of
PostgreSQL 11 with DBeaver 5.3 as a management tool in the database
development. Within the spatial DMBS, geometry index is also used to
accelerate the computation. The simulated traffic flow and emissions
are visualized in the GIS software of ESRI ArcScene 10.2.

3.1. Traffic flow patterns during weekday and weekend

Fig. 5 shows the space-time patterns of traffic flow volumes on
weekday and weekend during six time periods, i.e., 0–1 am, 4–5 am,

8–9 am, 12–13 pm, 16–17 pm, 20–21 pm. The traffic flows were then
quantified as total moving length in each cell and visualized in a space-
time integrated framework, which can both reveal the vertical differ-
ences of traffic flow patterns between different periods in a day and
horizontal differences between the traffic flow during the same period
of different days.

It can be observed from Fig. 5 that most traffic flows concentrated
on areas in southern part of Kowloon Peninsula and the northern part of
Hong Kong Island. In contrast, the hotspots of traffic flows in the New
Territories are smaller and more dispersed. Fig. 5 also shows obvious
differences in the traffic flow patterns between weekday and weekend.
On weekday, there are obvious hotspots of traffic flows during
8 am–9 am, whereas concentrated areas of traffic flows on Sunday ap-
pear during 12 pm–13 pm. The observed differences of traffic flow
patterns are mainly caused by the different travel patterns during
weekday and weekend. In addition, according to annual surveys con-
ducted by the Transport Department (Transport Advisory Committee,
2014), vehicles' average speed on the Hong Kong Island remains at
around 20 km/h, and on some major traffic corridors, the vehicles'
speed during weekday morning peak hours approaches to 10 km/h.
Therefore, the areas with high traffic flow volumes in Fig. 5 are mainly
caused by excessive vehicles.

3.2. Spatiotemporal patterns of vehicular emissions in Hong Kong urban
area

Figs. 6, 7 and 8 show the spatiotemporal distributions of CO, NOx
and VOC emissions on weekday, Saturday and Sunday, respectively,
which are sampled at the same time periods as in Fig. 5. By comparing
the patterns of emissions with the patterns of traffic flows in Fig. 5, it is
revealed that the volumes of emissions are highly correlated to the
distribution of simulated traffic volume, which indicates that traffic
volume is the dominant contributor to the patterns of traffic emissions.
In the aspects of emissions volume, Figs. 6–8 show that the volumes of
CO emission are far higher than NOx and VOC emissions, and the vo-
lume of VOC emission is the lowest among all the three pollutants.
Elevated areas of emissions are observed in the southern part of Kow-
loon Peninsula and the northern part of Hong Kong Island as well as
their connected tunnels, which serve as transportation hubs for Hong
Kong with large amount of traffic flows. By comparing the emissions on
weekday with that on weekend, it can be observed that the hot spots of
emissions on weekday appear earlier than that on weekend. Elevated
areas of CO emissions are identified from 8 am on weekday while CO
emissions on weekend show a more even distribution during the same
time. Instead, obvious high values of CO emissions on Saturday and
Sunday are observed after 12 am.

Compared with CO emissions, more elevated areas of NOx emissions
are identified. In Fig. 7, more cells are observed to have relatively high
values of NOx emissions than that in Fig. 6, which is probably due to
different physical mechanisms of two pollutants. The traffic-related CO
emissions are mainly released under vehicles' incomplete fuel com-
bustion, which usually occurs when vehicles accelerate and decelerate
in a short time period. Vehicles involved in traffic congestions often
present such behaviors. As a result, cells in the southern Kowloon and
the northern Hong Kong Island with higher probability of traffic con-
gestions are identified to have much higher concentration of CO than
other areas. In contrast, NOx emissions are released under the over-
loading condition of vehicle engines. Vehicles moving in high speed and
over long distances are more likely to release high amount of NOx
emissions. Therefore, not only areas with high traffic volumes but also
areas with smooth traffic condition have relatively high values of NOx
emissions. The similar pattern was demonstrated in a study which ex-
amined vehicular CO and NOx emissions under different traffic condi-
tions (Zhang et al., 2011). The evidence showed that congestion was
associated with the highest emissions of CO, while NOx emission rates

Table 2
Types and composition of vehicles registered in Hong Kong.

Vehicle type Fuel type Proportion

Motor cycle Petrol 6.6%
Private car Petrol 71.4%

Diesel 0.7%
Taxi LPG 2.5%
Single deck bus Diesel 1.1%
Double deck bus Diesel 0.8%
Light bus Diesel 0.5%

LPG 0.5%
Light goods vehicle Petrol 0.1%

Diesel 9.7%
Medium goods vehicle Diesel 5.0%
Heavy goods vehicles Diesel 0.9%
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under the different traffic conditions were similar (Zhang et al., 2011).
The volume of violate organic compounds (VOC) emissions is the

least compared with CO and NOx emissions. In Fig. 8, though VOC
emissions have relatively low values, they present a more uneven dis-
tribution than that of NOx. As VOC has similar emission mechanism to
CO, the elevated areas of VOC emissions are also observed in the
southern Kowloon, northern Hong Kong Island as well as the cross-
harbor tunnels.

3.3. Validation

3.3.1. Validation of the traffic flows simulation
In order to validate the proposed approach for simulating vehicular

flows based on traffic counting stations, the simulated volumes of traffic
flow in each hour on Weekday, Saturday and Sunday were compared
with the count numbers of the counting stations for each hour across
the study area. The accuracy of traffic simulation is shown in Fig. 9.

Fig. 5. Spatiotemporal patterns of traffic flows during weekday and weekend.

Fig. 6. Spatiotemporal patterns of CO emissions during weekday and weekend.
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Fig. 9 shows that the simulated traffic volumes after 9 am are more
accurate compared with that between 0 am and 9 am. In addition,
weekday has a higher simulation accuracy than Saturday and Sunday.
The differences are probably due to a more predictable traffic on
weekday than on weekend, especially during morning rush hours. An-
other factor contributing to the differences between simulated traffic
volumes and the recorded traffic volumes is the lack of traffic counting
stations in most cells. There are only 169 counting stations in the study
area, only a small portion of cells (116 cells) in the study area are lo-
cated with counting stations. The uneven distribution of traffic counting
stations would increase the uncertainty of traffic flows simulation.

Nonetheless, the average accuracy of traffic simulation is 67.4%, and
the average accuracy for weekday is 78.6%, which demonstrates the
feasibility of the proposed approach to simulate traffic flows.

We further examine the spatial distribution of the average ac-
curacies for the cells located with traffic counting stations on Weekday,
Saturday and Sunday as shown in Fig. 10. Among the study areas,
Kowloon Peninsula and the Hong Kong Island have denser population
and traffic, while the population and traffic in the New Territories are
sparser and smoother. Particularly, the traffic in Kowloon Peninsula is
the most congested among all areas in Hong Kong. Fig. 10 shows that
the cells with high accuracies cluster around Kowloon Peninsula, while

Fig. 7. Spatiotemporal patterns of NOx emissions during weekday and weekend.

Fig. 8. Spatiotemporal patterns of VOC (Violate Organic Compounds) emissions during weekday and weekend.

Z. Kan, et al. Computers, Environment and Urban Systems 79 (2020) 101399

8



there are more cells with low accuracies in Hong Kong Island. The
spatial patterns of accuracies in these two areas are generally consistent
on Weekday and Weekends. In the north of the study area, the New
Territories also has some cells with low accuracies on Weekday and
even more cells with low accuracies on Saturday and Sunday. By
overlaying the distribution of accuracies with the locations of traffic
counting stations, Fig. 10 further shows that the areas where counting
stations cluster (such as the western Kowloon Peninsula) tend to have
higher accuracies than the areas with fewer counting stations (such as
the eastern New Territories). In general, Fig. 10 illustrates the spatial

variations of the accuracies across the cells with counting stations. The
accuracies for traffic flow simulation tend to be higher in the cells with
denser traffic flows and more counting stations.

3.3.2. Validating the emission estimation
The effectiveness of the proposed approach in emission estimation

was evaluated. Measuring the exact volume of emissions requires pro-
fessional equipment installed on individual vehicles, which can hardly
be implemented in practice. Therefore, we validated our estimation
results in a coarse granularity based on the statistics of road transport
emissions in year 2015. According to the Environment Protection
Department Hong Kong (HKEPD, 2016), the yearly emitting volumes of
CO, NOx and VOC pollutants from road transport sector are 31,400,
18,100 and 4800 tons, which are equivalent to the daily emissions of
86,027, 49,589 and 13,150 kg, respectively. The statistics of the emis-
sion volume for CO, NOx, and VOC are considered as reference values,
compared with which the daily estimations of the three pollutants and
the corresponding accuracies are shown in Table 3.

In Table 3, it can be observed that the estimated volumes of the
three pollutants are all lower than reference values. In addition to the
errors of the estimation model, the underestimation is also caused by
the traffic flow simulation. As demonstrated in Fig. 9, the accuracy of
traffic simulation on weekday is higher than that on weekend, which is
consistent with the fact revealed by Table 3 that the estimating ac-
curacies on weekday are higher than that on weekend for all the

Fig. 9. Accuracy of traffic flow simulation.

Fig. 10. The spatial variations of the accuracies of cells located with counting stations.
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pollutants. Table 3 also shows that the estimating accuracies for NOx
and VOC are higher than that for CO. More specifically, NOx has the
highest estimating accuracy, which is 95.0% for weekday, and around
75% for weekend. In summary, Table 3 shows that except for CO and
VOC on Sunday (the accuracies are both below 60%), the estimated
emissions are overall consistent with the ground truth with the ac-
curacies of most estimations around 70%.

4. Discussion

This study simulated the time-dependent traffic flows and estimated
pollutant emissions of Carbon Monoxide (CO), Nitrogen Oxide (NOx)
and Violate Organic Compounds (VOC) in Hong Kong using space-time
GIS techniques. The spatiotemporal patterns of traffic flows as well as
emissions were analyzed and visualized in the developed space-time
integrated framework, which provided insights about quantities and
underlying mechanisms of emissions from road traffic. Results of traffic
flows simulation and emissions estimation were cross-compared with
reference values from traffic counting stations and census data. The
effectiveness of the proposed approach in simulating traffic flows and
estimating emissions is demonstrated with accuracies of 67.4% and
70%.

Instead of analyzing vehicular emissions in each road link, this
study divided the study area into cells and deemed cells as basic unit for
estimating traffic flows and vehicular emissions. Since the complex
road network is generated as routes in each cell and further processed
as visiting probabilities of different boundaries in a cell, the process of
estimating total traffic emissions is notably simplified. The proposed
approach utilizing cells is appropriate for studying traffic emissions in a
large scale such as a city. In the case study, concentrations and dis-
tributions of CO, NOx and VOC emissions in Hong Kong have been
studied, which may provide a holistic view for both transportation
department and environmental department to plan to reduce traffic
emissions in the coming future. For instance, inhabitant who are sen-
sitive to a participle type of traffic pollutants can be advised to going to
the areas with high concentrations of pollutant. The proposed simple
and straightforward model has been found to be efficient and consistent
with reference data. Moreover, the approach in this study has the po-
tential to be further extended for evaluating traffic control strategies
targeted at reducing traffic emissions for different pollutants.

There are also limitations in this study. First, it is advisable to
consider the impact of urban structure and socioeconomic activities
when simulating traffic flows since urban economic activity and em-
ployment density would affect residents' daily commuting behaviors as
well as traffic flows. However, our study area may have some limita-
tions on examining this impact. Hong Kong has one of the most de-
veloped and sustainable public transport system in the world.
According to a report from the Transport Department of Hong Kong
(TDHK, 2017), Hong Kong has the highest public transport usage rate in
the world. In Hong Kong, more than 12 million trips are made through
public transport services each day including railways, buses, taxis,
trams and ferries, which account for over 90% of the total trips. For
other major cities with renowned public transport systems, in com-
parison, the public transport usage rate is around 60% in Singapore,
70% in Tokyo and 30% in London and New York. Therefore, most of

socioeconomic and employment activities are conducted through public
transport in Hong Kong. As shown in Table 2, taxis and buses only
account for 5.4% of the total registered vehicles in Hong Kong, and the
other vehicles on road network are motor cycles, private cars and goods
vehicles. As a result, the traffic flows on urban road network in Hong
Kong has a high level of uncertainty. In this situation, the hourly traffic
counting data is feasible to simulate the traffic flow patterns. Second,
the proposed approach is efficient for discovering and understanding
patterns for traffic emissions at a large scale, which however, has a
relatively weak support for explaining the emissions in a local area such
as an intersection of roads and small lanes. Third, there are un-
certainties in the processes of both traffic flows simulation and emission
estimation. For the results of traffic flows simulation, the accuracy of
simulation is greatly influenced by the distribution of traffic counting
stations. Better results could be obtained when the spatial density of the
stations is higher. In addition to the lack of traffic counting stations in
some cells, the strategy for deploying counting stations is to locate more
stations at areas with high traffic volume with low traffic volume. This
strategy can help to collect more reliable traffic information for con-
gested while locate fewer stations at areas, while in areas with less
traffic, the traffic flows distribution become more uncertain. For the
results of emissions estimation, in addition to the accumulating factor
caused by uncertain traffic flow simulation, the proposed approach also
inherits the limitations of COPERT, the underlying emission model. In
COPERT, average speed for each cell was used in emissions estimation,
which might render the approach not accurate for traffic conditions
where the speed varies. Possible ways to improve the simulation of
traffic flows and associated emissions include adopting people's travel
patterns in traffic flows simulation and incorporating other microscopic
traffic data such as vehicle GPS trajectories when estimating the traffic
flow speed. This study focuses on the traffic volume simulation and
assignment in the cell-based road networks based on traffic counts data.
With available trajectory data or traffic flow speed data, the estimated
traffic flows could be closer to the real-world traffic by incorporating
the microscopic approaches in the traffic flow simulation.

The codes of traffic flow simulation and emissions estimation can be
shared to the readers upon request.

5. Conclusion

This study proposed an approach for simulating time-dependent
distribution of traffic flows and estimating vehicular emissions for all
the vehicles in Hong Kong using traffic counting data. Under a space-
time integrated framework, we simulated the time-dependent traffic
flows and estimated pollutant emissions of Carbon Monoxide (CO),
Nitrogen Oxide (NOx) and Violate Organic Compounds (VOC) in Hong
Kong. The spatiotemporal patterns of traffic flows as well as emissions
were analyzed and visualized in the proposed space-time integrated
framework using space-time GIS techniques. With accuracies of 67.4%
and 70%, the results demonstrated the feasibility of the proposed ap-
proach for estimating city-scale traffic flows and traffic emissions.
Future work will focus on improving the existing CTM framework
through considering the impact of urban structure and socioeconomic
activities on traffic flow patterns.

Table 3
Evaluation of the emission estimation results (tons).

Pollutant CO NOx VOC

Day Estimation Accuracy Estimation Accuracy Estimation Accuracy

Weekday 60,124.35 69.9% 47,109.14 95.0% 9401.0 71.5%
Saturday 56,038.31 65.1% 37,562.54 75.7% 8631.49 65.6%
Sunday 50,642.49 58.9% 37,378.98 75.4% 7837.53 59.6%

Ground truth 86,027 49,589 13,150
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