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A B S T R A C T   

Ridesharing has potential to mitigate traffic emissions. To better support policymaking, this paper 
endeavors to estimate and analyze emission reductions by large-scale ridesharing combining the 
Shareability-Network approach, the COPERT III emission model, and a speed-density traffic-flow 
model. Using Shanghai as a case, we show that ridesharing per se can reduce fuel-consumption 
(FC) by 22.88% and 15.09% in optimal and realistic scenarios, respectively, with correspond
ing emissions reductions. Ridesharing’s spontaneous first-order speed effect further reduces FC by 
0.34–0.96%. Additionally, spatial analyses show that ridesharing reduces more emissions on 
severely polluted roads, leading to two spatial patterns; temporal analyses demonstrate patterns 
shifted from disorganized to organized. Both the phenomena can be explained by the aggregation 
of trips and the grading and topology of the roads. Moreover, ridesharing may also increase 
emissions on some branch roads, creating a new environmental injustice, which, however, is 
estimated to be less significant than expected.   

1. Introduction 

Traffic emissions in China have become one of the primary sources of urban pollution, causing significant environmental degra
dation and health hazard (Xue et al., 2010). According to the China Vehicle Environmental Management Annual Report (China Vehicle 
Environmental Management Annual Report, 2018), traffic emission has become the primary source of PM2.5 in Beijing, Shanghai, 
Hangzhou, Guangzhou, Shenzhen, and Jinan and the secondary source in many other big cities including Nanjing, Wuhan, etc. Au
tomobiles have contributed more than 80% of the total carbonic oxide (CO) and hydrocarbon (HC) emissions and more than 90% of the 
total oxy-nitride (NOx) or particulate matter (PM) production. How to mitigate traffic emissions without hurting access to convenient 
mobility options, travelers’ feeling, and the economic growth, has become a realistic and urgent problem faced by urban researchers 
and planners, transportation policymakers, enterprises, and the public around the world (Gorham, 2002). 

Shared mobility, possibly combined with autonomous driving and electrification, are widely recognized as having the potential to 
decrease traffic emission (Brown et al., 2014; Litman, 2013). Emerging shared mobility models can be summarized into mainly three 
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categories (Jin et al., 2018; Shaheen et al., 2016): (1) Vehicle sharing (Hu, Chen, et al., 2018; Hu et al., 2019; Hu, Lin, et al., 2018). 
However, as long as self-driving technology has not been fully operated yet, vehicle sharing remains incapable of providing on- 
demand, point-to-point ride services. (2) Ridesourcing, which refers to transportation services connecting community drivers with 
passengers via mobile applications. Although ridesourcing has been expanding rapidly across the world with a number of successful 
TNCs (Transport-Network-Companies), such as Uber and Lyft in the U.S., Didi in China, and Ola in India, its environmental impact is 
still uncertain (Jin et al., 2018). And, (3) ridesharing, that allows multiple passengers with similar origins and destinations to share a 
ride. Unlike categories (1) and (2), ridesharing is not only practical to provide on-demand services but has been proved effective in 
reducing VMT (Vehicle-Miles-Traveled), hence traffic emissions, in simulation-based studies (Santi et al., 2014a; Yin et al., 2018). 

However, current literature mainly focuses on evaluating the overall benefits of ridesharing (Cai et al., 2019; Caulfield, 2009; Yu 
et al., 2017), which is good to endorse the new mobility paradigm but clearly not sufficient to support detailed policymaking regarding 
transportation environmental issues. Detailed and targeted policies require refined emission estimation at, e.g., road segments-level 
such as in (Hu et al., 2019) rather than overall aggregation. Furthermore, current literature has widely proved that ridesharing can 
mitigate traffic congestion and thus promote travel speed, but few studies has analyzed how this speed acceleration effect may further 
promote emission reduction, which is highly possible because it is well known that vehicular emissions are affected by driving con
ditions (Shang et al., 2014; Cai et al., 2019). 

More importantly, all types of shared mobility per se are not sufficient to achieve the benefits. Any trips that meet each’s travel 
requirement such as delay tolerance and time window could be pooled but may not reduce any VMT and emissions. Rather, the pooling 
solution should be integrated with optimization models and analytical tools that can evaluate the potential benefits (Santi & Ratti, 
2017). Assessments that omit some critical requirements of urban trips (such as time window and delay tolerance) or are based on non- 
optimized ridesharing solutions may provide varying estimation as the sharing condition changes, making them inappropriate for 
supporting policymaking. Using real records derived from developing ridesharing market may also create biases. For example, on- 
demand ridesharing service has only been operated by Didi since November 2019, which does not allow the derivation of signifi
cant statistics, and thus may cause an underestimation of the environmental impacts as estimated by the scaling law of shareability 
reported in (Tachet et al., 2017). 

Therefore, we argue that further evaluation is needed, which should be able to answer that (1) to which extent the traffic emission 
can be reduced by large-scale ridesharing rather than occasional orders, (2) what is the upper bound estimate of ridesharing’s envi
ronmental benefits considering travelers’ critical requirements and optimization models, and (3) how the speed fluctuations as well as 
ridesharing’s speed acceleration effect can further affect the emission in ridesharing scenarios. 

This paper endeavors to fill these gaps. First of all, using taxi data as a proxy of the ridesharing demand, potential shareability 
among 350,000 daily trips in Shanghai is explored based on the Shareability Network approach (Santi et al., 2014b), which can calculate 
the optimal matching of rides according to different optimization criteria so that the upper bound of ridesharing’s environment benefit 
can be well estimated. Secondly, traffic emissions of each vehicle on each road are estimated by combining real traffic speeds and 
vehicle dynamics in the COPERT III model (Ntziachristos et al., 2000), so that the spatiotemporal patterns of emission reductions can 
be further analyzed at the street-level. Moreover, a speed-density traffic flow model is implemented to evaluate additional emission 
reductions provided by ridesharing’s speed acceleration effect, i.e., traffic is reduced in large-scale ridesharing, and hence average 
vehicle speed on the roads is increased. 

The paper is organized as follows: Section 2 provides a brief literature review of ridesharing’s potential environmental benefits and 
traffic emission estimation models. In Section 3, the research framework is presented, under which the Shareability Network approach, 
the COPERT III model, the speed-density model, and the taxi data are introduced. Section 4 illustrates the overall emission reductions 
provided by ridesharing per se and by its first-order speed effect on traffic speeds, the spatial and temporal patterns of emission re
ductions, and the emission redistribution issue. Finally, a conclusion and policy implications are further discussed in Section 5. 

2. Literature review 

2.1. The potential environment benefits of ridesharing 

To develop public policy regarding emerging shared mobility such as ridesharing, we need to first understand its potential impact. 
Early studies have evaluated the benefits of ridesharing with Shared Autonomous Vehicles (SAVs). For example, a case study in 
Singapore (Spieser et al., 2014) found that a shared-vehicle mobility solution could meet the personal mobility needs of the entire 
population with a fleet size approximately 1/3 of the total number of passenger vehicles currently in operation. Fagnant and Kock
elman (2018) investigated SAVs’ potential for U.S. urban areas via multiple applications in Austin. They confirmed that as the trip- 
making intensity rose and sharing parameters were loosened (such as users become more flexible in their trip timing), higher ride- 
sharing percentages and less relocation helped reduce net VMT. Another study in New Jersey found that trips during peak hours 
had substantial ridesharing potential that would correspondingly decongest roadways while delivering excellent mobility with 
reduced energy and environmental consequences (Zachariah et al., 2014). A report titled A New Paradigm for Urban Mobility by the 
International Transport Forum (2015) also concluded that ridesharing is expected to reduce up to 90% of on-road vehicles, nearly 
double the average occupancy, thereby reducing at least 18% of total VMT and 30% of carbon dioxide emissions. Another agent-based 
simulation also found a similar reduction in travel time and fare (Martinez et al., 2015). The problem is that (1) these models were 
generally detached from realistic ridesharing because they failed to incorporate users’ travel requirements such as time window and 
delay tolerance, and (2) the ridesharing solution is sometimes not optimized so that the benefits could vary dramatically as the 
experiment settings change. 
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Progresses have also been made in terms of benefits evaluation in more realistic ridesharing simulations. To solve the problem of 
computation and enable large scale evaluation, Santi et al. (2014b) introduced the Shareability Network approach that allows re
searchers to model the collective benefits of large-scale ridesharing as a function of passenger inconvenience. Applying this framework 
to taxi data in New York City, they found that with increased but still relatively low passenger discomfort, cumulative Vehicle-Miles- 
Traveled (VMT) could be cut by 40% and 30% in an ideal scenario and a more realistic scenario, respectively. By generalizing the 
shareability network to real-time high-capacity pooling, another study (Alonso-Mora et al., 2017) found that 98% of the current taxi 
rides could be served with just 3000 taxis of capacity four, and the number of required vehicles could be even smaller if capacity 
increases. The shareability network also applies for dynamic ride-sourcing, showing a considerable saving of vehicles (Vazifeh et al., 
2018). The Shareability Network approach has various advantages, including computational efficiency, realistic scenario modeling, and 
upper bound estimation of the ridesharing benefits, which make it well fitted to our goals of this paper. 

Since the environmental impacts of traffic are tied to per-kilometer emissions, the aforementioned studies generally assume that the 
benefit of ridesharing, no matter with self-driving fleets or a smart centralized operation platform, comes with reductions in service 
cost, emissions, and with split fares as well. Some case studies have also quantified the overall emission reductions provided by 
ridesharing. Drawing on raw observed ridesharing trip data provided by the Didi Chuxing company in China, Yu et al. (2017) found 
that the annual direct environmental benefits of ridesharing amount to about 46.2 thousand tons of CO2 and 253.7 tons of NOx in 
Beijing. The problem is that at that time, the service provided by Didi at that time (in Chinese, “顺风车”) was not on-demand ride
sharing service (in Chinese, “拼车”). Rather, it serves mainly long-distance trips that have reservations in advance. Using taxi data, 
another study (Cai et al., 2019) quantified the potential benefits of ridesharing in Beijing and found that 33% of VMT and a massive 
amount of pollution emission could be reduced if ridesharing was implemented for the entire taxi fleet. However, their estimation 
could be significantly overestimated because they didn’t take into account the time window parameter in ridesharing which reduces 
the possible pairs of shareable trips. Moreover, their analysis, as well as in other studies (Xue et al., 2018; Yin et al., 2018), only briefly 
reported the overall reduction rather than spatiotemporal patterns of the benefits. We believe the latter would be more critical for 
targeted policymaking. 

We contend that knowing the overall benefit is insufficient for policymaking, considering the inevitable and natural spatial het
erogeneity of the expected benefits. For instance, theoretical modeling suggests that shareability (the fraction of trips that can be 
shared) is heavily dependent on some key factors such as spatiotemporal trip density and traffic speed (Tachet et al., 2017), which are 
rarely homogeneous in urban space. Even streets within the same districts where travel requests are relatively dense may have 
dramatically different levels of emission reduction. Transportation-related policies such as right-of-way rules generally differ ac
cording to road attributes. Targeted policies require a deep understanding of the spatiotemporal patterns of ridesharing’s environ
mental benefits. 

2.2. Traffic emission estimation 

Traffic emission can be estimated in mainly two levels: macroscopic and microscopic. Macroscopic models use aggregate methods 
to analyze the total emissions in spatial units based on average speed and fixed emission factors. Microscopic models, by contrast, 
generally use agent-level models to estimate the traffic emissions of each vehicle on each road-segment or intersection with dynamic 
emission factors calculated using speed fluctuations. 

The COPERT III model (Ntziachristos et al., 2000) is a typical microscopic model designed to estimate the emissions of vehicles that 
meet the European emission standards. The COPERT III model has been calibrated and validated by (Shang et al., 2014; XIE et al., 
2006) based on actual categories, driving cycle, and fuel characteristics of Chinese vehicles, providing valid equations for calculating 
dynamic emission factors, and has been implemented in many studies (e.g., Sun et al., 2018). There are alternative microscopic models 
with usually fixed emission factors. For example, Xue et al. (2018) utilized fixed emission factors obtained from the Integrated Energy 
and Environment Policy Assessment model for China (2016) model groups. Cai et al. (2019) calculated the emission reductions 
provided by ridesharing with fixed parameters provided in (Huo et al., 2009). However, using fixed emission factors and ignoring the 
effect of traffic speed may significantly underestimate the emissions because vehicles generally produce a lot more emissions when 
idling in congestion. 

To estimate traffic emissions with dynamic factors, the traffic speeds must be known with high spatiotemporal precision. Emerging 
information and communication technologies and big data mining methods (Calegari et al., 2016; Lécué et al., 2014; Togawa et al., 
2016) have improved the measurements of vehicle emission estimation, laying a solid foundation for relevant analysis. Researchers use 
spatiotemporal records provided by taxi GPS data to measure vehicle emissions, significantly improving measurement accuracy 
(Ibarra-Espinosa et al., 2020; Li et al., 2019; Liu et al., 2019). 

3. Methodology and data 

3.1. Research framework 

This paper quantifies emission reductions provided by ridesharing in four steps. Specifically, we first infer Origin-Destination pairs 
from taxi data, which is a reliable proxy to the potential users of an on-demand ridesharing service. The original traffic speed on each 
road segment is extracted from the same taxi trajectory data (detailed in Section 3.5). Combining the original ODs, the original speeds, 
and the COPERT III model, the dynamic original traffic emissions are estimated (Section 3.3). 

Then, by assuming that all the taxi ODs are willing to pool, we calculate the optimal ridesharing solution that has the largest overall 
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VMT reduction by using the Shareability Network approach. After that, combining the maximal solution and the road-specific speeds in 
the COPERT III model, we estimate the second result of dynamic traffic emission in two ridesharing scenarios — the oracle and online 
scenarios (Section 3.2). The former scenario models a situation in which daily ridesharing demand is known in advance and can be 
considered an upper bound to the emission reductions that could be achieved with increasingly accurate demand prediction technology. 
The latter models a situation in which only the ridesharing demand for the next few minutes is known, and it is more representative of 
the current ridesharing technology. 

Thirdly, with a speed-density model, we estimate the first-order effect of ridesharing on the traffic speeds (Section 3.4). As also 
suggested in (Tachet et al., 2017), we can expect that if ridesharing reduces a large fraction of the VMT and on-road vehicles, the 
average traffic speed on road should go up, which may further reduce emissions. After the traffic speeds under ridesharing scenarios 
are estimated using the speed-density model, we calculate the third result of dynamic traffic emissions (Section 3.3). 

Finally, comparing all the emission estimation, we calculate the emission reductions provided by ridesharing per se and its first- 
order speed effect, respectively. Both the overall and the spatiotemporal distribution of the emission reductions at each road 
segment are further analyzed. The detailed methodology is represented in Fig. 1 and discussed in the following. 

3.2. The Shareability Network approach 

We achieve the ridesharing functionality by incorporating a well-established shareability network (Santi et al., 2014b). A Share
ability Network is a graph G(V, E,W) in which every node Ti in V = {T1,⋯,Tn} denotes one trip, every link Tshare

ij in E represents a route 
that can serve two shareable trips via ridesharing, and each weight Wij represents the weight of corresponding shared trip Tij. 

Whether the trips are shareable is determined as follows. Let Ti = (oi,di, rto
i , cti,pto

i ,ptd
i ), i = 1…k be k trips in a successfully com

bined/pooled trip where oi and di denote the origin and destination of trip i, rto
i is the request time, cti is the delivery time without 

ridesharing, and pto
i , ptd

i are the pick-up and drop-off times in the shared route Tshared
ij , respectively. The k trips are shareable if and only if 

there exists a route connecting all oi and di in any order where each oi precedes the corresponding di, except for configurations where 
single trips are concatenated and not overlapped like o1 → d1 → o2 → d2, such that each passenger is picked up and dropped off at their 
respective origin and destination locations with delay at most Δ. Imposing a bound of k implies that only k trips can be shared using a 
taxi of corresponding capacity. This paper only focuses on the case of k = 2, considering that (1) the computation of k ≥ 3 is only 
heuristically feasible or even intractable, and (2) even k = 2 can provide immense benefits to a dense enough community like New 
York City (Santi et al., 2014b). 

In the case of k = 2, there are four possible pooling-routes: oi → oj → di → dj, oi → oj → dj → di, oj → oi → di → dj, and 
oj → oi → dj → di. With all trips put into G as nodes, a link Tshared

ij is constructed if and only if any combined trip among the four routes 
can be found so that trip/node i and j are shareable, i.e., each’s delay and departure time are constrained within some pre-set windows. 
Formally, the following constrains are satisfied: 

rto
i ≤ pti ≤ rto

i +Δ (1)  

rto
j ≤ ptj ≤ rto

j +Δ (2)  

(
dtd

i − pto
i

)
− cti ≤ Δ (3)  

(
dtd

j − pto
j

)
− ctj ≤ Δ (4)  

⃒
⃒
⃒pto

i − pto
j

⃒
⃒
⃒ ≤ δ < Δ (5) 

Fig. 1. Research methodology.  
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where ptx and dtx are the pick-up and drop-off times of trip x in the shared route Tshare
ij ; rto

x is the request time, and ctx is the delivery 
time of trip x served by a single, individual trip — in this paper, it is set to the time cost of the path with the shortest travel time between 
ox and dx; and Δ is the pre-set maximum delay. 

We estimate the benefits of ridesharing in two scenarios, i.e., with two different time windows δ. The time window δ is a parameter 
that reduces the possible pairs of Tshare

ij in consideration. The oracle scenario assumes that all travel requests are issued in advance 
through a kind of reservation system, thus the possibility of sharing between any two trips will be exploited even if their starting times 
are separated by a relatively long time interval. For computation consideration, we set δoracle = 10min. In contrast, the online scenario 
only considers travel requests initialed in a relatively short time window, which is more like a practical, real-time, on-demand ride
sharing system. Following (Santi et al., 2014b), we set δonline = 1min. 

Using the Shareability Network approach, classical algorithms for solving maximum matching on graphs (Cormen et al., 2009; Galil, 
1986) can be used to determine the best solution according to different optimization criteria: (a) maximizing the number of shared 
trips — namely maximum cardinality matching, or (b) minimizing the cumulative time needed to accommodate all trips using 
maximum-weighted matching algorithms. This paper focuses on criterion (b), considering that criteria (a) only provides proxy for the 
reduction in number of circulating taxis, while other important objectives such as minimizing Vehicle-Miles-Traveled (VMT) and 
emissions can be best approximated with (b). Therefore, the integer programming model that solves the maximum-weighted matching 
is, 

min
∑

i

∑

j
LijWij (6)  

s.t. Eq(1) − (5)

Wij = min
M=4

(
dtd share

m − pto share
m

)
(7)  

where Lij is the binary decision variable which equals to 1 when trip i and j are selected for sharing and equals to 0 otherwise; pto share
m 

and dtd share
m are the pick-up and drop-off times of the whole shared route Tshare

ij ; and Wij is the link weight on Tshare
ij , which is set to the 

best choice of the four possible pooling-routes that has the minimum travel time to accommodate the combined trip of i and j, i.e., in 
the case of k = 2, M = 4. 

Eventually, all trips are assigned to routes according to the optimized solution, based on which the VMT, hence, emissions, in case 
or ridesharing are calculated. The so obtained estimated emissions are then compared to those obtained in the original situation 
without ride sharing, so that the expected environmental benefits of ridesharing can be analyzed. 

3.3. Estimation of traffic pollution emission 

The COPERT III model (Ntziachristos et al., 2000) is used to estimate traffic pollution emissions. Although it may slightly over
estimate the emissions because vehicular emission in China has followed more stringent emission standards since 2013, the model and 
parameters have been proved effective in Chinese cases (Shang et al., 2014; XIE et al., 2006). In the COPERT III model, traffic emissions 
consist of three parts: hot, cold start, and evaporative emissions. Hot emissions occur when the engine is at its normal regime, which is 
the general condition for a running vehicle and thus is our major concern. Cold start emissions denote emissions from transient engine 
operation, and evaporative emissions come from refueling and temperature changes. Following (Shang et al., 2014), the latter two 
parts are omitted in our estimation due to lack of data. They are also of less significance in terms of overall emissions (Gühnemann 
et al., 2004). The hot emission factor (EF) of a specific pollutant k, the amount of pollutant k a single vehicle emits per kilometer (g/km), 
is calculated as a function of travel speedv (km/h) with five parameters a, b, c, d, and e: 

EFk =
(
ak + ckv+ ekv2)/( 1+ bkv+ dkv2) (8) 

The emission factor for some pollutants are given in Table 1. As for other pollutants like CO2 and PM2.5, their emission factors are fully 
proportional to FC (fuel consumption). For instance, the conversion factor for CO2 and PM2.5 are 3.18 and 3× 10− 5, respectively. 

EFCO2 = 3.18 × EFFC (9)  

EFPM2.5 = 3 × 10− 5 × EFFC (10) 

Table 1 
Pollution emission parameters in COPERT III model.   

a b c d e 

CO (Carbonic Oxide) 71.7 35.4 11.4 − 0.248 0 
HC (Hydrocarbons) 5.57 × 10− 2 3.65 × 10− 2 − 1.1 × 10− 3 − 1.88 × 10− 4 1.25 × 10− 5 

NOx (Nitrous Oxides) 9.29 × 10− 2 − 1.22 × 10− 2 − 1.49 × 10− 3 3.97 × 10− 5 6.53 × 10− 6 

FC (Fuel Consumption) 217 9.6 × 10− 2 0.253 − 4.12 × 10− 4 9.65 × 10− 3  

L. Yan et al.                                                                                                                                                                                                             



Transportation Research Part D 89 (2020) 102629

6

Finally, the cumulative emission on a road segment i is: 

Eit,k = EFk × Nit × Leni (11)  

where Nit is the number of vehicles passing through road segment i in a certain time t, and Leni is the length of segment i (km). 

3.4. First-order effect of ridesharing on traffic speeds 

Theoretically, since ridesharing reduces the emissions by cutting down the VMT, it may also alleviate congestion and increase 
traffic speeds by reducing the number of on-road vehicles, which may double back and further promote the shareability hence the 
emission reduction. In this paper, we only consider the first-order effect of ridesharing on traffic speeds and ignore any second or even 
third-order effects. We utilize a simple Speed-Density model (Hall, 1996), as it can infer the increase in speeds based on just the 
changes in traffic density. Specifically, denote u0 as the free-flow speed, then the estimated traffic speed u in a specified length of road 
(veh/km) with a density of traffic stream k is, 

u = − u0ln
(
k/kjam

)
(12)  

where kjam is the jam density (veh/km). We set u0 for each road segment as the median free-flow speed in the late night and before the 
morning peak so the improvement of traffic speed (Δu) could be directly calculated using δoverall

RS — the ratio between the overall traffic 
flow density in ridesharing scenarios (koverall

RS ) and the original density (koverall
original). 

Δu = uRS − uoriginal = − u0ln
(

koverall
RS /koverall

original

)
= − u0lnδoverall

RS (13)  

uRS = uoriginal +Δu = uoriginal − u0lnδoverall
RS (14) 

Then, denote the ratio of the non-sharing traffic flow density (knon− share
original , which is the traffic flow of all vehicles except for the taxi fleet 

of this Qiangsheng company) to the traffic flow density of sharing vehicles (kshare
original, which is the traffic flow of the considered taxi fleet) 

as τ, and denote kshare
RS and kshare

original as the traffic flow density of considered shareable vehicles in a ridesharing scenario (RS) and the original 
case, respectively, and assume knon− share

original remains the same in any ridesharing scenario (RS) and the original case, then the δoverall
RS is 

calculated by, 

δoverall
RS =

koverall
RS

koverall
original

=
kshare

RS + knon− share
original

kshare
original + knon− share

original
=

kshare
RS /kshare

original + τ
1 + τ (15)  

where kshare
RS /kshare

original simply represents the proportional change of the number of on-road shareable vehicles before and after ride
sharing, which can be directly estimated using the Shareability Network model. Note that knon− share

original remains constant is a strong 
assumption, since ridesharing would surely change the overall traffic density hence traffic speed, which in turn lead to the difference in 
knon− share

original . The assumption is made because the non-sharing traffic flow data is inaccessible for now. After obtaining the new speed in 

Fig. 2. Temporal distribution of taxi trips in a typical week.  
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ridesharing scenarios using Eqs. (13)–(15), the reduced emission can be estimated based on the methods in Section 3.3 using Eqs. (8)– 
(11) and parameters in Table 1. 

3.5. Data and preprocessing 

We utilized detailed taxi GPS trajectory data collected in April 2015 in Shanghai provided by Qiangsheng, the largest taxi company 
in Shanghai which has about 13 thousand taxi vehicles. The travel Origin-Destinations pairs are inferred using a Boolean field that 
constantly records whether there are passengers on board or not. The company serves about 350,000 trips per day, which varies 
between 300,000 and 400,000 on different weekdays. The temporal distribution of the taxi trips does not show significant peaks in the 
morning, noon, or evening (Fig. 2). To the best of our knowledge, this is probably because the supply of taxi services in Shanghai falls 
short of the demand during peak hours. 

In this case, δshare
RS is estimated as follows. According to the Fifth Travel Survey of Residents (2009) and the Fifth Comprehensive 

Traffic Survey (2014) in Shanghai, only 6.6–7.0% of all trips are served by taxis, while 19.2–20.0% are served by private cars. The ratio 
between trips by private cars and all taxi vehicles is approximately 3:1. Since we only have the data of one company with a market 
share of about 25%, the ratio τ is given by the ratio of trips by private cars to the sharing vehicles (the considered Qiangsheng taxi 
fleet), i.e., τ = 3

1 Ã ⋅ 25% = 12. Therefore, according to Eq. (15), the improved traffic speed on each road caused by the speed effect of 
ridesharing is: 

uRS = uoriginal +Δu = uoriginal − u0ln
((

12 + δshare
RS

)

13

)

(16) 

The GPS location is updated every ten seconds, allowing for an accurate estimation of speed. We utilize the Hidden-Markov-Model 
(Newson & Krumm, 2009) to do the Map-matching task, i.e., to match the GPS trajectories to the road segments. Then, we select the 
median speed on each road segment in peak/non-peak hours and transform the speeds into passing-through times for further simulation. 
Peak hours are set to 7-9am and 5–7 pm, according to Amap’s (one of the largest online map servicers in China, belongs to Alibaba) 
annual transportation report (2019). Finally, all the travel time in the Shareability Network construction process are calculated by 
implementing shortest paths algorithms (e.g., Dijkstra) over the road network weighted by the selected passing-through time. 

Fig. 3. Spatial distribution of daily trip origins in research area.  
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Our evaluation covers the entire administration area of Shanghai. The city can be divided into the inner ring area, the central city 
(inner ring included), the inner suburban area, the seven suburban new towns, and the remaining suburban area. The spatial distri
bution of the taxi trips explicitly demonstrates a monocentric structure with the density gradually declining from the inner ring to the 
suburban area (Fig. 3). 

4. Results 

4.1. Overall emission reductions from ridesharing 

Our result highlights significant traffic emission reductions brought by ridesharing. As shown in Table 2, in oracle scenario, 
ridesharing saves 3695 tons CO2, 1162 tons FC, 10.87 tons CO, 1.4 tons NOx, 0.32 tons HC, and 0.04 tons PM2.5 emissions monthly. The 
savings in online scenario is about 66% of the oracle numbers. With quite a close scale of trips and taxi fleets, our estimations are much 
smaller than those found in the Beijing case (Cai et al., 2019), which claimed that ridesharing could save 199 tons CO, 16.5 tons NOx, 
2.08 tons PM2.5 monthly. There are three reasons: firstly as discussed in Section 2.1, they didn’t take into account the time window 
parameter (δ) in ridesharing modeling; secondly, the delay tolerance in their paper is 10 min while we use 5 min; finally, as discussed in 
Section 2.2, their emission estimation used fixed emission factors and ignored the effect of traffic speed. Therefore, our estimation can 
be more reliable. 

In contrast to the absolute quantities, the reduction percentage is more helpful to understand the benefits of ridesharing. In oracle 
ridesharing scenario, both VMT, FC, and all the polluting emissions drop by 22.88%–23.31%. Among all the pollutants, NOx has the 
largest reduction (23.25%), followed by CO > FC/CO2/PM2.5 > HC (22.54%). The deviation is only 0.7%, indicating that the emission 
reductions due to ridesharing are generally close regarding different pollutants. In the online scenario, since shareability between trips 
is limited by a relatively short time window, the reduction percentages decline by about 7.8% from the oracle scenario, ranging from 
14.78% to 15.44%. This is reasonable because smaller time window significantly reduces the “edges” in the shareability network, i.e., 
the possible combinations of ODs that are shareable. Ridesharing between many ODs is therefore infeasible in time, even if the sharing 
may reduce a lot of VMT. The observed reduction in emission between oracle and online scenario is consistent to the VMT reduction 
observed for the New York case (Santi et al., 2014b), in which the VMT reduction percentages in online scenario drops about 10% from 
the oracle scenario. 

Ridesharing’s first-order speed acceleration effect can additionally promote a small but considerable emission reduction. In 
Table 2, the columns marked with “delta” refer to the additional emission reductions due to ridesharing’s speed effect compared to 
only ridesharing (“Oracle/Online-RP”). It demonstrates that in addition to CO, emissions of other pollutants and FC are all further 
reduced by 0.36–0.96% in oracle scenario and 0.34–0.74% in online scenario. Even though the number is small, the real improvement is 
still considerable since the speed effect is spontaneous, that is to say, as long as ridesharing mitigates on-road traffic flow to the same 
extent as in our modeling result, its speed acceleration effect will very likely to further reduce that much emissions. Furthermore, the 
difference between the additional savings in oracle and online scenarios is surprisingly small (0.02–0.22%, except for CO), especially 
when compared with the aforementioned difference in the overall percentage (7.8%), indicating that the two scenarios may perform 
similarly in terms of the speed effect as well as the VMT reduction for some of the most congested roads. 

Moreover, the additional savings provided by ridesharing’s speed effect are ordered as FC/CO2/PM2.5 > NOx > HC > CO, which 
could be explained by the emission factors. More specifically, according to the COPERT III model and as shown in (Luo et al., 2017), the 
emission factors of FC/CO2/PM2.5 and NOx always diminish when speed increases under 100 km/h, and the emission factors of HC and 
CO only decrease when speed increases under 60 km/h and 30 km/h, respectively. Therefore, on some roads with traffic speeds 
exceeding 60 km/h and 30 km/h, the emission factors of HC and CO — the pollution a vehicle emits per kilometer — grow as traffic 
speeds increase. Since realistic traffic speeds are usually above 30 km/h, the cumulative emissions of CO increase noticeably along with 
the positive effect of ridesharing on traffic speeds. 

Table 2 
Cumulative emission and ridesharing reduction over 30 days.  

Pollutant Cumulative emission Reduction Percentage (RP) Additional reduction 

Original Oracle Online Oracle-RP Online -RP Oracle-RP1st Online -RP1st Oracle-delta Online-delta 

VMT (106km) 81.860 62.780 69.192 23.31% 15.48%     
CO (t) 47.179 36.309 39.998 23.04% 15.22% 21.76% 14.33% − 1.28% − 0.89% 
HC (t) 1.434 1.110 1.222 22.54% 14.78% 22.90% 15.12% 0.36% 0.34% 
NOx (t) 6.011 4.613 5.083 23.25% 15.44% 24.00% 16.01% 0.75% 0.57% 
FC (103t) 5.078 3.916 4.312 22.88% 15.09% 23.84% 15.83% 0.96% 0.74% 
CO2 (103t) 16.148 12.453 13.711 22.88% 15.09% 23.84% 15.83% 0.96% 0.74% 
PM2.5 (t) 0.152 0.117 0.129 22.88% 15.09% 23.84% 15.83% 0.96% 0.74% 

Note: The “RP” refers to the reduction percentage provided by ridesharing compared to original emissions. The “1st” refers to the reduction per
centage taking into account the first-order speed effect. The “delta” refers to the additional reduction between “RP” and “1st”. 
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4.2. Spatial patterns of the emission reduction 

Understanding the spatial and temporal characteristics of the emission reductions is crucial for public policymaking. Since the 
spatiotemporal patterns of different pollutants are generally similar, we use fuel consumption (FC) as an example for further analyses. 

Notably, the reductions of traffic emission are more significant at severely polluted locations, following something like the Matthew 
Effect. Fig. 4 depicts the cumulative FC in ridesharing scenarios against the original FC aggregated by road segment. On the most 
polluted roads where the monthly cumulative FC is higher than 10 tons, ridesharing can reduce 35% and 27% of the emission in oracle 
and online scenario, respectively, which are significantly larger than the overall average reduction percentages. The linear regressions 
between the cumulative FC in ridesharing scenarios against the original FC shows that both the R-squared values are quite close to 1, 
indicating that the Matthew Effect is generally stable for both scenarios. Meanwhile, the online scenario does have relatively smaller 
emission reductions and a weaker linear pattern due to the reason described in Section 4.1. 

This spatial Matthew Effect is also effective in emission reductions provided by ridesharing’s first-order speed effect, but is weaker 
with smaller R-squared values. Fig. 5 depicts the additional FC reduction due to the speed effect against the cumulative original FC. It 
shows that the linear relationship, i.e., more original FC, more FC reduced by the speed effect, is distinct on the busiest streets, such as 
those with original FC larger than 12 tons. Many of the average roads have relatively small additional reductions. This is probably 
because ridesharing’s speed acceleration effect is not evenly distributed and mainly happens on the most congested roads. 

Taking the oracle scenario as an example (the online scenario is fairly similar), we map the cumulative original FC, reduced FC, and 
additional reduction due to speed effect in Fig. 6. The result shows two distinct patterns, indicating explicit connections between the 
urban spatial structure of Shanghai and emission savings. 

The first pattern is a monocentric and concentric structure of the city, which can be easily explained by the spatial aggregation of 
trip origins, as shown in Fig. 3. Specifically, both the original FC (Fig. 6a) and the direct emissions reduction (Fig. 6b) concentrate in 
the inner ring area and generally decay futher out. Statistics show that the average oracle-RP values in the inner ring and central city 
are as high as 28.38% and 23.04%, respectively, while the average percentage in the suburban area is only 2.24%. In general, as 
reported in Table 3, both reduction percentages and additional savings due to the speed effect for both scenarios exhibit this mono
centric and concentric pattern. Furthermore, although the new towns do have much higher reduction (7.14%) compared to the average 
suburban area, their numbers are much smaller than the inner suburban area (13.91%), following the monocentric pattern once again. 
In fact, such a structure of Shanghai has been revealed in many transportation studies (Yan et al., 2019). 

The second pattern is the highlighted circular and radial trunk roads with a relatively high concentration of original FC as well as 
pollution emissions. These roads also have significantly higher reduction percentages than other roads. In contrast, some of the local 
grid roads have moderate original FC as well as reduction percentages; and the branch roads, even many of those inside the central city 
or inner ring area, have the lowest reduction percentages (Fig. 6). This pattern can be explained by the grading and topology of the 
roads — because the circular and radial trunk roads are more often used in individual routes (i.e., have higher trip-weighted 
betweenness centrality), the VMT, hence emission, on them are more likely be reduced when trips are shared. 

Moreover, the additional benefit generated by the speed effect also demonstrates similar patterns, including the monocentric 
structure, the highlighted circular and radial trunk roads, and the local grid roads. The difference is that additional reduction is more 
heterogeneously distributed and more spatially concentrated in space. In Fig. 6c, speed effect can reduce cumulative FC by more than 
10 kg on most of the circular and radial trunk roads inside the central city, which is equivalent to the direct reduction on the orange 
roads in Fig. 6b. This is because the roads with the highest FC are also the most congested, thus more likely to have speed increases due 
to ridesharing. In contrast, the additional reductions on the branch roads, even those within the central city, are comparatively small 
due to less speed gains. 

Fig. 4. FC aggregated by road segment: original FC versus reduced FC by pooling: oracle (left) and online (right) ridesharing scenario.  
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4.3. Temporal patterns of the emission reduction 

Our temporal analysis shows that the emission reductions provided by ridesharing are considerably stable over time. Fig. 7 depicts 
the hourly variation in FC and the ultimate reductions due to ridesharing and the speed effect in different scenarios. The original FC 
plot has four distinct peaks: an intensive morning peak in 7-9am and three moderate ones in 12am-1 pm, 3–4 pm, and 7–9 pm. The 
evening peak is about 2 h later than the one presented in Amap’s report (5–7 pm), which may be because taxi drivers in Shanghai used 
to change shifts at round 5 pm, making the service supply much less than real demand. Regardless of these fluctuations, after 9am, the 
emission reduction percentages are generally stable at 25% and 17% for oracle and online scenarios respectively, with a deviation 
smaller than 1%. Eventually, the emission reduction percentages drop from midnight to 4am and stay at a low level until 6am, as there 
are few passengers through that time. 

The hourly spatial mapping further demonstrates how the spatial patterns shifted between organized and disorganized structures. 
Fig. 8 depicts the spatial distribution of FC and Oracle reduction percentage (with the first-order speed effect) for three typical 2-hours 
within the central city. The 4-5am period is an example of the early morning (Fig. 8a). Since trips in this period are mainly dispersed 
early commuting, both the concentration of original FC and the reduction percentages are disorganized. Traffic emissions on most of 
the branch roads within the central city generally remains unreduced. Hence, significant ridesharing reduction happens occasionally at 
fragmented road segments, suggesting that there is no association with original FC. 

In contrast, the 7–8 am period represents the four peaks when trips and the original FC agglomerate spatially (Fig. 8b), emphasizing 
the two aforementioned spatial patterns in Section 4.2. Since this time period only includes two hours, the spatial pattern of the 
highlighted roads here is slightly more fragmentary than that in Fig. 6b. However, the monocentric and concentric structure and the 
highlighted circular and radial trunk roads are distinct: the reduction percentages gradually decline from the inner ring area out to the 
suburban area, while most of the trunk roads benefit significantly from ridesharing. 

The 10–11 pm period represents a non-peak segment during a day (Fig. 8c). Although the original FC is distributed in almost the 
same way as the 7–8 am, a lot more disorganization can be seen with respect to the spatial patterns of the reduction percentages. 
Specifically, quite a few branch roads in the inner city and even some trunk roads drop one or two reduction levels, making both the 
monocentric structure and the circular and radial pattern less evident. The overall spatial pattern becomes more like a state in between 
organized and disorganized. 

4.4. Redistribution of traffic emission: Some environmental injustice discussion 

There is another finding worth discussion: not only are the emission reductions uneven across the city, the emissions even increase 
at some locations, thus creating a new environmental injustice issue. In our static shareability model, such injustice may be relative 
rather than absolute. Specifically, in Fig. 9-left, when O1D1 and O2D2 are served by combined routes (the dashed route) instead of 
individual routes (solid routes), the green part is reduced by ridesharing and modeled, the orange parts are also reduced but not 
modeled, and the emissions on red roads are modeled to be increased. Taken together, ridesharing in our model may increase the traffic 
emission on the red segments, which, however, may not happen for dynamic ridesharing in the real world since when aggregated 
together, the orange part may offset the red part. Additionally, this also indicates that our static shareability model may underestimate 
the benefit of emission reductions provided by ridesharing at a certain extent because we do not model the reduced passenger 
searching, i.e., the orange parts. 

If the offset does not occur, i.e., the environmental injustice does appear, it will firstly appear on the red roads as revealed in our 
model. Nevertheless, such environmental injustice will be quite limited. Fig. 9-right is a plot of the zone surrounding the zero-point in 

Fig. 5. FC aggregated by road segment: original FC versus additional reduced FC due to the speed effect: oracle (left) and online (right) ride
sharing scenario. 
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Fig. 6. Cumulative original FC (a), reduced FC in Oracle scenario (b), and additional reduced FC (c) due to ridesharing’s speed effect in 
Oracle scenario. 
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Fig. 4-left and highlights the increased FC (i.e., negative reduced FC) versus original FC. It shows that the 30-days cumulative increase 
in FC is 0.18tons at most, which makes the environmental injustice issue less significant than expected. Moreover, such environmental 
injustice only exists on the roads with relatively small original FC, i.e., mostly the branch roads. The reason is that high level roads 
(mostly circular and radial trunk roads) are more likely to be part of the shortest paths, which can be reduced by ridesharing just as the 
green part in Fig. 9-left. On the contrary, it is more likely for branch roads to play the role of the red part rather than orange or green 
parts, making their cumulative emissions sometimes increase. This indicates that if ridesharing in the real-world was to cause such 
environmental injustice, the transportation-environmental policy needs to pay more attention to the minor streets. 

5. Conclusions, discussion, and policy implications 

5.1. Conclusions and discussion 

Based on the Shareability Network approach, the COPERT III emission model, the speed-density traffic flow model, and the detailed 
taxi trajectory data in Shanghai, this paper provides an accurate upper bound estimation of the environmental benefits of large-scale 
ridesharing as well as analysis of its spatiotemporal patterns. Several findings are obtained, which fill an essential gap in our un
derstanding of the potential of emerging ridesharing services in megacities.  

(1) Our results show that ridesharing is able to significantly reduce traffic emissions. Ridesharing per se can save 22.88% and 
15.09% of the FC (fuel consumption) in oracle and online scenarios, respectively, and proportionally reduce traffic emissions. 
Here, the online scenario is very close to a real-time, on-demand ridesharing system that involves only a single taxi company, 
indicating that an emission reduction around 20% is highly possible as the market grows. The order of the pollutants in terms of 
reduction percentage is NOx > CO > FC/CO2/PM2.5 > HC.  

(2) Moreover, ridesharing’s first-order speed acceleration effect further reduces FC by 0.36–0.96% and 0.34–0.74% in oracle and 
online scenarios, respectively, which is small but considerable since the speed effect is spontaneous. For different pollutants, the 
additional benefits of HC and CO are significantly smaller than others, which can be explained by the relationship between their 
emission factors and the speed.  

(3) Both ridesharing per se and its first-order speed effect reduce more emissions where the traffic is more polluting. This Matthew 
Effect leads to two spatial patterns for ridesharing’s environmental benefits: (1) a monocentric and concentric structure and (2) a 

Table 3 
Cumulative emission and pooling reduction aggregated by regions.  

Spatial division Reduction Percentage Additional reduction 

Oracle-RP Online-RP Oracle-delta Online-delta 

Inner ring 28.38% 20.37% 1.30% 1.08% 
Central city (inner ring excluded) 23.04% 14.70% 0.93% 0.69% 
Inner suburban area 13.91% 7.44% 0.49% 0.31% 
Suburban area (new towns excluded) 2.24% 0.94% 0.17% 0.10% 
Suburban new towns 7.14% 3.15% − 0.01% 0.01%  

Fig. 7. Hourly FC and reduction percentages.  
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Fig. 8. Spatial distribution of cumulative FC and Oracle reduction percentage in typical hours.  
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pattern following the circular and radial trunk roads, which can be explained by the spatial aggregation of trips and the grading 
and topology of the roads, respectively.  

(4) Our temporal analysis shows that the emission reductions provided by ridesharing is considerably stable across time. The hourly 
spatial mapping further demonstrates that patterns shifted from disorganized to organized when the hourly spatial distribution 
of trips varies from dispersed to concentrated.  

(5) Ridesharing may lead to increased emission at some small branch roads, and thus creating a new environmental injustice issue. 
Nevertheless, the 30-days cumulative increment of FC at these roads is only 0.18tons at most, which makes the environmental 
injustice less impactful than expected. 

This study has several limitations. We failed to consider dynamic ridesharing scenarios in which vehicle dispatching and reba
lancing are well simulated. We also failed to estimate the effect of speed change on the routing choices and emission of the private cars. 
And more analyses are needed to reveal the fundamental factors behand the spatiotemporal patterns. 

5.2. Policy implications 

We contend that a detailed evaluation of emission reduction performance should be part of the key criteria used to elaborate 
transportation-environment policies regarding ridesharing. Although ridesharing is shown to be environmental-friendly in this paper, 
the estimation based on the Shareability Network approach is more like a reasonable upper bound estimation. In the real world, ride
sharing per se is insufficient to achieve the emission reduction goal. Rather, it should be designed to have emission reductions or related 
criteria as an explicit optimization goal. For example, any policy tries to promote either a casual sharing service provided by existing 
private drivers or formal services provided by the TNCs should be carefully evaluated in terms of how it can prompt environmental 
benefits — through changing users’ behavior (such as increasing delay tolerance), transportation demand management (that affects 
the time windows in ridesharing), or operational strategies (such as the maximum-weighted matching solution). Therefore, this paper 
actually provides a framework to evaluate the environmental benefits of ridesharing services. By combining the models and data 
introduced in Section 3, the alternative policies and their effects on key parameters can and should be further modeled and evaluated 
before implementation. 

In addition, our analyses strongly suggest that ridesharing related policies should be spatiotemporally targeted. The Shanghai case 
reveals three crucial dimensions: the spatial division, road grading, and different time periods. More specifically, we argue that in the 
early stages of ridesharing development, ridesharing promotion policies should be tentatively implemented in the densest urban re
gions, on the busiest roads, and during peak hours. For example, policies such as giving shared vehicles the same right-of-way as buses 
can be first implemented within the central city much like the current time-based traffic control policy that forbids foreign vehicles on 
elevated road during peak hours. On the contrary, the same level of emission reductions in suburban areas or the new towns will only 
be possible when the ridesharing market there has grown enough. Again, such policies can be well assessed by the methodology 
introduced in this paper. 

Finally, our spatiotemporal analyses also imply the potential benefits of setting fixed pooling points on branch roads where travel 
requests may have priority over other locations. On one hand, pooling points can gather trip origins so that more trips may be shareable, 
creating more opportunities to achieve higher levels of shareability, hence leading to more emission reductions. On the other hand, 
considering one-way traffic is the typical situation regarding the branch roads in Shanghai, such pooling points can reduce the detour 
within communities, thereby alleviating potential environmental injustice discussed in Section 4.4. 

Fig. 9. The emission redistribution for combined routes (left) and the cumulative FC reduction nearby zero-point (right). In the right figure, the 
negative numbers of the reduced FC correspond to increased emissions due to ridesharing’s redistribution effect in the left figure. 
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