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1  | INTRODUC TION

An urban heat island (UHI) is an environmental phenomenon in which air/land surface temperatures in urban areas 
are higher than in surrounding rural areas. The existence of UHIs is a major problem in most metropolitan areas. They 
cause many adverse effects such as public health deterioration (Ding et al., 2015; Kenney, Craighead, & Alexander, 
2014; Morabito, Crisci, & Moriondo, 2012), public security threats (Cohn & Rotton, 2000; Field, 1992; Rotton & Cohn, 
2004), and increasing energy consumption (Fung, Lam, Hung, Pang, & Lee, 2006; Papakostas, Mavromatis, & Kyriakis, 
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Abstract
Modeling thematic and spatial dynamic behaviors of urban 
heat islands (UHIs) over time is important for understanding 
the evolution of this phenomenon to mitigate the warming 
effect in urban areas. Although previous studies conceptual‐
ized that a UHI only has a single life cycle with spatial behav‐
iors, a UHI can be detected to appear and disappear several 
times periodically in terms of thematic and spatial integrated 
behaviors. Such multiple behaviors have not yet been illus‐
trated with proof or evidence. This study conceptualizes a 
UHI as an object which has thematic and spatial behaviors 
simultaneously and proposes several graphs to depict peri‐
odic life‐cycle transitions triggered by behaviors. The con‐
ceptualized behaviors have been modeled and implemented 
in an object‐relational database management system and 
temperature readings collected from numerous weather 
stations were interpolated as temperature images per hour. 
The results of this study indicate that the model could track 
the spatial and thematic evolution of UHIs continuously and 
reveal their periodical patterns and abnormal cases.
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2010). It is even a more serious problem in rapidly expanding cities, given that the urbanization process is gathering 
pace. An investigation into the adverse effects and exploring the causative factors of the phenomenon is thus a matter 
of urgency. It is therefore necessary to track the evolution of UHIs continuously in both thematic (i.e., temperature 
variations) and spatial (i.e., areal changes and topological transformations) dimensions over a long period.

Previous studies estimated land surface temperature (LST) in describing UHIs and analyzed its correlation 
with social indicators (Buyantuyev & Wu, 2010), environmental indices (Hu & Brunsell, 2015) and building impacts 
(Toparlar et al., 2015; Wong & Nichol, 2013; Wong et al., 2016; Yuan & Ng, 2012). Recent studies tend to analyze 
discrete pixels toward clustering UHIs as interactive objects extracted from thermal images. For example, object‐
based analysis clustered pixels of thermal infrared images as polygons of objects so that a strong correlation be‐
tween spatial and thermal attributes (i.e., areal extent and LST) was revealed (Keramitsoglou, Kiranoudis, Ceriola, 
Weng, & Rajasekar, 2011). However, these studies are incapable of tracking thematic and spatial changes of UHIs 
simultaneously over a long period. Although some empirical studies have been conducted by analyzing spatio‐
temporal variation patterns of UHIs based on the interpolation of air temperatures collected from meteorological 
stations (Kourtidis et al., 2015; Wu, Wang, Cai, Yang, & Li, 2012), it is a challenge to describe instant changes at a 
fine temporal resolution over a long time period. Thus, a model using spatiotemporal data is needed to determine 
pixels of thermal images as UHI objects and track the changes of their dynamics through continuous time.

Many studies modeling geographical phenomena as field objects have included variable boundaries determined 
by other properties (e.g., temporal and thematic properties) related to the field (Goodchild, Yuan, & Cova, 2007). Their 
dynamics could be represented in a hierarchical framework in which a sequence was composed of consecutive zones 
related together in processes, and events for observing their shape changes and spatial movements from a series of 
images (McIntosh & Yuan, 2005; Yuan & Hornsby, 2008). For instance, moving behaviors of each object were mod‐
eled as a set of semantic events such as departure and arrival, and patterns were constructed from several sequences 
of the events (Hornsby & Cole, 2007). Other models conceptualized spatiotemporal dynamic phenomena as geo‐en‐
tities in relationships and implemented data structures fitted for computation (Bothwell & Yuan, 2010; Li, Liang, & 
Wan, 2013; Pultar, Cova, Yuan, & Goodchild, 2010). These approaches provide an appropriate strategy to model the 
dynamics of UHIs. For example, a series of zones of UHIs which expand continuously can correspond to a sequence.

However, UHI evolutions may involve a single object or several different objects that associate with topological 
relationships between zones of UHIs. For example, a UHI can contract, split into two parts, and disappear. Conversely, 
two UHIs can expand and merge into one. Claramunt and Thériault (1995) proposed a series of topological processes 
describing the behavior of a single object as an expansion or contraction, and behaviors between several objects 
as splits, unions, or reallocations. Similar models were developed in which objects disappear and reappear because 
of merging and splitting behaviors (Bothwell & Yuan, 2011; Nixon & Hornsby, 2010; Renolen, 2000). These stud‐
ies provide an enlightening approach for modeling complex transformations of UHIs. However, they only focus on 
conceptual modeling, and tracking UHIs needs logistical modeling incorporated into systematically conceptualized 
UHI behaviors. Furthermore, Del Mondo, Rodríguez, Claramunt, Bravo, and Thibaud (2013) depicted topological 
transformations in a graph composed of a set of nodes and several edges connecting the nodes with certain filiation 
relationships. Similarly, different graphs will be proposed to develop tracking dynamics of UHIs in our study.

A study has already proposed an object‐oriented spatiotemporal framework in modeling the spatial behavior of 
UHIs (Zhu, Guilbert, & Wong, 2017). Within this framework, a UHI was defined as a two‐dimensional field object 
whose temperatures were equal to or higher than a reference rural temperature. A UHI may experience different 
sequences, each of which corresponds to a type of spatial behavior. The changes in a UHI can be either internal with 
area changes or external involving topological transformations with one or several UHIs. In addition, spatial behaviors 
have been defined by means of two graphs: (a) a zone graph Z = (,z) which denotes a set of zones () as nodes 
and a set of filiations (z) as edges (e.g., spatial behaviors of zones) associated with the zones; and (b) a sequence 
graph S = ( ,s) which represents a set of sequences () that cover area changes or topological transformations (s).

However, the aforementioned framework lacks the capability to investigate temperature variations in the UHI 
extent, since the field was conceptualized and recorded as a homogeneous surface. Temperature distribution in 
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a real situation within the UHI extent can vary significantly. For example, the temperature of a small area within 
a UHI may be steady, whereas the temperature of other areas in the same UHI may rise, corresponding to a place 
with accumulated anthropogenic heat. The UHI may be considered as consisting of several small UHIs if the small 
areas are identified as UHIs with higher intensity. To have a better investigation into this phenomenon at different 
thematic intensities, a new definition of UHI will be introduced.

It has been suggested that geographical phenomena may have a periodical process of state transitions be‐
tween existence and non‐existence (Hornsby & Egenhofer, 2000). As an object, a UHI may appear, disappear, and 
reappear over time. In this respect, the periodicity links a series of existences as a continuous process, in which 
the life span of UHIs can extend from a few hours to a couple of days. Thus, establishing the periodicity of UHIs 
for the investigation over long periods becomes very important for our study.

In addition, the above framework cannot track thematic changes in a UHI. This point is vital to clarify evolu‐
tionary trends of temperature since they conclusively determine the spatial extent and consequently influence 
its spatial behavior (Bothwell & Yuan, 2012). For example, an increase in the UHI temperature may lead to the 
expansion of its spatial extent at nighttime but contraction during the daytime. Therefore, thematic tracking will 
also be modeled in our study to explore thematic‐associated spatial behaviors.

To build a relationship between two zones at two consecutive time instants for computing the proposed spa‐
tial behaviors, the above framework only covered the relationship between the overlapping area and the zone in 
the prior time instant. This may cause a problem that two zones having no significant overlap with each other are 
still uncertainly determined as associated zones, but the UHI is a localized phenomenon having no significant dis‐
placement (Hua & Wang, 2012; Jalan & Sharma, 2014). To solve this problem, a refined method is also necessary.

In summary, this study is original in four respects: (a) a new concept of UHI will be presented in considering the 
difference between urban and rural air temperatures; (b) periodical processes of UHIs with state transitions will 
be proposed to allow UHIs to have longer life spans; (c) thematic behaviors as well as UHI graphs will be proposed 
and modeled to track the changes in a variety of aspects; and  (d) a refined and robust computational method will 
be developed.

The remainder of this article is organized into three sections. Section 2 presents a new conceptual model 
of UHIs viewed as dynamic objects and emphasizes spatial and thematic behaviors with periodical transitions. 
Section 3, through an empirical evaluation in a developed spatial database management system, suggests the 
effectiveness of the proposed model. Finally, Section 4 presents a discussion and conclusions.

2  | CONCEPTUAL AND LOGIC AL MODELING

2.1 | UHIs as dynamic objects

During its lifetime, a UHI evolves through different stages. As shown in Figure 1, a UHI occurs at a given time and 
place if the temperature measured at this location is higher than a reference rural temperature. The intensity at a 
point is defined by this temperature difference (d). The UHI is formed when the temperature difference is above 
a certain threshold, the magnitude.

As a temporal phenomenon, a UHI may expand, contract, or remain stable possibly because the intensity in‐
creases, decreases, or remains constant over time. This variation in the extent and intensity of the UHI describes 
its behavior and can be summarized by a series of concepts represented in Figure 2. The behavior can describe a 
continuous process or a transformation. Continuous processes can be spatial (when they describe a variation of 
the UHI extent) or thematic (a variation of intensity).

UHIs also exhibit periodic behavior. Since temperature varies periodically, with for example UHI episodes 
more intense at night or during the summer, UHIs should be allowed to disappear and reappear periodically at 
the same location. This consideration is helpful in revealing thematic and spatial evolutionary trends of UHIs over 
longer periods (e.g., months, seasons, or even years). In this regard, a UHI can go through several active and inactive 
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periods (Figure 3). In this scenario, the appearance of a UHI indicates a creation if it is newly generated and an ac-
tivation if it existed before, and disappearance may lead to death if it disappears forever.

An active period can start from behaviors when zones appear and terminate at behaviors when zones disap‐
pear. However, termination of an active period followed by an inactive period means that the UHI has disappeared 
temporarily and will appear again shortly. Therefore, this process requires some topological constraints:

• Zones which have disappeared cannot be made by annexation and merging since disappearing zones associated 
with the two behaviors are destroyed forever; and

• activated zones which have been created cannot come from separation and splitting because both behaviors 
generate entirely new objects.

2.2 | Graph‐based modeling of UHI behaviors

UHIs are observed from temperature data at given time‐stamps. At a time‐stamp ti, a UHI un is observed by a zone zi
n
 

where the temperature is above the magnitude. A UHI will have a life span starting at ti when its first occurrence zi
n
 is 

observed, and ending at tjn when its last occurrence is observed. In between, the UHI goes through active and inactive 
periods and, in each active period, through different sequences characterized by the behaviors of Figure 2. Hence, as in 
Zhu, Guilbert, et al. (2017), sequences are defined by a series of zones, and relationships between zones and sequences 

F I G U R E  1   A UHI has a temperature at least m°C higher than the reference rural air temperature

F I G U R E  2   A hierarchical set of dynamic behaviors of UHIs
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are defined by a graph. Furthermore, we add a level since a series of sequences form a period. In addition, we consider 
temperature to define trends in intensity variation.

In order to detect all behaviors, it is first necessary to have the set of all zones identified at all time‐stamps 
. A sequence si

n
 is then a series of consecutive zones following the same spatial behavior. As proposed by Zhu, 

Guilbert, et al. (2017), two graphs are constructed to define the spatial behavior. The zone graph is denoted by 
Z= (,z), where (z) are edges connecting the zones and corresponding to some ongoing process or transfor‐
mation. The sequence graph, denoted by S= ( ,s), represents a set of sequences () that have areal changes or 
topological transformations defining the set of edges (s) of S.

Similarly, we define a graph storing variations in trends of intensity. The intensity of a UHI can increase, de‐
crease, or remain stationary. A chain is defined as a series of zones where the intensity evolves according to a 
constant trend (Figure 3). Hence, a chain can be denoted by cn = {zi

n
,… , z

j
n} where, for any k in [i+1,j], variations 

between I(zk−1
n

) and I(zk
n
) are of the same kind, where I(z) is the intensity of zone z, equaling the mean value of the 

temperature differences. Thus, a new graph of chains is introduced, C = (,C), where  is the set of chains and C 
the filiations between consecutive chains. As with periods, transitions between chains can be defined as follows:

• If cij−1n  increases and cijn decreases, un reaches a peak at the transition.
• If cij−1n  decreases and cijn increases, un reaches a low at the transition.
• If cij−1n  increases, cijn stays stationary, and cij+1n  decreases, chain cijn corresponds to a plateau. un is reaching a plateau 

and leaving a plateau during the transitions.
• If cij−1n  decreases, cijn keeps stationary, and cij+1n  increases, chain cijn is like a floor. un is reaching a floor and leaving a 

floor during the transitions.
• If both cij−1n  and cij+1n  increase or decrease and cijn is stationary, chain cijn represents a pause in the thematic evolu‐

tion. The two consecutive transitions are stabilization and resumption.

A series of consecutive sequences or chains starting with an appearance and a disappearance form an active period. 
Similarly, an inactive period contains an empty sequence and is denoted by pb

n
 so that the reappearance behavior con‐

nects with an empty sequence and generates another practical sequence. Thereby, all the periods can be refined into 
a graph P = ( , p), where  is the set of nodes denoting periods and p is the set of edges representing the state 
transitions between the periods. When several UHIs have interactive evolution in the same urban area or spatial con‐
tiguous city clusters, a graph U = ( , u) can be introduced, where   is a set of UHIs that makes the graph nodes and 
u is the edges composed of topological transformations which lead to the creation and destruction of the UHIs. In 

F I G U R E  3   Complete life cycle of a UHI. An active period contains a series of sequences and chains, in which 
a sequence is characterized by a type of spatial behavior associated with transformations, and chains correspond 
to thematic changes
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summary, three hierarchical graphs have been proposed (Figure 4). Thematic filiations construct the chain graph C. P 
records the complete life cycle of a UHI, which may have several consecutive periods associated with some particular 
transformations. Ultimately, the entire evolution of a UHI can be finally tracked in U.

2.3 | Extraction of UHI changes

The change in a UHI was built up by studying overlapping zones at consecutive time instants. If two zones share a 
similar position, they most likely belong to the same UHI. Let zi and zi−1 be two zones at consecutive time instants 
ti and ti−1. Two irrelevant zones may be associated if only considering the relation between the intersection zi∩zi−1 
and zi−1, because UHIs remain at the same location and do not have significant displacements. Thus, it is more 
convincing if related zones have a significant intersection zi∩zi−1 for both zi and zi−1.

Given two zones z and z′, we consider that z significantly overlaps z′, and we denote this by SO(z, z′), if both 
zones overlap and the area of their intersection takes a large proportion of the area of z′. Let 0<𝜀<

1

2
 be a con‐

stant. Then a significant overlap is defined by:

Fixing 𝜀< 1

2
 guarantees that, for a given zone z′, it is not possible to find two disjoint zones significantly overlapping z′. 

This relation is not symmetrical and the relation SO(z′, z) may be false if z is much larger than z′. If both relations are 
true, both zones significantly overlap, and we denote this relation by OO(z, z′), where:

Although a zone cannot be significantly overlapped by two disjoint zones, it can significantly overlap several 
zones. For a given set of zones Z, the set of all zones significantly overlapped by z is given by:

For a given zone z, the number of zones in SZ(z) is given by #SZ(z). If Z is the set of all zones i at time i, we simply write 
Si

 as Si and its cardinality as #Si. As zones at a given time instant are supposed to be disjoint, we have:

(1)SO(z, z�)⇔
area(z∩z�)

area(z�)
> 1−𝜀

(2)OO(z, z�)⇔SO(z, z�)∧SO(z�, z)

(3)SZ(z)={SO(z, z�)|z� ∈Z}

(4)z∈i ,z
� ∈i⇒ z∩z� =∅

(5)zi
1
∈i , z

i

2
∈i , z

j∈j⇒¬
(
SO(zi

1
, zj)∧SO(zi

2
, zj)

)

F I G U R E  4   Three hierarchical graphs for UHIs
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The type of spatial behavior of a UHI can be determined by the number of zones with which it is associated 
by the type of filiation with these zones. The UHI has area change if it associates with only one zone and with‐
out any topological transformations, appearance or disappearance if no overlapping or no association occurs, or 
transformations when overlapping and associating with several other zones. Thus, spatial behaviors can be con‐
ceptualized as expansion, continuation, or contraction if zi significantly overlaps one zone at ti−1, and the area of zi is 
larger, equivalent, or smaller, respectively. In addition, zi can have topological appearance transformations if zi has 
no significant overlap between any zones at ti−1, and disappearance transformations if zi has no significant overlap 
between any zones at ti+1. The other two transformations may occur when more zones are associated:

• Merge. zi overlaps several zones at ti−1 and each overlapping area is significant to its corresponding zone at ti−1. 
If only one overlapping area is exclusively significant to the zone at ti, the associated zone at ti−1 continues as zi 
with an annexation. Otherwise, a merge merging occurs.

• Split. Several zones at ti overlap at zi−1 and each overlapping area is significant to its corresponding zone at ti. If 
the area of zi−1 equals one particular zone at ti, a separation is derived. Otherwise, a split occurs.

2.4 | Modeling spatial behaviors

We can now redefine the transitions between zones from their relationships. If a UHI does not undergo any transfor‐
mation between time ti−1 and time ti, then #Si(zi−1) and #Si−1(zi) cannot be greater than 1. If no change in an area occurs, 
both zones significantly overlap such that OO(zi−1, zi) is true. Hence, for two zones zi−1∈i−1 and zi∈i, continuation 
is defined by:

In a contraction, zi−1 is bigger than zi, hence only SO(zi−1, zi) is true. As a continuous process, no other zone is 
involved in the process. Therefore, the contraction is defined by:

Similarly, an expansion is defined by:

Referring to Figure 2, a process (more specifically, for an area change) is a relationship involving a limited num‐
ber of zones. Anything that is not a process can then be defined as a transformation. The above three relationships 
correspond to processes where no topological change occurs. A more general relation can be defined relating two 
consecutive zones that are parts of a continuing process:

Transformations can involve several zones as different UHIs may be engaged. For example, a merge involves a 
set of zones Z={zi−1

1
,… , zi−1

m
}⊂i−1 and one zone zi∈i. The zone zi has to significantly overlap all the zones of Z. 

However, no zone of i−1 significantly overlaps zi.

In the case where another zone zi−1
0

∈i−1 significantly overlaps zi, we have an annexation instead of a merge:

(6)continuation(zi−1, zi)⇔OO(zi−1, zi)∧#Si(zi−1)=1∧#Si−1(zi)=1

(7)contraction(zi−1, zi)⇔SO(zi−1, zi)∧#Si(zi−1)=0∧#Si−1(zi)=1

(8)expansion(zi−1, zi)⇔SO(zi, zi−1)∧#Si(zi−1)=1∧#Si−1(zi)=0

(9)process(zi−1, zi)⇔
(
SO(zi−1, zi)∨SO(zi, zi−1)

)
∧max

(
#Si(zi−1),#Si−1(zi)

)
=1

(10)merging(Z,zi)⇔
(
Si−1(zi)

)
∧
(
∀z∈i−1,¬SO(z, z

i)
)

(11)annexation(zi−1
0

,Z,zi)⇔
(
Si−1(zi)

)
∧
(
∀z∈Z,¬SO(z, zi)

)
∧SO(zi−1

0
, zi)
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Conversely, one zone zi−1 at ti−1 overlapping a set of zones Z={zi
1
,… , zi

m
}⊂i at ti corresponds to a split. This 

requires that zi−1 significantly overlaps all the zones of Z while no zone overlaps zi−1 significantly:

A separation occurs if one zone zi
0
 significantly overlaps zi−1:

Finally, a zone zi∈i can appear or disappear at time ti:

In the first case it is not related to any zone in i−1. In the second case it is not related to any zone in i+1.
Zones would have different spatial behaviors when their overlaps are in different scenarios. For example, if 

SO(zb,zc) and SO(zb,za) are true, we have a merge. Different from the determined relationship SO(zb,zc) and SO(za,zb), 
an annexation could be obtained (Figure 5). We may also have SO(za,zd), which leads to a split. In this case, za would 
have a special behavior, combining a split and a merge at the same time.

2.5 | Modeling thematic behaviors

Thematic behaviors are studied by measuring the evolution of intensity through time. From one instant to the 
next, it can increase, decrease, or remain stationary:

Indeed, if the intensity remains within a limited range, it reasonable to consider it is stationary.

2.6 | Modeling consecutive active periods

Determination of two consecutive active periods connected by an inactive period is necessary to construct a UHI. 
As conceptualized above, zi could either derive a creation if it is newly generated or an activation if it has already 

(12)splitting(zi−1,Z)⇔
(
Si(zi−1)

)
∧

(
∀z∈i ,¬SO(z, z

i−1)
)

(13)separation(zi−1,Z, zi
0
)⇔

(
Si(zi−1)

)
∧

(
∀z∈Z,¬SO(z, zi−1)

)
∧SO(zi

0
, zi−1)

(14)appearance(zi)⇔∀z∈i−1,¬
(
SO(z, zi)∨SO(zi, z)

)

(15)disappearance(zi)⇔∀z∈i+1,¬
(
SO(z, zi)∨SO(zi, z)

)

(16)decrease(zi−1, zi)⇔ I(zi−1)− I(zi)>𝜀,

(17)increase(zi−1, zi)⇔ I(zi)− I(zi−1)>𝜀,

(18)stationary(zi−1, zi)⇔ |I(zi−1)− I(zi)|<𝜀

F I G U R E  5   Different overlapping scenarios generate different spatial behaviors
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existed. When zi appears, a retrospective trace will check whether there was a disappeared zi−x at the same loca‐
tion. Two active periods can be connected if (zi−x,zi) are spatially associated:

3  | EMPIRIC AL E VALUATION

3.1 | Study area and pre‐processing

Guangzhou, with its humid subtropical climate, is one of the most urbanized cities in China and has a population of 
over 13 million. It has high temperatures throughout the year. Since the model requires high temporal resolution 
of the data set to track changes of UHIs continuously, hourly updated near‐surface (approximately 1.5 m above 
the land surface) air temperatures were measured at 216 automatic weather stations (Figure 6), 159 of which were 
located in the urban area (3,660 km2 in size). Major stations in urban areas were on concrete surfaces besides 
roads and/or buildings. To analyze evolutionary trends of UHIs over a long time, data were collected in the year 
2015 over six one‐week periods, each separated by an interval of 21 days, from July 31 to August 6, August 28 to 
September 3, September 25 to October 1, October 23 to 29, November 20 to 26, and December 18 to 24.

To obtain a series of temperature images from the weather stations, a universal kriging interpolation method 
was used which can highlight “hotspot” regions of UHIs, assuming the input data set is characterized by an over‐
riding trend (Chai et al., 2011; Hofstra, Haylock, New, Jones, & Frei, 2008; Irmak et al., 2010; Stahl, Moore, Floyer, 
Asplin, & McKendry, 2006). Since weekly averaged root mean square errors for the six weeks were 1.06, 0.99, 
1.13, 1.06, 1.07, and 1.03°C, the magnitude m should be notably larger than 1°C to confidently extract zones of 

(19)consecutive(pn,p
�
n
)⇔

(
process(zi−x, zi)∧ (x⩾2)

)
∧
(
¬process(zi−y, zi)∧ (∀y<x)

)

F I G U R E  6   Weather stations are predominantly located in the urban areas of Guangzhou



94  |     ZHU et al.

UHIs. Temperatures observed at the star symbol in Figure 6 were located in Dajinfeng Eco‐scenic Park, which is 
a forest area close to urban areas, so they can represent the rural temperatures confidently to extract zones of 
UHIs and will not be affected by the heat dispersed from urban areas. Also, several other rural stations have lower 
temperatures so that rural areas may be included as part of a UHI if these stations are used. Therefore, only one 
rural station was used as the reference for rural temperatures to extract zones of UHIs.

3.2 | System implementation

The model was implemented in PostgreSQL 10 to simulate behaviors and to track their changes during the complete 
life cycles of UHIs. A UML model is presented in Figure 7, which summarizes the classes as discrete records in tables 
and represents their associations. First, a time series of temperature images generated hourly from air temperatures 
is compiled in a set of image tables. Hence, all the zones are extracted from temperature images, and their spatial 
and thematic information is tabulated in the zone table. For example, each row records a unique zone identified by 
its ID (zid), which exists as a single polygon (shape) at a time‐stamp (t _ s). Temperatures in the shape polygon are 
at least a magnitude m higher than the reference rural temperature (rural _ t). In particular, four types of thermal 
intensities are also summarized (max _ t, min _ t, mea _ t, and mod _ t). In order to determine filiation relations 
between zones, overlapping areas (overlap _ area) of zones at the current instant (czid) and zones in the previous 
instant (pzid) should be calculated in advance. To avoid duplicate calculation, zones with area changes and topologi‐
cal transformations are classified into three tables (merge, split, and area _ change) such that the behavior 
table can be built as the central domain to describe two types of behaviors (spb and thb) at each time‐stamp (t _ s). 
Thus, UHIs (oid) can be constructed in the uhi table, and each UHI can have one or several periods (pid), and each 

F I G U R E  7   A UML model to present database tables, functions, and their associations and generations for 
tracking spatial and thematic behaviors of UHIs over time
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period combines a time series of spatial behaviors determined by thematic behaviors. Simultaneously, sequence and 
process descriptions for spatial behaviors (spid) and thematic behaviors (cid) are obtained, and their corresponding 
patterns (spp and thp) are finally shown.

It is necessary to identify topological relations associated with zones that can create and destroy an active period 
(Listing 1). It is also vital to connect active periods that belong to the same UHI by determining awakened zones that 
trigger new periods (Listing 2). In Listing 1, lines 4–6 generate serial numbers as candidates of period IDs and deter‐
mine the first zone behavior (root) in the periods. Lines 7–12 build continual zone behaviors that extend from the 
roots (called leaf). More specifically, line 9 connects the leaves to the root. Line 10 avoids endless loop computation 
by ensuring that the appearance and disappearance behaviors are included in the period, and generates new periods 
when zones are separated as different objects. Lines 11–12 cut off the extension of leaves when zones are destroyed. 
Finally, lines 3–13 execute the recursive computation and lines 2–14 select the maximum value of path used as the 
final period ID. In Listing 2, lines 5–6 and 7–8 list zones having appearance as the head and disappearance as the tail re‐
spectively, where time interval between them is more than 2 hr but no longer than the maximum awakened time (lines 
9–10). Thus, pairs of heads and tails that satisfy the awakened condition (lines 11–13) are selected as the awakened 
candidates (lines 2–3). However, several zones that disappeared can map to the same appeared zone in the awakened 
candidates. On the basis of the candidates which have the minimum sleeping time (lines 19–20), zones having the 
maximum overlapping area are selected (lines 21–22) from the records of awakened candidates (lines 23–25). Finally, 
zones satisfying all the conditions are inserted into the awake table (lines 14–27).

3.3 | Results

3.3.1 | Dynamic behaviors of UHIs

Figure 8 presents seven consecutive days of intensities (i.e., the mean value of temperature differences at each 
time instant) in five different magnitudes. Intensities (with the condition of m = 1°C) lasting almost all the time sug‐
gest that m = 1°C cannot distinguish temperature difference effectively. It proves that zones of UHIs should sat‐
isfy the condition of m > 1 °C, as suggested in Section 3.1. Over 7 days, intensities for each magnitude increased 
gradually, and the reference rural temperature also increased from 27.6 to 29.2°C. This reveals that air tempera‐
tures in urban areas increase faster than those of the reference rural temperature in this time period, suggesting 
a typical UHI phenomenon during the summertime. The figure also shows that intensities having a larger m were 
more stable and of shorter active period. For example, the highest peak of the intensities occurred at midnight on 
August 5 when m = 2°C, while the peak was faded when m = 5°C. This suggests that a small m would help to de‐
scribe the overall evolutionary trend of UHIs, while a large one might be able to locate stable heat sources of UHIs.

Based on the above statistics, Figure 9 draws UHIs in three magnitudes and presents behaviors of three UHIs 
queried in the uhi table, with object IDs (the oid column) of 15 (m = 2°C), 17 (m=3°C), and 10091 (m = 4°C). This 
shows that the UHI having the largest magnitude contracted insignificantly without any topological transforma‐
tion and the intensity was stationary throughout the night. Since this UHI was located in the densest urban area 
of Guangzhou, it could have been formed by many phenomena, such as heat exhaust from factories and vehicles, 
the release of household energy, and heat storage from building infrastructures, so that they can release the heat 
continuously and stably at nighttime. Correspondingly, the UHI with a moderate magnitude contracted by sepa‐
rating several parts from its origin continuously, and the intensity decreased gradually. New UHIs occurred from 
the separation simultaneously. Urban temperatures outside the downtown area decreased faster than the refer‐
ence rural temperature, leading to a decrease in the intensity and contraction of the zone during the night from 
2 to 4 a.m. Then the air started to accumulate heat at dawn from 5 to 6 a.m. so that air temperatures increased 
faster than the reference rural temperature, leading to expansion and merging. Finally, UHIs contracted and disap‐
peared at sunrise (7 a.m.) because the reference rural temperature increased faster and temperature differences 
were smaller than m=3°C. In contrast, the UHI with the smallest magnitude expanded gradually before dawn but 
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contracted dramatically at dawn, and finally disappeared in the early morning. The intensity had a contrary evolu‐
tionary trend at the same time, which decreased and increased continuously followed by the other decrease. This 
suggests that UHIs in different magnitudes have different evolutions.

Additionally, a UHI can exist throughout several periods (i.e., two active periods are connected by an inactive 
period in the pid column) as presented in Figure 9. This means that the UHI can either reappear the next day (for 
the UHI with oid = 15) or in several days (for the UHI with oid = 17). This reveals that UHIs have periodicities and 
demonstrates that the proposed model can track evolutions of UHIs over a longer time compared with previous 
models by establishing the periodicity.

3.3.2 | Thematic evolution of UHIs

To find evolutionary trends of UHIs over seasons, the study investigated changes of UHIs during six one‐week 
periods over 6 months from July to December in 2015 (Figure 10). This shows that UHIs mostly happened and 
were the most significant at night. However, an entirely different phenomenon is found that UHIs were the most 
significant at noon on September 30, October 27 and November 25. This abnormal phenomenon always occurred 
with a dramatic decrease in the reference rural temperatures when it was sunny on the previous day and raining 
or cloudy on the current day. The explanation is that heat accumulated on the previous day could not disperse 
immediately at night because of the thermal insulation contributed by the urban canopy, that is, rain‐rich clouds 
obstructed the spread of heat. Heat accumulated on the previous day is gradually released on the following day so 
that the UHI could have a higher intensity with additional heat resources from anthropogenic heat fluxes (e.g., 
heat emissions from vehicles) in the daytime.

Some of our findings are also shown in Figure 10. UHIs usually occur at night and UHIs with larger magnitudes 
are more stable with a shorter active period. However, intensities in dense urban areas (m = 4°C) can grow dra‐
matically, reaching up to 5.5°C at dawn on September 25 and November 23, making them extremely significant. 
This phenomenon is always accompanied by clear sky at night followed by sunshine at dawn. This suggests that 
continuously clear sky would likely generate significant UHIs. The explanation is that dense urban areas can re‐
lease a larger amount of heat rapidly at night with a clear sky so that air temperatures in urban areas can increase 
much faster at dawn, even though reference rural temperatures increase dramatically. In contrast , UHIs were 
insignificant and might not even happen when amplitudes of the reference rural temperatures became much 
smaller between December 20 and December 23, caused by thick fog throughout each day. A similar phenome‐
non occurred between August 28 and September 3 when UHIs were short and insignificant over the whole week. 
However, the mechanism is different, because the heat was dispersed by a rainstorm lasting the whole week and 
clouds obstructed absorption of solar radiation fluxes from the land surface. Moreover, continuous rain (e.g., 
between August 28 and September 3) and fog (e.g., between December 20 and December 23) could obstruct the 

F I G U R E  8   Intensities of UHIs in five different magnitudes for seven consecutive days 
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F I G U R E  9   Behaviors of UHIs in three magnitudes of 2, 3, and 4°C
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occurrence of UHIs. Apparently observed from these weather patterns, daily duration and intensities of UHIs 
were almost the same from summer to winter, disregarding the seasonal difference.

3.3.3 | Relationship of UHIs in different magnitudes

According to the proposed UHI definition, a UHI in a small magnitude would be more likely to occur within a large 
zone, so that zones with a large magnitude can locate in the same zone with a small magnitude. Based on the 
evidence that small and dense urban areas can accumulate a great amount of heat from solar heat fluxes (Nichol, 
Fung, Lam, & Wong, 2009) and anthropogenic heat fluxes (Zhu, Wong, Guilbert, & Chan, 2017), there are reasons 
to believe that dense urban areas could be the largest heat resource in a city. Thus, correlation analysis between 
areas of zones in the same instant but in different magnitudes would help to explore the relationship of UHIs in 
different magnitudes.

Total areas of UHIs in three magnitudes (m = 2, 3, 4°C) were computed through SQL queries and then correla‐
tions of the total areas between m = 3, 4°C (Figure 11) and between m = 2, 4°C (Figure 12) were computed respec‐
tively by using R2. Overall, R2 = 0.78 for m=3, 4°C and R2 = 0.59 for m = 2, 4°C for all the six weeks. Both cases 
show positive correlations. These two figures also show that total areas of UHIs were several times (for m = 3°C) 
to dozens of times (for m = 2°C) larger those that in a large magnitude (m = 4°C).

In particular, all the values of R2 for m = 3, 4°C were larger than 0.80 except for those during the 7 days 
between September 25 and October 1 (Figure 11). These values show strong and positive correlations. There 
are two possible reasons. First, dense urban areas determined the evolution of UHIs when m = 4°C, since the 
urban areas and zones of the UHIs had significant overlap most of the time. Second, a great amount of the heat 
generated in small and dense urban areas could diffuse to large and low‐density urban areas through air thermal 
diffusion. This process fundamentally affected thermal distribution in low‐density urban areas and thus led to 
merging and annexation between zones, as presented in Figure 9. This reasoning can explain why strong and 

F I G U R E  1 0   Intensities in three magnitudes over 6 weeks, together with the reference rural temperatures
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positive correlations could be shown between areas of zones. Therefore, UHIs of a large magnitude (m = 4°C) 
could overwhelmingly influence evolution of UHIs of a small magnitude (m = 3°C).

Additionally, the influence could extend across different seasons because it was maintained from August 
to December for R2≥ 0.80 overall. There is a weak and positive correlation (R2 = 0.43) in the period between 
September 25 and October 1. Given the fact that the weather was changing during these days, that is, with a 
mixture of fog, cloud, and sunshine due to different meteorological conditions, it can be deduced that unstable 
weather can impede heat absorption and thermal diffusion, leading to the disappearance of UHIs.

Even though all the values of R2 for m = 2, 4°C (Figure 12) were smaller than those for m = 3, 4°C (Figure 11), 
all of them show a positive correlation. Surprisingly, strong and positive correlations remained (R2 ≥ 0.70) between 
July 31 and August 1, between October 23 and October 29, and between December 18 and December 24 for 
UHIs in m = 2, 4°C. The explanation is that heat from small and dense urban areas still could influence the evolu‐
tion of UHIs, spreading into much larger areas in mixed urban–rural regions.

4  | DISCUSSION AND CONCLUSIONS

This study established an object‐oriented data model organized by graphing in three hierarchies. The model allows 
tracking of thematic and spatial behaviors of UHIs. Instead of focusing on numeric air temperatures of UHIs, this 

F I G U R E  11   Correlation analysis between areas of UHIs in m = 3°C (x‐axis) and m = 4°C (y‐axis) over 6 weeks

F I G U R E  1 2   Correlation analysis between areas of UHIs in m=2°C (x‐axis) and m=4°C (y‐axis) over 6 weeks
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study proposed the concept of intensity as the statistics of temperature differences between urban temperatures 
and reference rural temperatures to build a model of different behaviors.

A UHI has a magnitude to maintain its significance, and each one may experience several transitions between 
active and inactive periods, which breaks the traditional bondage of tracking UHIs in discrete days and allows 
continuous tracking over days, weeks, and even seasons. UHIs at different magnitudes may build inclusive rela‐
tionships with each other, which means that a large UHI may contain several small UHIs with a large magnitude. 
As such, the small UHIs would experience active and inactive transitions when the large UHI is active, while the 
disappearance of the large UHI would lead to the disappearance of all small ones.

A simple and effective criterion to test the reliability of the model is based on the notion that each zone has 
only one behavior at each time instant (no duplicate or undetermined behaviors). The model has been evaluated 
through a set of input parameters and a complete set of 6 weeks of data. Several technologies were used in the 
database management system to accelerate the computation, such as creating indices in spatial and non‐spatial 
columns, tabulating intermediate data maintained in RAM, and creating a new table to replace an existing one 
instead of making update queries. Through these optimizations, computing all the behaviors and establishing all 
the proposed graphs require about 3 min.

This study has two limitations. First, the spatial density of the stations is not high enough, so that micro‐changes 
at the street/block level are difficult to detect. Second, a UHI undergoes either topological transformation or areal 
change at each time instant. However, an existing UHI should have both spatial and thematic properties all the 
time so that correlations between areas and temperatures for UHIs can be determined continuously. Future work 
could allow a UHI to have areal change and topological transformation at a time instant if the UHI is still active. 
This study omitted displacements of UHIs as most of them are locationally static. Future work could incorporate 
this model into other geographical phenomena with obvious displacements, such as water pollution. The model 
could thus be improved in a more sophisticated scenario.

Four important findings in this study can be summarized, and they point to the effectiveness of the model. 
Firstly, clear sky at night followed by sunshine at dawn can promote the occurrence of UHIs of extremely high 
intensities at dawn. Secondly, UHIs in a specific magnitude could maintain their intensities during the daytime not 
only in summer but also across winter without the influence of rainy and foggy weather. Thirdly, UHIs normally 
occur at night across different seasons, while they can also be very significant at noon because of the weather 
changes from sunny to rainy/cloudy on two consecutive days. Finally, UHIs in a larger magnitude are more readily 
associated with locations with smaller spatial extents and shorter duration of active periods.

To sum up, two conclusions can be drawn. First, our model is original in four respects since we proposed: (a) a 
new definition for investigating UHIs of varying significance; (b) a new transition between active and inactive peri‐
ods to extend the life span of UHIs; (c) a new UHI graph concept to track dynamics of UHIs; and (d) a new method 
to confidently compute spatial behaviors. Second, based on a well‐designed database management system, the 
empirical evaluation suggests that the proposed model can process a large set of images and can allow queries to 
explore evolution and characteristics of UHIs effectively.
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