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A B S T R A C T

Although bike-sharing has been recognized as an active and sustainable transportation mode, the dramatic
expansion of free-floating bike sharing (FFBS) services generates problems such as illegal parking and low uti-
lization. An effective FFBS system needs to be highly regulated. This study combines Big Data and spatial agent-
based modeling to understand the interactions between stakeholders to assist the bike-sharing system design.
The key design decisions considered are the locations and capacities of bicycle parking lots in the system, as well
as the connected bike lanes between parking lots. The model has been applied to the case of Hong Kong for
demonstration. The results show that the parking lots with higher capacities are mostly close to the metro
stations, and the cycleways are disconnected even for those that have high cycling occupancy. The results in-
dicate that for most target people to be willing to change the parking location, the minimum fare discount rate
for doing so should be set to 30%. The average trip time can be reduced by 3.8%, and per user cost can be
reduced by 2.4% with an expected investment of 0.12 million USD to build new cycle tracks and connect existing
cycleways.

1. Introduction

As fuel prices rise, traffic congestion worsens, populations grow, air
quality worsens, land use management and greater world-wide con-
sciousness arise around climate change, it will be necessary to find
sustainable modes of transport and better adapt existing modes to move
people in more environmentally sound, efficient, and economically
feasible ways (Bauman, Crane, Drayton, & Titze, 2017; DeMaio, 2009;
Shaheen, Guzman, & Zhang, 2010). Bike-sharing, or public bicycle
programs, is emerging as a prominent alternative to assist in solving the
above problems. Bike-sharing schemes have grown in Europe, North
America, South America, Asia, and Australia (Liu, Jia, & Cheng, 2012).
This mobility trend has experienced exponential growth over the last
years, with over 1100 cities actively operating automated bike sharing
systems as of 2017, deploying an estimated 1,900,000 bikes worldwide.
Bike-sharing schemes have evolved over the years, initially consisting
of free-to-use bike systems and followed by coin-deposit systems, while
the majority of today’s bike-sharing schemes are IT-based systems, with
some cities incorporating additional functionalities such as demand-
responsive and multi-modal systems with real-time information
(Shaheen et al., 2010). The emergence of free-floating bike-sharing

(FFBS) services has revolutionized the market. The new services make
renting and returning bikes more convenient than ever.

As an FFBS fleet size is not constrained by the capacity of docking
stations, it is much easier to increase fleet size in the FFBS system. The
recent dramatic increase in bike fleets is far beyond the expectations of
transportation and urban planners. Before the introduction of shared-
bike service, Hong Kong did not have a city-wide public shared-bike
system as the only one operates within a park. The rapid expansion of
free-floating bike sharing systems in Hong Kong started in April 2017,
when the first operator launched its service. There were 25,000 shared
bikes distributed in Hong Kong at the peak in the first half year of 2018
(Leung, 2018). If there are too many bikes in the system while the
utilization of the bikes remains at a low level, such services could be
fiscally unsustainable or potentially harm the urban transport system.
In Shanghai, China, there is a bicycle graveyard where 100,000 unused
bikes were parked (Bird, 2018). In Hong Kong, the government also
received more than 800 complaints about illegal parking and public
space occupation of shared bikes in one year (Legislative Council
Secretariat, 2018). Amsterdam decided to ban free-floating shared bi-
cycles in September 2017 due to the sheer number of bikes taking up
space in the city (Van Roy, 2017).
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Therefore, the FFBSs should be carefully regulated, taking into the
consideration FFBS infrastructure represented as parking lots and bike
lanes. In our study, the designated parking lots for FFBS are different
from the stations in a station-based bike sharing system (SBBS). As only
bike racks need to be installed in parking lots for FFBS rather than
expensive kiosk machines and docking stations for an SBBS, the infra-
structure costs of FFBS are considerably lower than for SBBS. Generally
speaking, the number of parking lots for FFBS is much greater than the
number of stations in SBBS. As a result, without considering the land
use constraint, the high-density distribution of proposed FFBS parking
lots can be achieved, and consequently, the high accessibility level that
FFBS provides will not be compromised. The Hong Kong Government
endeavors to foster a “bicycle-friendly” environment in new towns and
new development areas in Hong Kong. The Transport Department will
provide not less than 3500 additional bicycle parking spaces at suitable
locations to facilitate the public cycling need (Hong Kong Transport
Department, 2018). At the same time, the government will develop the
cycling network and improve existing cycling facilities to promote cy-
cling as a green mode for short-distance commuting. It is critical to
developing a high-performance agent-based model to understand bike
users’ travel behaviors and support system design by assessing the im-
pact of changes in bike-sharing infrastructure at a fine spatial resolu-
tion.

A novel approach that combines Big Data and ABM for efficient
FFBS system design with spatial information is presented in this study.
The availability of this “big data” (i.e. large-scale data sets) on in-
dividual bike-sharing travel patterns, represents untapped opportu-
nities to consider individual travel behavior when improving bike-
sharing system design. The contributions of this research to metho-
dology mainly focus on three aspects: 1) spatial clustering; 2) high-re-
solution; and 3) spatial extensions. One of the spatial clustering algo-
rithms, k-medoid clustering algorithm, is applied to spatially cluster the
origins/destinations (O/D) points into bike-sharing parking lots. A
high-resolution ABM was developed based on the collected bike-sharing
travel information that generates agents with the real trip start time and
O/D points. Geographic information system (GIS) extensions are in-
corporated to enhance the reality of the model. The transport modes
including bike and walk are simulated in their own traffic lanes (cy-
cleway and footway) based on the corresponding speeds. This study
aims to understand the travel behaviors of bike-sharing users and assist
decision making on FFBS system design through a data-informed spatial
agent-based model.

2. Related research

The FFBS is originated from China, which has not been very popular
in other countries. The system design studies related to FFBS are sparse,
most are focused on SBBS. Some SBBS system design methods also can
be used as references for FFBS system development. Thus, the system
design studies related to FFBS and SBBS are both reviewed. One way of
improving the service quality of a bike-sharing system (BSS) is to im-
prove its system design. Key design decisions include station size, sta-
tion location, number of bikes at stations, number of stations and bike
lanes connecting the stations. Some studies are dedicated to optimizing
these decisions against economic constraints, including facility cost and
travel value of time, or demand constraints. García-Palomares,
Gutiérrez, and Latorre (2012) used a GIS approach to identify the po-
tential trip demand and locate stations using location-allocation
models, but the passengers’ behaviors were not considered. Vogel and
Mattfeld (2011) applied data mining to operational data to offer insight
into typical usage patterns of BSS then to predicate the bike demand in
improving strategical and operational planning. Yan, Lin, Chen, and Xie
(2017) focused on leisure bike-sharing trips and presented four time-
space models considering the stochasticity of demand and different
optimization objectives. Nair and Miller-Hooks (2016) formulated an
equilibrium network design model to determine the optimal system

configuration of a bicycle sharing system in Washington, D.C. which
involved a fleet of bicycles positioned at various stations across the
large network. Romero, Ibeas, Moura, Benavente, and Alonso (2012)
proposed a bi-level mathematical programming model to optimize the
location of public bicycle docking stations, a genetic algorithm was
used in the upper level to search for the distribution of a given number
of docking stations that maximized the number of bicycle users, and the
interactions through the modeling of the modal split between car and
bike were considered in the low level. Martinez, Caetano, Eiró, and
Cruz (2012) presented a heuristic, encompassing a Mixed Integer Linear
Program (MILP) to simultaneously optimize the location of shared
biking stations, the size of the vehicle fleet, and regulates the bicycle
relocation activities in a regular operation day. Garcia-Gutierrez,
Romero-Torres, and Gaytan-Iniestra (2014) determined the station's
location based on these people mobility considerations, and the esti-
mated number of bicycles/parking lots per station given the probability
of using the BSS system based on the knowledge of the potential user
preferences.

The measure for BSS design also depended on the objective of sta-
keholders (Ho & Szeto, 2014). From a government perspective, social
benefits such as environmental benefits, user satisfaction, and demand
coverage are important. For private BSS operators, revenue and return
on investment rate are perhaps more essential. Lin and Yang (2011)
presented a mathematical formulation considering the service level and
investment cost, including station cost and bike lane cost. To make the
model more practical, Lin, Yang, and Chang (2013) further formulated
the design as a hub location inventory problem and presented a greedy
drop heuristics method to solve the problem posed in a hypothetic
transport network. The mathematical model proposed by Frade and
Ribeiro (2015) aimed at maximizing the demand coverage and return
on investments as an optimization target at the zone level.

Three recent papers on FFBS considering the system design were
found. Reiss and Bogenberger (2016) identified the mobility patterns
based on detailed GPS-Data Analysis for the FFBS and built a demand
model to forecast the upcoming demand and reveal the optimal fleet
distributions. A validation method was used to evaluate and proof the
benefit of potential relocation. Caggiani, Camporeale, Ottomanelli, and
Szeto (2018) proposed a methodology for the strategic design of FFBS
whose facilities could be allocated in the territory according to spatial
and social equity principles. Bao, He, Ruan, Li, and Zheng (2017) used a
greedy network expansion heuristic to generate a bike lane network
plan set to maximize the usage while remaining within a construction
budget and considering connectivity constraints. This approach is not
applicable when individual trajectories are not available.

To the best of our knowledge, there is little literature integrating
free-floating bikes with a public transportation system with considera-
tion of the spatial structure of transport network and users’ interaction
and adaptation behaviors at the same time, especially in the case of
Hong Kong.

In this research, agent-based modeling (ABM) is used to overcome
the limitations of previous studies. ABM has been used to investigate
many transportation science problems such as the mode choice problem
(Lu & Hsu, 2017; Lu, Hsu, Chen, & Lee, 2018); traffic signal control
(Aziz, Nagle et al., 2018), parking (Levy, Martens, & Benenson, 2013;
Zhang, Guhathakurta, Fang, & Zhang, 2015) and hurricane evacuation
(Ukkusuri et al., 2017). There have been a few studies applying agent-
based approaches to model trips related to bicycling include supporting
walk-bike infrastructure investment (Aziz, Park et al., 2018) and im-
proving system sustainability with bike sharing (Lu et al., 2018). Tra-
ditional econometric and approximate proportional models do not as
such accommodate agent level interaction. In contrast, ABMs can cap-
ture dynamic attributes such as learning from experience and spatial
evolution in the system (Lu et al., 2018). For instance, in our study, bike
operators can dynamically deploy the parking lots with optimal capa-
cities based on daily demand. With the extension of GIS on an ABM
platform, all the bicycling activities can be simulated on a real road
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network. Moreover, the web-crawling method is used to collect the
global positioning system (GPS) records of bike-sharing activities. The
bike user agents’ travel information (including trip origin/destination,
trip start time) have a one-to-one correspondence to the individual-
based bike-sharing travel data. Thus, a high-resolution spatial ABM is
built to simulate and represent a BSS with a bottom-up approach, si-
mulating the interactions between bike users, operators, and the gov-
ernment, and representing the evolutions of users’ cycling choices as
influenced by different FFBS system formulations.

3. The method

Fig. 1 shows the research workflow. In order to assist decision
making for FFBS system design, two tasks are proposed: bike user travel
behavior analysis and spatial ABM model development.

3.1. Descriptive analysis of bike users’ behaviors

3.1.1. Data collection
As FFBSs are commonly operated by private companies, they

usually do not grant the general public access to needed data. To solve
this problem, a web-crawling method was developed to collect

streaming data of bike-sharing trips in real-time. A program has been
built to simulate the requests made in the smartphone app and sys-
tematically collect the server’s response, containing the list of nearby
available bikes. The hired bike will disappear from the pool, and if the
trip terminates, it will reappear in a new coordinate. Therefore, after
cyclical collection, the origin and destination of a bike trip can be ob-
tained by searching for the geolocation change of each bike chron-
ologically. The unique 9-digit bike ID and the real-time GPS location of
every available FFBS bike in Hong Kong were continually recorded at a
frequency of 5min on average. Data from one of the largest FFBS bike
operators in Hong Kong has been collected. The data for this study were
collected from February 8 to February 28, 2018. The data are fully
anonymous—no user information is associated. This research examines
a large-scale dataset containing 58198 bike-sharing trip records in
Hong Kong to explore the impacts of individual travel patterns. Each
record has GPS coordinates of one specific bike and an observed
timestamp.

3.1.2. Data preprocessing
Some redundant information and errors exist in the raw data, so we

run a series of preprocessing steps. The first preprocessing step reduces
redundant coordinate information about stationary bikes and cleans up

Fig. 1. Research workflow.
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some errors due to GPS drifting. For example, one kind of GPS drifting
occurs from instabilities in civilian GPS sensors, which can cause a bike
to seemingly teleport from one location to another before shifting back
to the same location. We then removed some unrealistically short- or
long-distance movement (riding time less than 1min and longer than
3 h) because such movements might not be associated with an actual
cycling activity (Shen, Zhang, & Zhao, 2018). For instance, the move-
ment of a bike over a very short trip time could result from noncycling
causes such as GPS instability, local bike relocation by bike-sharing
operators, etc. And the movement of a bike for a very long trip time
could result from bike maintenance and relocation by bike-sharing
operators. After overly long/short trips based on duration were singled
out, 98.6% of the BS trips were selected for subsequent analyses.

3.1.3. Travel behavior analysis
To provide insights into the modeling part, user behavior analysis is

conducted. A descriptive analysis is conducted to identify the travel
patterns of FFBS users in Hong Kong. The bike-sharing travel in-
formation, including temporal factors (trip start/end time, trip dura-
tion), spatial factors (O-D points) are extracted and saved in the dataset
for population generation in the ABM model.

3.2. Spatial agent-based model development

3.2.1. Model experiment settings and initialization
The model was built using the GAMA platform (GAMA, 2016),

which can construct spatially explicit agent-based simulations. In the
ABM model, there are three agents: bike users, operators, and bikes.
These agents interact with each other and also adapt to changes in the
environment. The time step is one minute. The spatial resolution is 1m
× 1m.

3.2.1.1. Bike users. The bike users’ trip information including O-D
matrix and trip start time are directly imported from the individual
bike-sharing trip information in the dataset. Fig. 2 shows the import
process of bike-sharing trip data. The disorganized trip origins and
destinations from the bike-sharing trip dataset are identified as the
parking points, which are saved in an ESRI shapefile format for the

subsequent spatial cluster analysis. The bike users have different
distributions of socio-economic status represented as different values
of time (VOT) of cycling and walking. The cyclists’ VOT are higher than
the VOT for the car and public transport, as the time spent on cycling is
comparatively unproductive. However, Van Ginkel (2014) claimed that
VOT of cycling is lower because it brings health and convenience for the
users. Koppelman and Bhat (2006) indicated that the travelers are
much more sensitive to out-of-vehicle time than to in-vehicle time,
meaning that a higher disutility is generated from a minute of out-of-
vehicle time compared to a minute of in-vehicle time. In this study, the
VOT of cycling and walking are evaluated as 60% and 100% of the bike
users’ hourly salary level (Lu & Hsu, 2017; Lu et al., 2018). The user
agents’ hourly incomes are based on the distribution of hourly wage (all
employees) from the Report on Annual Earnings and Hours Survey (Hong
Kong Census & Statistics Department, 2017). But it should be
acknowledged that most bike users are young people, whose hourly
incomes may not fully correspond to the survey data on all employees
across a wider age bracket.

The accessibility of FFBS parking lots is a crucial factor in en-
couraging bike sharing use. In Hong Kong, the main factors affecting
the choice of transport mode are travel time and walking distance be-
tween location for getting on/off the mechanized transport and the
locations of trip origin/destination. We only consider the accessibility
level as the key factor influencing the bike use. This is because the bike
agents embedded in the model are already bike users based on the real
bike-sharing trip data. The only difference is the changes in the parking
lots’ distributions, which is represented as the accessibility level,
quantified by the distance between O/D and bike parking lots. Lin et al.
(2013) showed that the bicycle stations should not be located more
than 300–500m from important origins and destinations of traffic.
Thus, people will become a bike user if at least one bike-sharing parking
lot is located less than 500m from the user agent’s origin/destination.

3.2.1.2. Bike operators. Bike operators deploy their bikes with the
optimal distribution and fleet size to meet the daily demand. If the
use frequency of the bike at a specific parking lot is zero, the operator
will remove this bike in the next day, and the capacity of this parking
lot will be reduced by one accordingly. In contrast, if a user cannot rent

Fig. 2. The prototype of the spatial ABM model.
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a bike at this parking lot, the operator will put one bike at this parking
lot next day, the capacity of this parking lot increased by one
accordingly. After several day-to-day adjustments, a supply and
demand balance is achieved. The optimized locations and capacities
of parking lots with the determined amount of parking lots can be
realized.

3.2.1.3. Bikes. As FFBS bikes are not designed for racing, we use
15 km/h as a cycling reference speed on the level cycleway (Shen
et al., 2018). Some cycle lanes are isolated and only connected by
footway, where cycling is not allowed (Hong Kong Transport
Department, 2018). Therefore, 5 km/h on average, a speed equivalent
to walking, can be achieved on the footway. The dataset gives accurate
time and geolocation date of the trip O-D, while it does not provide
information about the route that users choose. The travel trajectories in
this study are the shortest possible routes generated on a high-
resolution GIS map.

3.2.1.4. The environment. The proposed model was applied to Sha Tin,
Hong Kong for demonstration (see Fig. 3). The Sha Tin study area is
highlighted in yellow in Fig. 3. The red area is the metro area, where
bicycle parking is prohibited. Sha Tin is the most populous city in the
New Territories of Hong Kong, with a 2011 population census of
630,273 within an area of 35.87 km2. Sha Tin also has a “bicycle-
friendly” environment with well-equipped bike infrastructures. The
prototype of the spatial ABM model is shown in Fig. 2. The grey lines
represent the footways and cycleways. The bike users are represented as
red dots. The trip origin and destination exported from the bike-sharing
trip dataset are shown as light-blue and light-yellow dots, respectively.
The clustered parking lots are represented as blue crosses. The bikes are
shown as the black squares, which are parked at the parking lots. A
digital elevation model (DEM) has been constructed so that contiguous
slopes along bike lanes can be obtained, which is used as a factor
impacting bicycling speed in the estimation (see Fig. 4). Based on the
real road network, the bike users who have specific origins and
destinations are assumed to choose the shortest path for cycling. The

shortest path here means the path with the shortest travel time by
considering the length and slope simultaneously. Their trajectories are
generated and saved as an ESRI shapefile format for the road occupancy
analysis.

3.2.2. Model calibration
The day that used for calibration was selected randomly, based on

the criteria that weather was suitable for cycling and most cyclists are
observed on that day based on the bike-sharing trip dataset. The cali-
bration method for picking one representative day is based on
Wallentin and Loidl (2015). Finally, Friday 09 February 2018 was se-
lected. On this date, the maximum temperature was slightly above
17 °C, and no precipitation was recorded.

The number of bike users, bicycling trip start time, and the origin/
destination of the bicycling trip in the model are from the bike-sharing
trip dataset collected with the web crawling method. Only two kinds of
data, average trip time and a number of used bikes, were used to ca-
librate the bicycling trip behaviors. In the business as usual (BAU)
scenario, there are no clustered parking lots, the bike users start their
bicycling trips from their own trip origin at a specific start time and end
their trips at their own trip destination. First, we compared the trip time
generated from the BAU model and reality. Second, there are 540 bike
users and 336 used bikes from real data, which means some bikes’ use
frequency is more than one. Based on the simulation results, the pre-
vious endpoint and current start point of the bike used by different
users are sometimes not the same places. This phenomenon can be
explained by the GPS error of the users’ smartphones. The maximum
GPS error range is 80m. Table 1 shows the calibration results. The
model has a good fitting degree with reality. The simulated average trip
time is shorter than the real trip time, likely because the trajectories of
bike users are defined as the shortest path, which may cause the si-
mulated trip time to be shorter than the real trip time, especially for
round-trips that have the same or very similar origin and destination.

3.2.3. Spatial cluster of the disorganized bike-sharing parking points
The trip O-D geolocation in the dataset suggests the demand to rent/

Fig. 3. The study area and nearby areas.
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return a shared-bike at such a spot. We use spatial clustering algorithms
to cluster the disorganized trip O-D points into candidate parking lots.
The bike users rent or return the bikes at these parking lots. The trip O-
D points’ distance between each other less than the cluster threshold is
aggregated into one candidate parking lot. The cluster threshold is
measured based on real road network distance. Thus, the spatial clus-
tering algorithm such as k-means and DBSCAN based on Euclidian
distance are out of consideration. Two spatial clustering algorithms,
hierarchical and k-medoid clustering algorithms, are tested. The hier-
archical clustering algorithm, specifically, means the hierarchical
single-linkage agglomerative algorithm, which works on the location
attribute and considers that a group is composed of points following
this property: a point belongs to a group if there is at least one point in
this group that is at a distance lower or equal to the cluster threshold.
The center of hierarchical clustering is the point with the minimum
distances between other points in the cluster. The k-medoids algorithm
is a clustering algorithm related to the k-means, with the only differ-
ence being that k-medoids chooses data points as centers instead of the
centroid of that cluster. The average accessibility distance of the bike
users to the bike parking lots are changed with these spatial cluster
processes, and bike usage is also influenced. Table 2 shows the per-
formances of these two spatial clustering algorithms. The performance
here refers to the average distance between points labeled to be in a
cluster and a point selected as the center of that cluster, indicating how

compact each cluster is. The number of parking lots is generated from
hierarchical clustering algorithm with the different cluster threshold
from 100m to 1000m with the step of 100m. The k in the k-medoid
clustering algorithm is defined with this number of parking lots. We can
see that the k-medoid algorithm has better performance with the same
number of parking lots. Fig. 5 shows the clustering results of these two
algorithms with the same number of parking lots. Different colors re-
present different clusters. We can see that the clustered parking lots are
distributed more uniformly with the k-medoid clustering algorithm,
and the better performance—higher accessibility level—can be ex-
plained. Thus, the k-medoid clustering algorithm is selected to generate
parking lots.

3.2.4. Optimization of the location and capacity of parking lots
The criteria for optimization of the location and capacity of the

parking lots are defined as 1) minimizing the users’ travel cost incurred

Fig. 4. Digital elevation model of Sha Tin.

Table 1
The model calibration.

Scenarios Average trip time (m) Number of used bikes

BAU 13 340
Reality 16 336

Table 2
The performances of hierarchical and k-medoid clustering algorithms.

Cluster threshold
(m)

No. of parking
lots (k)

Hierarchical
performance

K-medoid
performance

100 350 45 40
200 132 285 121
300 70 697 194
400 30 1178 320
500 18 1241 409
600 15 1256 450
700 10 1286 596
800 3 1405 1286
900 2 2989 1660
1000 1 3198 2678
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in the bicycling trips, and 2) minimizing the system cost of the bike
sharing operator. In comparison to the SBBS, FFBS saves on start-up
costs by circumventing the construction of expensive docking stations
and kiosk machines. Thus, the construction cost of parking lots is not
considered in this study.

There is a basic tradeoff in determining the locations and capacities
of bicycle parking lots. The user cost can be reduced with the increase
of the parking lots and bike fleet size, but the system cost may be in-
creased with the expansion of the FFBS. Determining the optimum
distribution of the parking lots is a multi-objective optimization pro-
blem. The problem formulation is presented as follows:

Objective functions:

= +Min UC EC HC (1)

= + − + × ×Min SC OC CC (EC deposit no. users 5%) (2)

UC and SC refer to the user cost and system cost. EC and HC re-
present the explicit cost and hidden cost of users. Explicit cost refers to
the service fees of bike-sharing. And the hidden cost is related to the
travel time and access time (the walking time to take or park the bikes
at the designed parking lots) of bike users multiplied by their corre-
sponding VOT. OC and CC represent the operating cost and capital cost
of the bike-sharing system, respectively. Operating costs incur from
maintenance, distribution, staff, insurance, office space, storage facil-
ities, website hosting and maintenance (DeMaio, 2009). Capital costs
include purchase and fabrication of the bikes (DeMaio, 2009). The
lifespan of bicycles is assumed to be three years. The straight-line de-
preciation method is applied to calculate the yearly capital cost, which
can distribute the fixed assets evenly to each year according to the
service life. We also assume there is a 5% annual rate of return from the
bike users’ deposits.

The number of possible solutions to the optimized distribution of
parking lots is too large for enumeration, as much as the total number
of bike-sharing points in reality. Thus, a heuristic technique known as
Pareto optimization is proposed to solve optimization problems.
Heuristic methods have several advantages, such as that they are easy
to implement on a computer, and they can be applied to virtually any
ABM. This is particularly important for models that are too complex for
conversion to other mathematical forms (Oremland & Laubenbacher,
2014). In this study, a genetic algorithm (GA) is applied to search the
control space in an attempt to find the Pareto frontier. Fig. 6 shows the
Pareto frontier.

Solutions on the Pareto frontier represent those that cannot be im-
proved upon in terms of one objective without some sacrifice in an-
other. In this sense, each solution on the Pareto frontier is optimal
concerning some choice of weights. Fig. 7 shows one of the optimum
distributions of the parking lots (k= 135). The corresponding average
accessibility performance is 106m, which is below the maximum
walking distance. Based on the parking lots distribution, we can find
certain parking lots are located around the metro stations and riverside.
As we mentioned before, the bike will be removed if its daily utilization
is zero and the corresponding capacity of these parking lots will be
reduced by one, and a parking lot’s capacity will be increased by one if
one user cannot rent a bike in this parking lot. The optimized capacities
of parking lots are obtained with the day-to-day adjustment. Because
human mobility behavior is 93% predictable (Song, Qu, Blumm, &
Barabási, 2010), we can foresee an individual's future whereabouts
based on his or her previous trajectory, especially for the commuter
trips during weekdays. Thus, the optimum locations and capacities of
parking lots can meet the daily bike-sharing demand well. The corre-
sponding capacities of parking lots based on the optimum distribution
(k=135) are presented in Fig. 7. We can see that the parking lots close
to metro stations have higher capacities, which means bike-sharing may
be used as first/last mile connections of the transit.

3.3. Scenarios simulations

3.3.1. Parking incentive
Based on the simulation results, the parking lots with higher capa-

cities are mostly close to the metro stations, which leads to the problem
of over-clustering of bicycles around public transit stations during peak
hours. To solve this problem, parking incentives are proposed based on
the cycling trajectories in the ABM model. For example, bike user A
always uses FFBS to connect the first-mile metro trip from home to the
metro station on weekdays. Because the presence of too many bikes
obstructs the entryways of metro stations during the morning peak, the
cheaper-parking incentive will be sent to the people A’s smartphone to
encourage him to park the bike at other parking lots with an acceptable
walking distance to the metro station. The bike user’s utility can be
changed, which is represented as the user cost, where the explicit
cost—the cycling fee—may be reduced with the incentives, but the
hidden cost related to the walking time may be increased. If the utility
is improved, in other words, the user cost is reduced, the bike user will

Fig. 5. The distributions of the parking lots with the two clustering algorithms.
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park the bike in other parking lots rather than near the metro station
entryway.

Subsidies to encourage the use of certain parking spots and to stop
bicycles from agglomerating are studied. As delineated in Hong Kong
Transport Department regulations (Hong Kong Transport Department,
2018), bike-sharing operators must facilitate the return of their bicycles
to designated bicycle parking places through incentive schemes for
good bicycle parking practices and penalties for non-compliance. The
Portland State University TREC Center (2018) found that nearly two-

thirds of bike-sharing riders considered the discount important in their
decision to sign up for membership. Lyft, the company that has pur-
chased the largest bike-sharing operator in the US, offers discounts to
people who use the bikes and scooters to connect to transit (Hawkins,
2018). One bike-sharing operator in Hong Kong has also claimed that
customers can earn 30min of free riding credits when they park certain
bicycles in designated areas (Sun, 2017). In the present study, two in-
centive strategies are tested including 30min of free riding, and a fare
discount (as compared to the original fee).

Fig. 6. The Pareto frontier of the number of parking lots.
Notes: Frontier points are marked with a triangle and non-frontier points with a circle; the number in the figure is the k in the k-medoid algorithm, which also equals
the number of parking lots. Here 1 HKD ≈ 0.13 USD as in April 2019.

Fig. 7. The locations and capacities of parking lots (k=135).
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Based on the simulation results (Table 3), a discount scenario with a
30% reduction in price (or higher discount) has the same effect on
parking behavior as the 30-minute free riding scenario, with most
people are willing to change the parking location. Target people here
means the bike users who would ordinarily park their bikes close to the
metro stations with a distance less than 100m during peak hours (7am-
9am and 6pm-8pm). Thus, the operators are suggested to provide a 30%
fare discount to solve the over-clustering parking problem. 26% of bike
users are willing to change their parking location far away from the
metro stations when the discount rate is zero, which means no in-
centives for the parking. Because their cycling distance is shorter, al-
though the walk distance is longer, the corresponding total user cost is
still reduced. Compared with the BAU scenario (k= 135), the accessi-
bility distances of these scenarios are increased, which means this
parking regulation brings a certain inconvenience for the bike users. For
example, in the scenario of 30-minute free riding, the accessibility
distance is increased by 60.5%.

3.3.2. Bike lane extension
Based on the simulated road occupancy, a bike lane extension sce-

nario was simulated. The major problem of bicycle infrastructure in
Hong Kong is that cycle tracks are underutilized and disconnected. Bike
users need to wheel their bikes on the footway. High cycle modal share
may be achieved and sustained with a safe, extensive, and continually
improving cycling infrastructure (Ashwani, 2015). Castillo-Manzano
and Sánchez-Braza (2013) stated that Seville’s high cycling modal share
was the result of the development of extensive new cycling infra-
structure. There are some projects on clustering/summarizing trajec-
tories on the road network (Han, Liu, & Omiecinski, 2012; Kharrat,
Popa, Zeitouni, & Faiz, 2008), which help urban planners to know the
popular routes and improve the public transportation system.

In our model, new bike lanes are suggested to be built parallel to the
popular footways that have intensive trajectories. Thus, disconnected
bike lanes can be connected. Identifying the heterogeneity (occupancy
here) can assist in ranking candidate locations for infrastructure, which
is a standard process in investment choices with a limited budget. There
is a monetary cost ciassociated with each road segment Ri in converting
a footway segment into a bike lane (e.g., building the railings and
clearing the space). The cost for the construction of bike lanes and cycle
tracks are 90HKD (11.7USD) and 630HKD (81.9USD) per meter, re-
spectively (Weigand, McNeil, & Dill, 2013). Most cycleways in Hong
Kong are cycle tracks that separate the cyclists from motor traffic and
provide a high level of security. Thus, the cycle tracks construction cost
is selected for bike lane extension investment. Fig. 8 shows the road

occupancy of the existing cycleway and footway. Road occupancy re-
presents the total number of bike trips that occur on a specific road on
one weekday. The roads next to the river has higher occupancy, but
these roads are not all cycleway; some are footways, which connect the
cycleways. The candidate cycle tracks are indicated with an ID number
corresponding occupancy in the Fig. 8. The candidate cycle tracks and
the corresponding construction cost are shown in Table 4. We can find
most high-occupancy roads have gentle slopes, which is consistent with
the findings that cyclists tend to avoid slopes (Hood, Sall, & Charlton,
2011; Li, Wang, Liu, & Ragland, 2012; Menghini, Carrasco, Schüssler, &
Axhausen, 2010). If 0.12 million USD were invested to build new cycle
tracks and connect existing cycleways, the average trip time could be
reduced by 3.8%, per user cost reduced by 2.4%, and the number of
used bikes reduced from 227 to 211. Bike users’ satisfaction could be
improved accordingly, attracting more potential bike users.

4. Discussion and conclusion

This research presents a novel approach which integrates Big Data
techniques into ABM to assist FFBS system design with spatial in-
formation. The k-medoid clustering algorithm is applied to spatially
cluster the origins/destinations (O/D) points into bike-sharing parking
lots. A high-resolution ABM was built that utilizes bike-sharing trip data
to generate agents with real trip start time, trip O/D, and socio-demo-
graphic attributes. The bicycling and walking are based on a real
transportation network with specific attributes such as road length and
slope. The model acts as a laboratory to assess the impact of different
strategical designs for bike lanes and parking lots.

Based on the simulation results generated in this study, as the
number of designed parking lots increases, the per-user cost decreases
accordingly, while as the total system cost increases, the optimum
distribution of parking lots was found based on the Pareto frontier re-
sults. Then the capacities of parking lots are optimized considering the
interactions between bike users and operators. The parking lots with
higher capacities are mostly close to the metro stations, which leads to
the problem of over-clustering of bicycles around public transit stations
during peak hours. The roads, including footways and cycleways, have
higher occupancy and are mostly near the riverside. The cycleways are
disconnected, even those with high occupancy. Cycleways with in-
tensive cycling trajectories are suggested to be built parallel to popular
footways. Two scenarios were simulated to examine the effect of such
decisions. The scenario of parking incentive shows encouragement of
user agents not parking the bikes block the metro stations during the
peak hour may bring certain inconvenience for the users represented as
the increased accessibility distance. The minimum discount rate for
encouraging most target people to change the parking location is 30%.
26% of bike users are willing to change their parking location farther
from the metro stations even if the discount rate is zero. In the bike lane
extension scenario, the average trip time can be reduced by 3.8%, and
the per user cost reduced by 2.4% with a 0.12 million USD investment
in building new cycle tracks and connecting existing cycleways.

The results of the study provide an advanced tool to assist in FFBS
system design and understand the behaviors of bike users under various
policy scenarios. The method used to develop this model can be used for
FFBS system design in other cities. The potential benefits of this re-
search are broader than providing comprehensive information for BSS
development. Data availability of detailed GPS records including O/D
points and generated trajectories can benefit other parties. By ag-
gregating cycling trips, transportation planners can identify mismatches
between cycling demand and infrastructure supply. In addition, the
framework has the potential to be applied to other infrastructure sys-
tems and help inform the complex decision making for developing and
improving integrated transportation systems such determining joint
ticket formulation for metro-bike traveling and bike-sharing parking lot
distributions around metro stations.

As with all modeling exercises, we are generating scenarios to

Table 3
Simulation results of different parking incentive strategies.

Incentive strategies Target
people

Num
willing to
change

Average
accessibility
distance (m)

Access
increase%

Discount rate (%) 100 19 15 169.9 60.5
90 19 15 169.9 60.5
80 19 15 169.9 60.5
70 19 15 169.9 60.5
60 19 15 169.9 60.5
50 19 15 169.9 60.5
40 19 15 169.9 60.5
30 19 15 169.9 60.5
20 19 14 162.7 53.7
10 19 8 131.0 23.7
0 19 5 134.8 27.3

Free 30 min 19 15 169.9 60.5
BAU(k= 135) n/a n/a 106.0 0

Notes: Here Num willing to change refers to the people from the target people
group are willing to change the parking location with corresponding incentives.
The average accessibility distance means the average distance between O/D
and selected parking lots.
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explore possible future options, not to predict actual futures. However,

some limitations should be acknowledged. The current model only
considers the operation cost based on statistical data, and the detailed
dynamic rebalances cost will be simulated in future work. The impacts
of FFBS strategic designs in the scenarios will be validated by travel
survey data from before-after project completion analysis in our future
work.
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Appendix A. ODD protocol table of FFBS model

Elements of ODD protocol Description

overview 1.Purpose Free-floating bike sharing system design
2.1 Entities Bike users, bike operators, and bikes
2.2 State variables Bike users: Trip origins/destinations, selected parking lots, hourly salary, bicycling fee, walking/bicycling time, accessibility level of

selected parking lots, travel trajectories
Bike operators: parking lots location/capacity, operating cost, capital cost, bike fleet size
Bikes: use frequency, speed, start/end parking lots

2.3 Scales Space: Sha Tin, Hong Kong (6 km * 6 km)
Spatial: location of agents, resolution 1m * 1m
Temporal: one-minute interval update of activities

Fig. 8. The road occupancy (k= 135).

Table 4
Candidate cycle tracks and corresponding construction cost.

ID Length Slope Occupancy Construction cost (USD)

5756 260.62 9.65 52 21345
5893 134.30 7.48 48 11000
5864 119.84 1.98 30 9815
4066 169.49 0.88 29 13882
4067 132.69 1.27 29 10868
4068 186.88 2.75 29 15306
5922 152.10 1.67 26 12457
5941 114.70 2.12 26 9395
5580 245.50 10.69 25 20107
Total cost (USD) 124175
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3. Process overview and sche-
duling

1. Bike users population synthetic based on the bike-sharing trip dataset.
2. Spatial clustering of existing O/D points to candidate parking lots.
3. Bike operator assigns bikes in different parking lots based on bike-sharing travel demand (the number of bike users whose distance to
the parking lots are less than 500m).
4. Bike users rent/return bikes at certain parking lots.
5. Bike operators optimize the location/capacity of parking lots until the supply and demand balance is achieved. For example, the
parking lots with the zero daily capacity and bikes with the zero daily use-frequency are removed from the system the next day. If one
bike user cannot rent the bike at parking lot A, the bike operator will add one bike at this parking lot next day.
7. Scenarios simulation of parking incentives: Encourage the bike users to use certain parking lots and stop bicycles from agglomerating
around metro stations with two incentive strategies including 30-minutes free riding, and fare discount. Observe the minimum discount
and the average accessibility distance.
8. Scenario simulation of bike lane extension: New bike lanes are suggested to be built parallel to the popular footways that have
intensive trajectories. Then the disconnected bike lanes can be connected. Observe the total construction cost and the corresponding
user cost and bicycling time.

Design con-
cepts

4. Theoretical and empirical
background

1 The bike user agents’ hourly incomes are based on the distribution of hourly wage (all employees) from the Hong Kong annual
earning survey.

2 The bike users who have specific origins and destinations are assumed to choose the shortest path for cycling.
3 The bike users only select the bike-sharing parking lots located less than 500m from the user agent’s origin/destination.
4 The lifespan of bikes is assumed to be three years.
5 The bike operators can get 5% annual rate of return from the bike users’ deposits.
6 The criteria for optimization of the location and capacity of the parking lots are defined as minimizing the users’ travel cost
incurred in the bicycling trips and minimizing the system cost of the bike sharing operator.

7 The bike users decide to change parking locations or not based on utility maximization theory.
Details 5. Initialization • Transportation map with bike lanes, footways and metro stations

• Bike-sharing parking points (trip O/D)

• Spatial clustering of disorganized parking points into candidate parking lots with a definite number (equals k in the k-medoid
algorithm).

• Bike user walks to its start parking lot and starts its trips from trip origin with the respective start time.
6. Input data • Bike user agents’ travel behaviors (trip origin/destination, trip start time) are defined by the bike-sharing trip dataset.

• Bike user agents’ social-economic characteristics, especially for the hourly income, which are defined by the distribution of hourly
wage (all employees) from the Hong Kong annual earning survey

• The existing bike lanes, footways and metro stations are defined by the Hong Kong transportation map.

• The slopes information of bike lanes and footways are defined by the Hong Kong digital elevation model.

• Existing parking points are defined by real bike-sharing O/D points.

• Cost parameters of bike-sharing system including system operating cost and capital cost of bikes are summarized from the open
data of bike-sharing companies in China.

• The construction cost of the cycle track is defined by studies related to bicycle facilities cost.
7. Sub-models • The scenario of parking incentive:

Purpose: Encourage the bike users to use certain parking lots and stop bicycles from agglomerating around metro stations
Process: Two incentive strategies are tested including 30-minutes free riding and fare discount.
The bike users choose to change the parking lots depend on their utility (travel cost). The travel cost is composed of the explicit cost
and hidden cost. Generally speaking, the hidden cost is increased, as the walking distance from the parking lot to the destination (metro
station here) is increased. But the explicit cost (bicycling fee) is decreased with these two incentive strategies. If the user cost is
reduced, the bike user will park the bike at other parking lots rather than near the metro station entryway.
Observation: The most effective incentive strategy (the minimum discount rate of bicycling fee with the most target people willing to
change the parking locations) and the average bike users’ accessibility distance

• The scenario of bike lane extension:
Purpose: Construct new cycle tracks parallel to the popular footways that have intensive trajectories. Thus, the disconnected bike lane
network can be connected.
Process: Bike users need to wheel their bikes on the footway when the bike lanes are disconnected. The candidate cycle tracks are
identified by the daily bicycling occupancy of the existing footways. The footways with the high occupancy are given priority for cycle
track construction. The construction cost of cycle tracks is 630HKD (81.9USD) per meter.
Observation: The total construction cost and improved system performance (including bicycling cost and time).
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