
1

Tutorial for Course of Spatial Database

Spring 2013

Rui Zhu

School of Architecture and the Built Environment

Royal Institute of Technology-KTH
Stockholm, Sweden

April 2013

Lab 1 Introduction to RDBMS and SQL pp. 02
Lab 2 Introduction to Relational Database and Modeling pp. 16
Lab 3 SQL and Data Indexing Techniques in Relational Database pp. 18
Lab 4 Spatial Data Modeling with SDBMS (1) Conceptual and Logical Modeling pp. 21
Lab 5 Spatial Data Modeling with SDBMS(2) Implementation in SDB pp. 25
Lab 6 Spatial Queries and Indices pp. 30
Help File Install pgAdmin and Shapefile Import/Export Plugin pp. 36

2

AG2425 Spatial Databases
Period 4, 2013 Spring

Rui Zhu and Gyözö Gidófalvi
Last Updated: March 18, 2013

Lab 1: Introduction to RDBMS and SQL

Due March 27th, 2013

1. Background

This introductory lab is designed for students that are new to databases and have no or
limited knowledge about databases and SQL. The instructions first introduce some basic
relational databases concepts and SQL, then show a number of tools that allow users to
interact with PostgreSQL/PostGIS databases (pgAdmin: administration and management tool
administration; QuantumGIS). Lastly, the instructions point to a short and simple SQL tutorial
using an online PostgreSQL/PostGIS database and ask the students to write a few simple
queries against this database.

2. Tutorial

2.1. What is SQL?
As it is stated in Wikipedia, SQL (Structured Query Language) is a special-purpose
programming language designed for managing data held in a relational database
management system (RDBMS). SQL is a simple and unified language, which offers many
features to make it as a powerfully diverse that people can work with a secure way. Using
SQL language, one can retrieve data from a database, insert new records into databases,
update/modify and delete existed records. SQL is also a ANSI standard computer language in
the field of database, and supported by most commercial and free/open-source database
systems, for instances the Oracle, DB2, Informix, SQL Server, MySQL, PostgreSQL, Access
(Microsoft Office) and so on. Because of its simplicity, SQL is quite easy to learn and
becoming the main interface for both users and developers to manipulate their data stored
in relational database management systems (RDBMS).

The first version of SQL was developed at IBM by Donald D. Chamberlin and Raymond F.
Boyce in the early 1970s. It was later formally standardized by the American National
Standards Institute (ANSI) in 1986. Subsequent versions of the SQL standard have been
released as International Organization for Standardization (ISO) standards (cited from
Wikipedia). In the subsequent versions of SQL standards, many other extension have been
adopted, such as procedural constructs, control-of-flow statements, user-defined data types,
and various other language extensions. Among all the versions, the SQL: 1999 is the most
remarkable one which formally accepts many of the above extension as part of the ISO
standard for SQL, even the support for geographical data types (SQL99 MM/Spatial).
Concerning the SQL standards for spatial databases, OGC and ISO/TC211 have made great
efforts and SQL/MM spatial (as well OGC Simple Feature Specification for SQL) is the one you
will go along with in the remaining parts of this course.

3

Although SQL is an ANSI and ISO standard computer language for accessing and manipulating
data within database systems, different vendors might have proprietary extensions and
supports for special but non-standard data types in their version of SQL. Anyway, in order to
be in compliance with the ANSI/ISO standard, they must support the same major keywords
in a similar manner (such as SELECT, UPDATE, DELETE, INSERT, WHERE, and others).

2.2. Basic Concepts in Relation Database Systems
In relational database systems, the data are organized as tables. In some cases, tables for the
same purpose (e. g. tables used in the same application) could be grouped and saved in a
database (e.g. the PostgreSQL, but in some other database systems, it might be called a table
space). But for the desktop RDB product Access, this feature is not supported. Each Access
file (*.mdb) could only host a single database, and all the data tables are saved inside this
database.

A data table (or simply a table) denotes the information needed to describe a certain
kind/class of objects in the real world. Taking the information system of a university for the
example, you can create tables for information about students (table 'Student'), schools
(table 'School'), departments (table 'Department'), courses (table 'Course') and so on.

A table is made of one or more columns (or can be called as fields / attributes). Each
field/column/attribute corresponds to a certain aspect of information used to describe an
object. Taking the table of 'Student' for the example, you might need to store the name,
gender, ID, date of birth, year of entering the school, the department and school she or he
belongs to, and so on. Then for the students, you might have one following table in your
database.

Table 1. Example of a Data Table in a Relational Database

First Name Last Name ID Gender Entering Year School Department

Hansen Ola 198312 Male 1999 CSC CS
Svendson Tove 198408 Female 2000 ABE Physics

Michal Jackson 196904 Male 1997 ABE Math.

In order to create a table, you need to provide definitions for all the columns that make up
this table. For one particular column, you need to specify its name (there is a certain naming
rule for tables and columns in SQL), data type (such as Integer, String/Text, Date/Time, or
even floating point numbers), and validation rules for a correct input. For example, the age is
always recorded as an Integer, and for human beings, the possible age is within the range of
0 – 150 (this is called validation rule or constraint conditions). If a new input violates the
constraints, the database will refuse to let it in and prompt the user an error report about
this. A proper data type and constraint setting will help to ensure the quality of your data. A
possible specification for the Table 1 might look as the follow. Here we are only talking about
the constraints that involving a single column itself. More complex validation rules could be
established on the table level involving several columns within the same table or columns
from different tables. Such validation rules are also called reference integrity.

4

Table 2. Definitions for Table 1

Name Data Type/Length Constraints Key Index

First Name Varchar(50) NOT NULL / /
Last Name Varchar(50) NOT NULL / /

ID Varchar(12) Unique Primary Key B-Tree Index
Gender Char(1) 'M' or 'F' / /

Entering Year Integer(4) 1980<Year<2050 / /
School Varchar(50) Should be an existing school / /

Department Varchar(50) Should be an existing dept. / /

You might have two fields, one of which could be derived from the other one. For example,
the year of birth and age is such a pair of fields. In order to avoid data redundancy and waste
of space, you are always required to choose one from them. Which one to be chosen
depends on which one is really needed by the customer or which one is most needed
according the application scenario. Furthermore, when one field is obligatory and another
field (optional) could be derived from the obligatory one, should we keep the optional one or
just compute it on the air when it is needed? In fact, it is also another kind of data
redundancy. Data redundancy will bring extra space of storage and special effort to maintain
the consistency among fields. You can't have students with a birthday of 19800710 but an
age of 18. Such inconsistency among data needs to be cleared out of your database. But
computing the needed information on the air could have its own problem. It might cost more
time to prepare the needed information than just simply getting them from the database;
and this is vitally important for those real-time applications or those which are quite critical
of response time. The key problem here is that you have to find a balance between the time
and space. If an optional field is queried frequently but troublesome to compute it from
existing obligatory fields (e.g. compute the date of birth from the person number), just
compute it once and then save it as an optional field of your table. In most case, these
optional fields seldom change after they are computed and saved, but will bring you
improvement of system performance. In contrary, if an optional field is seldom used and
could be easily derived from existing obligatory fields, you can just skip it to release yourself
from consequent work of maintaining the consistency among data fields. For example,
suppose the field of 'YearOfBirth' is obligatory and it is used more frequently than the field
'Age', you can keep the field of 'YearOfBirth' and compute the age of students when it is
necessary.

A row of data in the table (e.g. Table 1), which is also called a record, refers to a complete set
of information for a concrete object in the real world. For example, each row of the
'Students' table represents all the information you need for a student in the system. In most
cases, we need a unique ID or serial number for each record in the data table in order to
easily and quickly identify the object you refer to in a transaction. Then you can set a single
column or a collection of several columns, whose value or combination of values in different
record is unique throughout the table, as the unique key (or called primary key) of this data
table. For example, the 'ID' column is set as the primary key of table 'Students'. Through a
valid primary key, you can uniquely refer to a single record in the data table. There are also
other kinds of keys in relational database, such as the Foreign Key. You will learn it in the
coming lectures and labs.

5

Index is an extra data structure beyond data table in relational (also in other kinds) database
systems to speed up the query processing. For example, it is easier and faster to look for a
number within an ordered sequence than a disordered sequence. The ordered sequence
could be viewed as some kind of index in the database. Without index, one has to
sequentially scan all the data records until she or he find the student whose ID is '19830710-
1716'. This process is definitely slower than the retrieval with index, and this case is
especially true when the number of records is large but you only want to locate one or two
of them. In modern relational database systems, there are many kinds of built-in indexes
ready for use upon various data types, and the indexes could be established on a single
column (then it will spend up your query using this column) or a bundle of column within the
same table. For example, you can build a B-Tree index on the column 'Age', and a Hash index
on the two columns of 'FirstName' and 'LastName'. You can even create a spatial index on
the column of your table which hosts the location information of objects that interest you.

Figure 1. Retrieval within an Ordered Sequence of Numbers

However, index will cost extra space of storage and extra efforts for the database to maintain
it. It will work the best when there is no or seldom change to the data table after the records
are created from outside. That whether and when to create an index upon your data table is
determined by many factors. But in most cases, an index on the most frequent queried
columns is always helpful to speed up your system. You will learn more about the indexing
techniques and how to use it in database systems in the coming lectures and labs. You can
also search for 'index database' or 'B-Tree database' in popular search engine and Wikipedia
to explore more information yourself.

To work with a real database systems you might also encounter with other aspects of
interacting with a database system, such as the users and privileges, access interface,
performance tuning, backup/crash recovery, and so on. In addition to this lab, there will be
some other lectures and labs of this course talking about these topics.

5 13 19 21 37 56 64 75 80 88 92

Low

 5 13 19 21 37 56 64 75 80 88 92

Mid

 5 13 19 21 37 56 64 75 80 88 92

High

 5 13 19 21 37 56 64 75 80 88 92

5 13 19 21 37 56 64 75 80 88 92

Low

 5 13 19 21 37 56 64 75 80 88 92

Mid

 5 13 19 21 37 56 64 75 80 88 92

High

 5 13 19 21 37 56 64 75 80 88 92

5 13 19 21 37 56 64 75 80 88 92

Low

 5 13 19 21 37 56 64 75 80 88 92

High

 5 13 19 21 37 56 64 75 80 88 92

Mid

 5 13 19 21 37 56 64 75 80 88 92

6

It is necessary to clarify the access interface and SQL language in order to figure what SQL
can do and what it cannot do. The access interfaces are the approaches client computers
used to remotely connect to the database system through network, but SQL is the language
the users or developers used to communicate with databases. The access interfaces will
transfer the SQL command from users to the database and then bring back the results that
database prepare for each request. You can use a client application (could be a desktop
application or web page) or API (application programming interface) to connect the database.
Taking the open source database system PostgreSQL for the example, you have 'psql' and
'pgAdmin' desktop clients and various kinds of API (ODBC, OLE/DB Provider, JDBC, .NET, PHP,
python, C/C++ API, etc.). Oracle database systems used to have a desktop client application
and now after 10g it is replaced by a web based application. There are also various kinds of
API for Oracle database systems. You will find similar information about MS SQL, Access,
MySQL, DB2 and so on. (Please do explore more over the internet). You figure out your
request using SQL language and submit it to database through this access interface, and then
just wait for the database to response. Finally, you will also need the help of access interface
to interpret the results from database into the form you or the computer could understand.
So the relationship between database systems, access interface and SQL could be illustrated
by the following figure (Figure 2).

Figure 2. SQL, Access Interfaces and Database Systems

2.3. Fundamental Operations of SQL
SQL is the language you can use to express your request on the database systems. You could
do various kinds of tasks on database systems using SQL, including the data creation,
modification (insert/delete/update), information retrieval and database maintaining jobs.
When using SQL, one only needs to express what she/he wants rather than how to guide the
database to do it. For example, you might write a SQL command (or called a SQL statement)
to find the highest student in the university, but you don't need to tell the database system
to go through each record of the student table, pick up the height column and then compare
the height of one student with that of another to find the largest height, and finally return
the information of highest student to the client.

In this lab, we only provide some very simple example of SQL to give you a brief idea of what
SQL looks like and how it works. You will receive a thorough training on the fundamental and
advanced level of SQL programming in the future lectures and labs. Generally speaking, the
SQL statements could be classified as three groups.

7

(1) The Data Manipulation Language (DML)

As the name tells, the DML is used to manipulate the data within database. One can send

out data retrieval request using SELECT command, or modify the existing data stored in

tables. The Data Manipulation Language (DML) part of SQL mainly includes:

 SELECT - extracts data from a database table

 UPDATE - updates data in a database table
 DELETE - deletes data from a database table
 INSERT INTO - inserts new data into a database table

(2) The Data Definition Language (DDL)
The Data Definition Language (DDL) part of SQL permits database tables to be created or
deleted. You can also define indexes (keys), specify links between tables, and impose
constraints between database tables. The most important DDL statements in SQL are:
 CREATE TABLE - creates a new database table
 ALTER TABLE - alters (changes) a database table
 DROP TABLE - deletes a database table

 CREATE INDEX - creates an index (search key)
 DROP INDEX - deletes an index

(3) The Data Control Language (DCL)
DCL is used to create roles, permissions, and referential integrity as well it is used to
control access to database by securing it.
 CREATE ROLE/USER – create a user or role

 GRANT DELETE/UPDATE/CREATE – grant certain privilege to users or roles

 REVOKE DELETE/UPDATE/CREATE – revoke certain privilege from users or roles

3. Interaction with the DBMS and the Database

3.1. Login to the Database
pgAdmin is the most popular and feature rich Open Source administration and development
platform for PostgreSQL, the most advanced Open Source database in the world (reference
official website of pgAdmin: http://www.pgadmin.org/). We are going to use pgAdmin as a
PostgreSQL administration and management tool in this course. Every group has your own
database, username and password to login to the database. Open pgAdmin, click the plug
and input your initial database and username, as it is shown below in Table 3 and Figure 3.

Table 3. Login Information for Each Group

Group Database Username Password

1 g1_sdb g1_user g1_pswd
2 g2_sdb g2_user g2_pswd
3 g3_sdb g3_user g3_pswd

http://www.postgresql.org/
http://www.pgadmin.org/

8

Figure 3. Login to the pgAdmin

Then, double click AG2425 Spatial Databases with the Red Cross and enter your password
(Figure 4). Now you are in your own spatial database. Only your own database and postgres
database is accessible. However, please ensure that you are always staying in your own
database.

Figure 4. Enter Your Password

Now it is wise for you to change your password. Highlight your database, click the SQL button
(used for executing arbitrary SQL queries), type the following SQL statement and click SQL (or
F5) to execute (Figure 5).

ALTER USER YOUR_USER_NAME WITH PASSWORD 'YOUR_OWN_PASSWORD';

9

Figure 5. Execute SQL Query to Change Your Password

3.2. Import and Export Textual Data to and from the Database
There are two plugins for pgAdmin that come with the latest version of 1.16 pre-packaged
(Figure 6): PSQL Console (psql) is a terminal-based interactive front-end to PostgreSQL that
allows users to perform various database administration and management tasks from the
command line; PostGIS Shapefile and DBF loader2.0 is a tool to import/export shapefile into
the database. Here you will use PSQL Console (psql) to import and export textual data from
the database. Click the button for the PSQL Console plugin.

Figure 6. Plugins for pgAdmin

Put your mouse at the top boundary of the psql.exe, right click your mouse, and click
Properties (Figure 7), check the QuickEdit Mode. QuickEdit Mode allows you to copy and
paste by right clicking (there is no message-box shown even when it is successfully copied
and pasted).

10

Figure 7. Check QuickEdit Mode for Quick Editing

Now follow the next three steps to import a sample file foo1.txt into your own database, as it
is shown in Figure 8.

Step 1. Create an empty table foo1 with two columns i and j.
CREATE TABLE foo1(i INT, j INT);

Step 2. Create a *.txt file with the name of foo1 and input some sample values with as
delimiters. Be sure that there are no empty lines.

Step 3. Copy the file from the specific directory that foo1.txt located to the DB on the server
using psql console.
\COPY foo1 FROM 'YOUR_OWN_DIRECTORY' DELIMITERS ',' CSV;

(e.g. YOUR_OWN_DIRECTORY such as C:/Temp/foovalues.txt)

Then, you will see the foo1.txt has already successfully been imported into your own DB.

Figure 8. Import an *.txt File into Your Own DB

11

It is also available that copy a file from the DB to a specific folder with the following SQL
statement, as it is shown in Figure 9.
\COPY foo TO 'C:/Temp/foo.csv' DELIMITER ',' CSV HEADER;

Figure 9. Export an *.csv File into Your Own DB

3.3 Import and Export a Shapefile to and from the Database
In pgAdmin III, click the button for the PostGIS Shapefile and DBF loader2.0 plugin, click Add
File, select three shapefiles (data is provided with the tutorial of Lab1) and click Open (Figure
10). Before import, be sure to specify DBF file character encoding as LATIN1 in the Options….
It is an opposite operation to export a table (with spatial information, e.g. with geometry
columns) from DB to a specific folder (Figure 11).

Figure 10. Import Shapfiles into the DB

12

Figure 11. Export a Table (with Shapefile Characters, e.g. Geometry Column) from DB to a Specific Folder

3.4. Connect Quantum GIS to the Database

There is a mode in Quantum GIS (http://www.qgis.org/) that allows you to connect Quantum
GIS to a PostGIS database, build queries, and show geometric features read from the PostGIS
database. Firstly, open Quantum GIS, click the connection mode, click Ny and input required
parameters. Click OK when test connection to the database is successful (Figure 12).

Figure 12. Connect Quantum GIS to PostGIS

Then, click Anslut (possibly re-enter username and password once more), select geometric
features in your DB (it is Swedish administration regions in this particular situation.) that you
are willing to display and click Lägg till (Figure 13). You will see maps of Sweden.

OBS: There exists an ArcGIS plugin called ST-Links SpatialKit that allows ArcGIS to connect to
PostGIS and other OGC Simple Feature Access compliant spatial databases. A trial version
that works only for a limited number of features per layer / theme can be downloaded here.
Students are encouraged to investigate ST-Links SpatialKit: http://www.st-
links.com/Pages/default.aspx

http://www.qgis.org/
http://www.st-links.com/Pages/default.aspx
http://www.st-links.com/Pages/default.aspx

13

Figure 13 Select Geometric Features to Display

3.5. Create Tables and Insert Values
The following example illustrates how to create and query on database using SQL statements.
Taking the school information system for instance, we will use SQL command to create the
'Students' table according to its definition in Table 2. (Note: All the SQL commands have been
tested on PostgreSQL server, but they might be slightly syntactically incorrect in another
DBMSes that use different SQL dialects.)

 SQL command to create table (DDL)
CREATE TABLE Students(

 firstname VARCHAR(50) NOT NULL,

 lastname VARCHAR(50) NOT NULL,

 id VARCHAR(12) PRIMARY KEY,

 gender CHAR(1) NOT NULL,

 entering_year INTEGER CHECK(

 enteringyear > 1980 AND enteringyear <2050),

 school VARCHAR(50)REFERNCE schools(Name),

 department VARCHAR(50) REFERENCEN departments (Name)

);

--This SQL creates the Students table according its definition in Table 2.

 Insert new records into the above table (DML)
INSERT INTO Students VALUES(

 'Johan', 'Nelson', '198403121203', 'M', 2000,

 'Computer Science', 'Software Engineering');

--This SQL intends to insert the information of Johan Nelson into the Student table.

14

 Update the data table (DML)
UPDATE Students
SET LastName='Nilson'
WHERE id='198403121203';
--This SQL is going to change the lastname of Johan Nelson to 'Nilson'.

 Data retrieval in the data table (DML)
SELECT firstname, lastname

FROM Students

WHERE enteringyear = 2000;

--This SQL is a query to find out the students' name that entered the school at the year
2000.

As it is shown in the above examples, SQL commands are very easy to understand since they
are quite close to the human language. It is also quite powerful which could ask the database
to do a complex task through a simple command.

3.6. Query Tasks
Go the http://www.postgisonline.org/. This is a user-friendly website that allows users to
exercise their newly learned SQL skills on a number of predefined tables. When you are at
the front page, you can find a green bar at the top. Go to Tutorials on the bar. After you click
on it, you can see there are two sections. Go through all links under the section Plain SQL
without anything spatial and follow the instructions in each of the link so that you can
familiarize yourself of different SQL commands. Then:

1) Write an SQL to find out which house (number) Kalle Andersson belongs to.
2) Write an SQL to specify the name and age of the 5 oldest people in descending order.
3) Try the query “SELECT DISTINCT familyname FROM people;” and

describe your findings.
4) Suppose each family has the same family name in the table. Write your SQL

commands to list the average age of each family in descending order.
5) Write an SQL query to find out the people's name and their age in houses where the

average age of the residents is 65 or above.

3.7. Answer Questions

1) Describe the process of submitting a SQL at the client side till the interpreting the
result from database. Note: the access interface, SQL command, and database
systems should be involved in your description.

2) Explain what SQL is in short using your own words.
3) What is 'Primary Key' in relational databases?
4) Describe the difference between SQL language and other programming language you

know (e. g. C/C++/Java)

http://www.postgisonline.org/

15

4. Report

A report is not required for this lab. However, this does not mean that this lab is not
important; essential knowledge will build a stable foundation for the coming labs with many
challenges.

OBS: Useful Online References
PostgreSQL Documentation 9.2: http://www.postgresql.org/docs/9.2/static/sql.html (Last
Accessed: March 18, 2013)

Tizag SQL Tutotial: http://www.tizag.com/sqlTutorial/ (Last Accessed: March 18, 2013)

SQL Tutorial: http://www.sql-tutorial.net/ (Last Accessed: March 18, 2013)

http://www.postgresql.org/docs/9.2/static/sql.html
http://www.tizag.com/sqlTutorial/
http://www.sql-tutorial.net/

16

AG2425 Spatial Databases
Period 4, 2013 Spring

Rui Zhu and Gyözö Gidófalvi
Last Updated: March 19, 2013

Lab 2: Introduction to Relational Database and Modeling

Due April 10th, 2013

1. Task

In this lab, we are going to create a relational database for a Book Shop. Based on the given
information of seven entities, you have to draw an Entity-Relationship model. Then, create
seven tables with auto-increment constraints (e.g. primary keys, foreign keys, etc.) in the DB
based on the provided seven *.txt data sets and import the files into your own DB. Lastly,
finish optional query tasks.

2. Entities Description
BOOK

ISBN TITLE IN_STOCK PRICE AUTHOR_ID TYPE_ID SUPPLIER_ID

AUTHOR

ID NAME DATE_OF_BIRTH

TYPE_OF_BOOK

ID NAME

INVOICE

INVOICE_NR INVOICE_DATE PAYMENT_DATE AMOUNT CUSTOMER_ID

CUSTOMER

ID NAME ADDRESS CONTACT

ITEM_OF_INVOICE

INVOICE_NR ITEM_ID QUANTITY ISBN

SUPPLIER

ID NAME ADDRESS CONTACT

Columns for each of the seven *.files are as follows.
1. TYPES_OF_BOOKS(ID, NAME)

[TYPES_OF_BOOKS: TXT]

2. AUTHORS(ID, NAME)

[AUTHORS: TXT]

3. BOOKS(ISBN, TITLE, IN_STOCK, PRICE, AUTHOR_ID, TYPE_ID,

SUPPLIER_ID)

17

[BOOKS: TXT]

4. CUSTOMERS(ID, NAME, ADDRESS, CONTACT)

[CUSTOMERS: TXT]

5. INVOICES(INVOICE_NR, INVOICE_DATE, PAYMENT_DATE, AMOUNT,

CUSTOMER_ID)

[INVOICES: TXT]

6. ITEMS_OF_INVOICES(INVOICE_NR, ITEM_ID, QUANTITY, ISBN)

[ITEMS_OF_INVOICES: TXT]

7. SUPPLIERS(ID, NAME)

[SUPPLIERS: TXT]

3. Optional Tasks

1. List name and address of customers whose name begins with B.

Hit: substring function is needed.

2. List name of customers who bought more than 10 books.
Hit: query result of one table can be a precondition for the other query. There tables
should be considered at the same time.

4. Report

Submit a professional report in format of .pdf with name of your team member(s) before the
deadline to the Bilda System. The report should include an E-R model, necessary screenshots
and explanations, SQL statements for the DB creation and queries and selection results.

18

AG2425 Spatial Databases
Period 4, 2013 Spring

Rui Zhu and Gyözö Gidófalvi
Last Updated: April 9, 2013

Lab 3: SQL and Data Indexing Techniques in Relational Database

Due April 17th, 2013

1. Task

This lab is a continuous exercise of lab 2. For this lab, we are going to create views and
functions with indexing techniques after reading a short but valuable material.

2. Indexing Techniques

2.1. Indexes
When accessing a table, POSTGRESQL normally reads from the beginning of the table to the
end, looking for relevant rows. With an index, it can quickly find specific values in the index,
and then go directly to matching rows. In this way, indexes allow fast retrieval of specific
rows from a table.

For example, consider the query SELECT * FROM customer WHERE col = 43.
Without an index, POSTGRESQL must scan the entire table looking for rows where col equals
43. With an index on col, POSTGRESQL can go directly to rows where col equals 43, bypassing
all other rows.

For a large table, it can take minutes to check every row. Using an index, finding a specific
row takes fractions of a second.

Internally, POSTGRESQL stores data in operating system files. Each table has its own file, and
data rows are stored one after another in the file. An index is a separate file that is sorted by
one or more columns. It contains pointers into the table file, allowing rapid access to specific
values in the table.

POSTGRESQL does not create indexes automatically. Instead, users should create them for
columns frequently used in WHERE clauses.

To create an index, use the CREATE INDEX command, such as CREATE INDEX
customer_custid_idx ON customer (customer_id). In this example,
customer_custid_idx is the name of the index, customer is the table being indexed, and
customer_id is the column being indexed. Although you can use any name for the index, it is
good practice to use the table and column names as part of the index name – for example,
customer_customer_id_idx or i_customer_custid. This index is useful only for finding rows in
customer for specific customer_ids. It cannot help when you are accessing other columns,
because indexes are sorted by a specific column.

19

You can create as many indexes as you wish. Of course, an index on a seldom-used column is
a waste of disk space. Also, performance can suffer if too many indexes exist, because row
changes require an update to each index.

It is possible to create an index spanning multiple columns. Multicolumn indexes are sorted
by the first indexed column. When the first column contains several equal values, sorting
continues using the second indexed column. Multicolumn indexes are useful only on columns
with many duplicate values.

The command CREATE INDEX customer_age_gender_idx ON customer

(age, gender) creates an index that is sorted by age and, when several age rows have

the same value, then sorted on gender. This index can be used by the query SELECT *
FROM customer WHERE age = 36 AND gender = 'F' and the query SELECT

* FROM customer WHERE age = 36.

The index customer_age_gender_idx is useless if you wish to find rows based only on gender,
however. The gender component of the index can be used only after the age value has been
specified. Thus, the query SELECT * FROM customer WHERE gender = 'F'
cannot use the index because it does not place a restriction on age, which is the first part of
the index.

Indexes can be useful for columns involved in joins, too. They can even be employed to
speed up some ORDER BY clauses. To remove an index, use the DROP INDEX command.

2.2. Unique Indexes
Unique indexes resemble ordinary indexes, except that they prevent duplicate values from
occurring in the table. Example below shows the creation of one table and a unique index.

The index is unique because of the keyword UNIQUE. The remaining queries try to insert a
duplicate value, but the unique index prevents this and displays an appropriate error
message.

Sometimes unique indexes are created only to prevent duplicate values, not for performance
reasons. Multicolumn unique indexes ensure that the combination of indexed columns
remains unique. Unique indexes do allow multiple NULL values, however. Unique indexes
both speed data access and prevent duplicates.

test=> CREATE TABLE duptest (channel INTEGER);

CREATE

test=> CREATE UNIQUE INDEX duptest_channel_idx ON duptest

(channel);

CREATE

test=> INSERT INTO duptest VALUES (1);

INSERT 130220 1

test=> INSERT INTO duptest VALUES (1);

ERROR: Cannot insert a duplicate key into unique index

duptest_channel_idx

3. Create Views

20

NO. View

View 1 Create a view that displays what has been sold ordered by customer. Each
customer should be represented with as many rows as he/she has bought book
titles. Observe that if more than one purchase has been made of the same book
title only one summarised row should be displayed.

View 2 Create a view that displays the titles that are not in stock, ordered by supplier.

View 3 Create a view that displays how many books have been sold of each category
(i.e. ISBN). Tip: look at Left/Right Join and Decode.

View 4 Create a view with the columns ID and NAME from the table CUSTOMER and a
column COUNT which displays the number of invoices they have received.
Customers who have not been invoiced should also be included in the COUNT.
Tip: look at Left/Right Join and Decode

View 5 Create a view that displays MIN, MAX, AVG and SUM for the column PRICE in
the table BOOK grouped by category (type). The average price should be
rounded into two decimals.

4. Create Functions

NO. Function

Fun. 1 Create a function with the input parameter INVOICE_NR that returns the total
amount for the corresponding invoice.

Fun. 2 Create a corresponding procedure with the input parameter INVOICE_NR and
with the output parameter TOTAL_SUM containing the total amount of the
invoice. For a given invoice number the procedure is to return the total amount
of the invoice.

Fun. 3 Create a function with the input parameter CUSTOMER_ID, and that returns the
total amount for all of the invoices for the specified customer.

Fun. 4 Create a corresponding procedure with the input parameter CUSTOMER_ID, and
with the output parameter TOTAL_SUM containing the total amount of the
invoices of the specified customer.

5. Report

Submit a report in format of .pdf with the name of your team member(s) before the deadline
to the Bilda System. The report should include the SQL statement (please be well formatted
and clearly commented), explanations, and necessary screenshots for each task.

Reference
The rest reading material is referenced from the book of PostgreSQL Introduction and
Concepts written by Bruce Momjian.

21

AG2425 Spatial Databases
Period 4, 2013 Spring

Rui Zhu and Gyözö Gidófalvi
Last Updated: April 17, 2013

Lab 4: Spatial Data Modeling with SDBMS (1)
Conceptual and Logical Modeling

Due April 21st, 2013

1. Task

This lab is a new exercise for spatial data modeling. In this lab, we are going to do conceptual
and logical modeling for a website after a brief reading of the introduction part.

2. Introduction

The first step to use spatial database for your data management is to figure out what kind of
information (both spatial and non-spatial information) you are going to store and how these
data could be organized and related to each other. This process is also called spatial data
modeling. Similar to the object-oriented modeling for spatial information, the spatial data
modeling with SDBMS will also need to find out the objects or spatial information that are
required to fulfill the task of an application. The main difference is that one has to transform
the result of object-oriented spatial data modeling (or E-R diagram) into tables, since most
spatial databases are implemented on the basis of object-relational database (ORDB)
systems. Various terms of relationship between objects (more exactly classes during the
modeling process) need to be realized as relationships between tables, as well as integrity
constraints which might not be able to be expressed using simple SQL statements. In this
case, you need to do some programming to make stored procedures/triggers using the
SQL/PL (procedural language) provided by the database systems (e.g. Oracle, PostGIS).

The purpose of this exercise is to offer you the opportunity to carry out a spatial data
modeling with SDBMS, given the scenario of a small demo application. You are required to
find out all the entities or object classes (conceptual model) needed to build the information
system, and convert them into tables (logical/physical model). You are also required to
provide the definition of the table structures, the relationships between tables and (spatial
and non-spatial) data integrity constraints. Please note that, the SDBMS provided in this
exercise have a full support for the OGC Simple Feature Specification for SQL. Hence, you can
use the Geometry type in the definition of your data tables, as well as various functions for
spatial data types.

NOTE: We omit the difference between logical and physical models here for this exercise,
because for standard ORDBMS or RDBMS, there is little difference among various
implementation of the same logical data model. For example, if you use the standard SQL
language to convert a logical model into physical model, the SQL script should be able to run
in both Oracle and PostgreSQL, and finally produce the same result.

22

You are required to express your conceptual data model using either E-R diagram or UML
diagram. You can draw the diagram by hand or by any kind of software you are familiar with.
In your report, attach the graphic conceptual model and submit it to your TA. Regarding the
definition of your tables as well the relationships between them, you are allowed to do it in
natural language for this exercise. But it is strongly recommended that you try to transform
your design into tables using SQL statements (You will run these SQL scripts in the next
exercise to create your tables). Concerning the spatial data integrity constraints, you can
describe it in natural language in this exercise first. We will go through with you on how to
implement these spatial data integrity constraints in SDBMS using SQL/PL language and
triggers/stored procedures in the next exercise.

3. A demo Application of Spatial Data Modeling

A Website for Advertisements and Sales of Houses

Suppose you are required to build a website for sales and advertisements of houses and
apartments. Those people who want to sell their houses and apartments could register their
information as well as the houses on your website. Then the potential buyers could search
for a house they like through the online system. They could specify various kinds of
conditions/filters (locational or non-locational) to describe the house of their interest, and
then the online system could list all the candidates that meet the buyers' requirements.
After choosing the house to purchase, the online system will require buyer's contact
information, and at the same time provide them the seller's contact information, in order to
be fair and avoid spam requests. Finally, the online system will inform the seller that
somebody shows interest on requests. Finally, the online system will inform the seller that
somebody shows interest on her/his house as well.

Figure 1. Houses and Parcels

Figure 2. Parcels, Roads and Houses

23

According to the local law, the land for building houses and apartments are divided and
organized as parcels, which are surrounded and connected by roads. Houses and apartments
could only be constructed within a certain parcel. It is not allowed to build them in an open
area which is located outside all the parcels.

Anybody including the real estate retailers could register the houses and apartments
information on this web site. So it is common that one seller could have more than one
house or apartment for sale. Sometimes, the seller might need to change his contact
information. On this website, she/he just needs to do it once, and then all his houses and
apartments will be attached with her/his latest contact information.

In order to find a proper house or apartment, the buyers will need to investigate all the
houses and compare their price, location, area, layout, structures, out-looking, age, the
parcel where the house is located, and the (traveling) accessibility of each house and
apartment. They might even care about the credit record of the seller. In order to better
support the decision making for potential buyers, the web site should be able to visualize all
the candidates on a digital map. Then buyer could have a better overview on the
neighborhood of their house, as well as where it is located in the city. When they click a
house in the map, detailed information about this house and seller will be displayed
automatically.

Please design a spatial database for this web application with those information and
constraints mentioned in the above text. The spatial database should be able to handle all
the spatial and non-spatial information in an integrated way. In addition, the database

system itself should have some automatic approaches to let out “dirty” data (hint: using

integrity constraint rules) and keep the whole system in a consistent status. In order to build
such a web site with good performance, your design should take into account the rapid
access of spatial and non-spatial information.

4. Modeling Task

Based on the above demo case of spatial data management, the task is to build a spatial
database which could meet the requirements to fulfill the objectives of this application. Your
design and definition of this spatial database should include the following aspects:

1. The required entities (or object classes) and their responsibility in the database
(Conceptual)
Hint: you can use either E-R diagram (E-R data model) or UML diagram (OO data
model), depending on which kind of conceptual data model you are using.

2. The definition of data tables, including the table structures and keys (Logical/Physical)
Hint: Manually convert the conceptual model into logical/physical data model.

3. Data integrity constraints (both spatial and non-spatial)
4. SQL commands for creating the tables (optional)

5. Report

Submit a report in format of .pdf with the name of your team member(s) before the deadline

24

to the Bilda System. The report should include the SQL statement (please be well formatted
and clearly commented), explanations, and necessary screenshots for each task.

Reference
1. Geodatabase Design.
 http://www.fargeo.com/geodatabase-design?services/ (Last Accessed: April 17, 2013)
2. Spatial Analysis and Modeling.
 http://www.gisdevelopment.net/technology/gis/techgi0039.htm (Last Accessed: April 17, 2013)
3. Spatial Data Modeling Standards.
 http://www.for.gov.bc.ca/his/datadmin/spatproj.htm (Last Accessed: April 17, 2013)

http://www.fargeo.com/geodatabase-design?services/
http://www.gisdevelopment.net/technology/gis/techgi0039.htm
http://www.for.gov.bc.ca/his/datadmin/spatproj.htm

25

AG2425 Spatial Databases
Period 4, 2013 Spring

Rui Zhu and Gyözö Gidófalvi
Last Updated: April 18, 2013

Lab 5: Spatial Data Modeling with SDBMS(2) Implementation in SDB

Due April 25th, 2013

1. Task

This lab is a continuation exercise of Lab 4 for spatial data modeling. In this lab, we are going
to physically implement a spatial database for a website after a brief reading for the
introduction and tutorials.

2. Introduction

As the second part of spatial data modeling with SDBMS, this exercise 5 will give you chance
to learn how to implement your design into the database. Given the PostGIS/PostgreSQL,
which is the fully OGC standard compatible spatial database, the students will create tables
and data integrity constraints using SQL commands and SQL/PL programming language,
according to their data model design in last exercise. A simple test (provided either by the TA
or students themselves) will also be carried out to see whether the constraints rules work
well on controlling the quality of spatial and non-spatial data within your database.

NOTE: The implementation of spatial data modeling within SDBMS is more or less the same
among different spatial database products, especially for those who are compatible with
OGC and ISO standards. The main difference is perhaps the syntax of proprietary SQL,
procedural language, and some special functionalities provided by different database
products. After this exercise, you should be able to do the task easily within other spatial
database products, such as the Oracle 9i/10g Spatial, IBM DB2, MS SQL Server 2008, MySQL
5.1 and etc. To be simplified, we will use the free and open-source spatial database
PostGIS/PostgreSQL as the database platform in this exercise.

3. Tutorials

3.1. A Basic Tutorial on PostgreSQL Client: pgAdmin
For database systems like PostgreSQL, clients are standalone desktop or online applications
that could be used by DBA or software developers to access the database. Normally, the
client applications will provide various functionalities to aid the DBA or developers to
examine the status of database, to manage the data and metadata within the database.
Together with PostgreSQL, there are two kinds of client applications provided in this purpose,
and they are the command based client “psql” and the GUI based client application named
“pgAdmin III”. In this part, we will introduce the basic usage of pgAdmin III on how to
monitor and manage the data within PostgreSQL database.

26

3.2. An instruction on “How to create customized data integrity constraint in PostgreSQL”

(1) PostgreSQL Triggers
“A trigger is a specification that the database should automatically execute a particular
function whenever a certain type of operation is performed. Triggers can be defined to
execute either before or after any INSERT, UPDATE, or DELETE operation, either once per
modified row, or once per SQL statement. If a trigger event occurs, the trigger's function is
called at the appropriate time to handle the event.

The trigger function must be defined before the trigger itself can be created. The trigger
function must be declared as a function taking no arguments and returning type trigger. (The
trigger function receives its input through a specially-passed TriggerData structure, not in the
form of ordinary function arguments.)

Once a suitable trigger function has been created, the trigger is established with CREATE
TRIGGER statement. The same trigger function can be used for multiple triggers.

PostgreSQL offers both per-row triggers and per-statement triggers. With a per-row trigger,
the trigger function is invoked once for each row that is affected by the statement which
fired the trigger. In contrast, a per-statement trigger is invoked only once when an
appropriate statement is executed, regardless of the number of rows affected by that
statement. In particular, a statement that affects zero rows will still result in the execution of
any applicable per-statement triggers. These two types of triggers are sometimes also called
row-level triggers and statement-level triggers, respectively.

Triggers can also be classified as before triggers and after triggers. Statement-level before
triggers naturally fire before the statement starts to do anything, while statement-level after
triggers fire at the very end of the statement. Row-level before triggers fire immediately
before a particular row is operated on, while row-level after triggers fire at the end of the
statement (but before any statement-level after triggers).

(2) PostgreSQL Procedural Language
PostgreSQL allows user-defined functions to be written in other languages besides SQL and C.
These other languages are generically called procedural languages (PLs). For a function
written in a procedural language, the database server has no built-in knowledge about how
to interpret the function's source text. Instead, the task is passed to a special handler that
knows the details of the language. The handler could either do all the work of parsing, syntax
analysis, execution, etc. itself, or it could serve as "glue" between PostgreSQL and an existing
implementation of a programming language. The handler itself is a C language function
compiled into a shared object and loaded on demand, just like any other C function. There
are currently four procedural languages available in the standard PostgreSQL distribution:
PL/pgSQL, PL/Tcl, PL/Perl, and PL/Python.

Since the PL/pgSQL procedural language is based on the SQL, it is relatively much easier to
learn for those who have already some knowledge on SQL. As a result, in this exercise we
willuse the PL/pgSQL language to create functions, which could then be in the creation of
customized data integrity constraints.

27

 (3) Create customized data integrity constraint using triggers and PL/pgSQL
In this part, we will guide you the process of creating a trigger and its handler function using
PostgreSQL PL/pgSQL language.

Depending the policy of your data integrity control, you have to choose either a BEFORE or
AFTER trigger on the level of either ROW or STATEMENT, as well as which kinds of event
are of your interest (INSERT, UPDATE or DELETE). For instance, we have a table designed
for road information within the online store of House and Apartment application. The road
could be designed as below.

CREATE TABLE road(

id SERIAL,

name TEXT NOT NULL,

shape GEOMETRY NOT NULL,

length FLOAT

);

For the data table of road information, we only allow geometry of type OGC LineString
be inserted into the road table. Furthermore, we want the shape of road without any self-
intersection. Finally, we want to ensure the length field of road be identical to the
geometric length of this road's geometry. Based on the above analysis, we can create a
BEFORE INSERT/UPDATE trigger on the ROW level.

First, we create a new function to check the type and existence of self-intersection of the
road's shape. If none, update the field length with road's geometric length automatically.
Please look into PostgreSQL documentation about the PL/pgSQL Basic Statements, Control
Structure and Trigger Procedure when writing your code (of course, the PostGIS reference
for SQL geometric functions). There is an example as below.

CREATE OR REPLACE FUNCTION check_road_interity()

RETURNS trigger AS

$check_road_interity$ --label of outset section

DECLARE

BEGIN

--only road table is of interest

IF TG_TABLE_NAME <> 'road' THEN

RETURN NEW; --do no change to the new record

END IF;

--only update and insert event

IF TG_OP <> 'UPDATE' AND TG_OP <> 'INSERT' THEN

RETURN NEW; --do no change to the new record

END IF;

--check whether the input the

DECLARE

geoType TEXT;

selfInserted BOOLEAN;

geoLength NUMERIC(10);

BEGIN

SELECT GeometryType(NEW.shape) INTO geoType;

28

SELECT ST_IsSimple(NEW.shape) INTO selfInserted;

RAISE LOG 'GeoType %s', geoType; --Print Debug Info

IF geoType <> 'LINESTRING' OR selfInserted <> 't' THEN

RETURN NULL; --skip the change and return

ELSE

 SELECT ST_LENGTH2D(NEW.shape) INTO geoLength;

 NEW.length :=geoLength;

 RETURN NEW;

END IF;

END;

END;

$check_road_interity$ --label of outset section

LANGUAGE plpgsql;

Secondly, a trigger will be created on the data table of 'road' to listen on any INSERT or
UPDATE event happened to this table, using the following PL/SQL code.

CREATE TRIGGER road_integrity_trigger

BEFORE INSERT OR UPDATE ON road

FOR EACH ROW EXECUTE PROCEDURE check_road_interity();

Finally, we use some script to test whether this trigger and function works to ensure our
integrity rule.

--Correct INSERT

DELETE FROM road;

INSERT INTO road(name,shape,length)

VALUES('E17', 'LineString(10 10, 20 20, 30 30, 50 70)', 200);

SELECT id, name, ST_AsText(shape), length FROM road;

--value of the length is 73, not the input of 200

--Correct INSERT with no input for Length field

DELETE FROM road;

INSERT INTO road(name,shape)

VALUES('E20', 'LineString(10 10,20 20)');

SELECT id, name, ST_AsText(shape), length FROM road;

--Incorrect INSERT of non-LineString type

DELETE FROM road;

INSERT INTO road(name,shape,length)

VALUES('E18', 'Point(10 10)', 200);

SELECT id, name, ST_AsText(shape), length FROM road;

--Incorrect INSERT of self-intersection

DELETE FROM road;

INSERT INTO road(name,shape,length)

VALUES('E19', 'LineString(10 10, 20 20, 20 10, 10 20)', 200);

SELECT id, name, ST_AsText(shape), length FROM road;

29

4. Implementation Task

1. Prepare the SQL to create tables and simple integrity rules, and then execute them in

your own database.
2. Prepare the SQL/PL program to create advanced integrity constraint rules, and then

execute them in your database.
3. Provide some small examples to test your spatial database by adding some new records,

updating existing records, and deleting certain records from your DB. Investigate the
behaviors of your spatial database when these updating operations are executed.

4. Optional: You might also want to run some other SQL command within PostgreSQL to get
used to it.

5. Report

Submit a report in format of .pdf with the name of your team member(s) before the deadline
to the Bilda System. The report should include the SQL statement (please be well formatted
and clearly commented), necessary screenshots, and explanations.

Reference
1. The GEOMETRY_COLUMNS VIEW.

http://postgis.net/docs/manual-2.0/using_postgis_dbmanagement.html#geometry_columns
2. Using OpenGIS Standards. (Please Read Section 4.3.1 – 4.3.4)

http://postgis.net/docs/manual-2.0/using_postgis_dbmanagement.html#id358093
3. PostGIS Geography Type.

http://postgis.net/docs/manual-2.0/using_postgis_dbmanagement.html#PostGIS_Geography

4. PostgreSQL Documentation: Tutorial on SQL Language.
http://www.postgresql.org/docs/9.2/static/sql.html

5. PostgreSQL Documentation: PL/pgSQL Procedural Language.
http://www.postgresql.org/docs/9.2/static/plpgsql.html

6. PostgreSQL Documentation: Create trigger functions using PL/pgSQL.
http://www.postgresql.org/docs/9.2/static/plpgsql-trigger.html

7. Using pgAdmin III. http://www.pgadmin.org/docs/1.8/using.html

All the links were last accessed on April 17, 2013.

http://postgis.net/docs/manual-2.0/using_postgis_dbmanagement.html#geometry_columns
http://postgis.net/docs/manual-2.0/using_postgis_dbmanagement.html#id358093
http://postgis.net/docs/manual-2.0/using_postgis_dbmanagement.html#PostGIS_Geography
http://www.postgresql.org/docs/9.2/static/sql.html
http://www.postgresql.org/docs/9.2/static/plpgsql.html
http://www.postgresql.org/docs/9.2/static/plpgsql-trigger.html
http://www.pgadmin.org/docs/1.8/using.html

30

AG2425 Spatial Databases
Period 4, 2013 Spring

Rui Zhu and Gyözö Gidófalvi
Last Updated: April 24, 2013

Lab 6: Spatial Queries and Indices

Due May 2nd, 2013

1. Task

The purpose of this exercise is to give you experience on how to carry out spatial queries
within spatial databases to get what you want to know from the spatial data, to understand
how much a proper configured spatial index could help to improve the performance of
spatial queries processing, and to get acknowledge of using the spatial indices to improve
the performance of spatial query processing

In this lab, you are required to finish the following task: use SQL language to carry out
complex spatial query and spatial data processing upon the spatial information stored in SDB
(i.e. PostGIS for this lab exercise).

2. Tutorials

2.1. Spatial Query Language
In this exercise, you will be given the chance to use OGC and ISO standard GSQL language to
query, analyze and retrieve spatial data from the remote spatial database. The same data set,
which has once been used in the GIS Architecture course, will be used again in this Exercise 7.
But more complicate queries and discussions will be prepared and prompted for you to get
better understanding on the GSQL query language and the spatial database.

This sample spatial database contains four tables: cities, countries, rivers, continents in this
planet, and definition of these four tables are listed as tables in the end of this document.
They are stored in PostGIS SDB, which is compatible with the OGC Standard for SQL. Please
answer the question using spatial query language (GSQL) upon these three tables. (You can
choose to use either the OGC standard query language or other private functions provided
only by PostGIS. But the OGC standard GSQL is recommended in this part, because it will
make your codes able to work on other SDB products.)

The Danube River is one of the longest rivers in Europe continent and at the same time an
important waterway for this land. And the place we are standing now is Sweden.

(1) Basic Input/Output Functions
Q1: How do the geometries of Danube River and the country of Sweden are recorded in the
PostGIS spatial database used in this exercise? Please calculate the WKT representation of
this two geometries using SQL language.

31

Q2: Is the Danube river recorded as one whole Line String object in the database?

(2) Spatial Relationship Predicates
Q3: Can you explain the difference between spatial relationship of Crosses and Intersects?
Hints: Check the relation between Danube River and Germany, and the relation between
Turkey and Europe.

Q4: How could we know the spatial relationship between two objects like the Danube River
and the country of Germany? There is a function in OGC standard called ST_Relate and
might be applied in this example. Could you explain the output of this function?

(3) Spatial Join in Query Language
Q6: Given the two data tables Country and River, can you find out the countries that the

Danube River crosses? You can simply use the OGC function ST_Intersects.

Q7: Similarly, you can do another query based on an attribute join. For example, find out all
the cities whose country has a population more than 5,000,000. Write down your SQL
command and compare it with last question with spatial join (Do the same query using
spatial queries). Can you guess which query will be generally processed faster? Explain why.

Write down your SQL commands, results, and explanation on your report.

(4) Spatial Measuring Operators
Using spatial measuring operators, you are able to calculate the geometric properties of
spatial objects, such as the length, perimeter, area, volume and so on. Use these operators to
answer the following question.

Q8: What is the area of Sweden in km2? Use the SELECT ... AS ... clause in this example.
Think about at least two ways to answer this question using SQL command. Is your result
coincident to the true value? Write down your observation and try to explain why. (Hints:
which reference systems and projection are all these tables using? Find out the way on how
to make projection transformation in PostGIS documentation.)

Q9: Which are the world's top 10 longest rivers? Use the “limit 10” clause in your query, as
well as the spatial measuring function named ST_Length. Is there other method that you

can use to the Q9 without ST_Length function?

Q10: Find out all the rivers of Europe whose length is larger than 1000 km. Use both
ST_Intersects and ST_Within functions in your query. Try to find out the difference
between the results and explain why.

Write down your SQL commands, results, and explanation on your report.

(5) Complex Spatial Query mixed with Attribute Condition
You can use spatial functions and operators together with those that could be applied on
simple alphanumeric data. Try to answer the following questions by mixing up the spatial and
attribute functions and operators.

32

Q11: Find out the countries (as well as the number of cities) which have more than 5 city
with a population more than 1,000,000 (or pop_rank <= 2). Give at least two ways (both
spatial join and attribute join) to answer this question. Do they produce the same result?
Write down your observation and briefly explain why this happens. Can you write a query to
find out the difference for the country of China, who meets the condition of this query and
has different number of cities from the two types of join operation?

Q12: Find out the countries which is crossed by the Danube River and has a population larger
than 10,000,000.

Q13: Find out the nearest Swedish city to the city of London. Use self-join and limit N
clause for this question.

(6) Spatial Analysis Operators
Using the spatial query language, you can even carry out spatial analysis upon the data
stored in remote SDB, and of course the result will be saved temporally on the SDB until user
terminate the session between client and server. But the functions of spatial analysis vary
from one (SDB software) to another, since it is not strictly required by the OGC or ISO
standard.

Q14: Find out the cities in Sweden which has a distance of more than 1000 KM (=how many
degree? you can use 10 degrees) from the city of Stockholm. Remember that the coordinates
of city dataset is recorded in latitude/longitude degrees. Please use the ST_Distance and
ST_Buffer functions to find out the answer. Which approach will be faster?

Q15: Find out the countries in Europe which has longest part of Danube River inside its
territory.

2.2. Spatial Indices
Indexes are what make using a spatial database for large data sets management and retrieval
possible. Without indexing, any search for a feature would require a "sequential scan" of
every record in the database. Indexing speeds up searching by organizing the data (or
location of data on disk) into a search tree which can be quickly traversed to find a particular
record. PostgreSQL supports three kinds of indexes by default: B-Tree indexes, R-Tree indexes,
and GiST indexes (the GiST spatial index for highly recommended by PostGIS/PostgreSQL
developers).

In this example, we will learn the basic usage of spatial index within spatial indexes (Note: it
is similar to use spatial index within other spatial database platform, such as Oracle Spatial,
MySQL, etc.)

The spatial datasets used in this part are the topological maps of USA, and they are
us_counties (counties), us_high (highway), us_states (states), us_capitals
(capitals of states), and us_lakes (lakes).

33

(1) Create a Spatial Index within PostgreSQL
The SQL command to create a spatial index in PostgreSQL is illustrated as follow:
CREATE INDEX [indexname] ON [tablename] USING GIST

([geometryfield]);

After building an index, it is important to force PostgreSQL to collect table statistics, which
are used to optimize query plans. You can use the SQL command as follow:

VACUUM FULL ANALYZE [tablename];

Then it is ready to usethe spatial indices in your queries.

Q16: Please create a GiST index on table us_counties on the column the_geom using
the above two SQL commands.

(2) Use Created Spatial Index in Spatial Queries
In most case, you don't need to be aware of the existence of spatial indices while carrying
outspatial queries. The query planner of PostgreSQL will find the fast way (it think) by looking
into various statistics of tables and indices. You can now just write a normal SQL with spatial
query operators and then PostGIS/PostgreSQL will find the best solution for your query.

Q17: Carry out a spatial query on the table of us_counties and us_high to find out all
the counties that are crossed by the “Interstate 20” highway.

(3) Investigate the Advantage of Spatial Indices
In this exercise, we will compare the spatial query processing time of two data table, one
with a GiST R-Tree spatial index and another without any spatial index.

Q18: Please carry out the same query as the previous task (Q17), but replace
us_counties with us_counties_noindex which contains exactly the same data as

us_counties but without any spatial index. Compare the query processing time and write
down your observation. Is the query processing on table with spatial index always faster
than that of un-indexed tables?

Write down your answer and explain why.

Note: For PostgreSQL, you should use the following SQL command for this question:

SELECT a.Name as NameOfCounty

FROM us_counties_noindex a, us_highway b

WHERE ST_Intersects(a.the_geom, b.the_geom)

AND b.route like '%Interstate%20';

5. Report

Submit a report in format of .pdf with the name of your team member(s) before the deadline
to the Bilda System. The report should include the SQL statement (please be well formatted
and clearly commented), necessary screenshots, and explanations.

34

Reference
8. PostgreSQL: SQL Performance Tips.

http://www.postgresql.org/docs/9.2/static/performance-tips.html
9. PostgreSQL: Indices Types.

http://www.postgresql.org/docs/9.2/static/indexes.html
10. Spatial Index in PostGIS.

http://postgis.refractions.net/documentation/manual-1.4/ch04.html#id2761109
11. PostGIS Performance Tips.

http://postgis.refractions.net/documentation/manual-1.4/ch06.html

All the links were last accessed on April 24, 2013.

Appendix – Tables

City

Column Type

gid integer

city_name character varying (30)

admin_name character varying (42)

fips_cnty character varying (2)

cntry_name character varying (30)

status character varying (30)

pop_rank smallint

pop_class character varying (22)

port_id smallint

the_geom geometry

Country

Column Type

fips_cntry integer

iso_2digit character varying (2)

iso_3digit character varying (2)

iso_num character varying (3)

cntry_name smaillint

long_name character varying (40)

isoshrtnam character varying (45)

unshrtnam character varying (55)

locshrtnam character varying (43)

loclngnam character varying (74)

status character varying (60)

pop_cntry integer

sqkm double precision

sqmi double precision

colormap smailint

the_geom geometry

http://www.postgresql.org/docs/9.2/static/performance-tips.html
http://www.postgresql.org/docs/9.2/static/indexes.html
http://postgis.refractions.net/documentation/manual-1.4/ch04.html#id2761109
http://postgis.refractions.net/documentation/manual-1.4/ch06.html

35

River

Column Type

gid integer

name character varying (25)

system character varying (16)

miles double precision

kilometers double precision

the_geom geometry

Continent

Column Type

gid integer

continent character varying (13)

sqmi double precision

sqkm double precision

the_geom geometry

36

AG2425 Spatial Databases
Period 4, 2013 Spring

Rui Zhu
Last Updated: April 24, 2013

Help File to Install the Latest Versions of pgAdmin and Shapefile
Import/Export Plugin

1. Download shapefile import/export plug-in

http://www.postgis.org/download/windows/pg92/

2. Download the latest version of pgAdmin
http://www.pgadmin.org/download/windows.php

3. Install the latest version of pgAdmin.

4. Unzip the postgis-pg92-binaries-2.0.1w32.zip

5. Copy postgis.shp2pgsql-gui.ini from …\postgis-pg92-binaries-2.0.1w32\pgAdmin

III\plugins.d to C:\Program Files\pgAdmin III\1.16\plugins.d

6. Copy all the files under …\postgis-pg92-binaries-2.0.1w32\bin to C:\Program

Files\pgAdmin III\1.16

7. Be ended.

http://www.postgis.org/download/windows/pg92/
http://www.pgadmin.org/download/windows.php

