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This paper presents a new, intelligent approach to discover transition rules for geo-
graphical cellular automata (CA) based on bee colony optimisation (BCO–CA) that
can perform complex tasks through the cooperation and interaction of bees. The artifi-
cial bee colony miner algorithm is used to discover transition rules. In BCO–CA, a food
source position is defined by its upper and lower thresholds for each attribute, and each
bee searches the best upper and lower thresholds in each attribute as a zone. A transition
rule is organised when the zone in each attribute is connected to another node by the
operator ‘And’ and is linked to a cell status value. The transition rules are expressed by
the logical structure statement ‘IF-Then’, which is explicit and easy to understand. Bee
colony optimisation could better avoid the tendency to be vulnerable to local optimisa-
tion through local and global searching in the iterative process, and it does not require
the discretisation of attribute values. Finally, The BCO–CA model is employed to simu-
late urban development in the Xi’an-Xian Yang urban area in China. Preliminary results
suggest that this BCO approach is effective in capturing complex relationships between
spatial variables and urban dynamics. Experimental results indicate that the BCO–CA
model achieves a higher accuracy than the NULL and ACO–CA models, which demon-
strates the feasibility and availability of the model in the simulation of complex urban
dynamic change.

Keywords: bee colony optimisation; transition rules; CA; urban simulation

1. Introduction

Cellular automata (CA), which were presented by Ulam and Neumann in the 1940s, are
capable of simulating the evolution of complex geographical phenomena (Liu et al. 2008).
Currently, CA have successfully been applied to urban expansion and population dynamics
(Couclelis 1985, 1988, 1989), wildfire diffusion (Clarke et al. 1994, Hargrove 2000), land-
scape changes (Wang and Zhang 2001, Soiares-Filho et al. 2002), urban evolution (Batty
and Xie 1994, Clarke et al. 1997, Couclelis 1997, Li and Yeh 2000, 2002, Wu 2002, Liu
et al. 2008) and land-use changes (White and Engelen 1993, Batty and Xie 1994, Clarke
and Gaydos 1998, Wu and Webster 1998, Li and Yeh 2002, 2004). These studies have
demonstrated the capability of CA for simulating and predicting complex geographical
processes.
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The core of CA is transition rules, which express a logistic relationship for an evolu-
tionary process and determine the state conversion of geographical processes (Liu et al.
2008). Many methods have been put forward for defining transition rules, such as the hier-
archical analysis process (AHP) (Wu 1998), genetic algorithm (GA) (Jenerette and Wu
2001), logistic regression models (Wu 2002), artificial neural network (ANN) (Li and Yeh
2002), decision tree models (Li and Yeh 2004) and the kernel-based learning machine (Liu
and Li 2006). However, these methods are each limited for different reasons. For example,
the decision tree model tends to be vulnerable to local optimisation, and the kernel-based
learning machine is constrained by the use of implicit transition rules and requires intensive
computation (Liu et al. 2008). To avoid these limitations, intelligent methods for discov-
ering transition rules were conceived. Ant colony optimisation (ACO) was put forward for
discovering transition rules of CA (Liu et al.2008), and a CA model that was based on
the ACO and Markov chain was proposed to simulate land-use change (Yang et al. 2012).
These studies have demonstrated that intelligent methods are better for discovering transi-
tion rules for CA. However, it is necessary to discretise attributes in the CA model based
on ACO (ACO–CA), which are influenced by discretisation algorithms. Thus, exploration
for a new, intelligent method for discovering transition rules in CA is needed.

In this paper, a new intelligent method, bee colony optimisation (BCO), is used to
discover transition rules for CA. BCO is a computational method that is derived from nat-
ural biological systems. The self-organisation model of a bee colony was first proposed
by Seeley (1995), but Karaboga (2005) proposed a more favourable artificial bee colony
(ABC) algorithm and proved that it outperformed others in numerical optimisation. BCO is
a multi-agent system that simulates the natural behaviour of a bee colony searching for food
sources according to the mechanisms of cooperation and adaptation. BCO is a new swarm
intelligence-based heuristic system, which has been applied to many fields, such as numer-
ical function optimisation (Karaboga and Basturk 2007a, 2007b, 2008, Chen et al. 2012),
constrained numerical optimisation (Karaboga and Basturk 2007a, 2007b), training ANNs
(Karaboga and Akay 2007, Karaboga et al. 2007), digital IIR (Infinite Impulse Response)
filters (Karaboga 2009) and digital image processing (Duan et al. 2010). However, the
application of BCO in discovering the transition rule of the CA model has not been
reported. BCO and CA both solve complicated problems based on a ‘bottom-up’ approach;
therefore, it is appropriate to apply BCO to discover transition rules for CA.

In the context of data mining, the use of BCO for discovering classification rules is a
new research area with limited studies. The method of rule discovery that is based on the
artificial bee colony rule miner algorithm (ABC-Miner) programme was first proposed by
Shukran et al. (2011). In that study, the rules that were discovered by the ABC-Miner were
more accurate and simple than those by particle swarm optimisation.

This paper will explore the feasibility of using ABC-Miner to discover transition rules
for CA and of finding complex relationships that are hidden in large datasets, using GIS and
remote-sensing data. It is expected that the BCO will produce better results in discovering
optimal rules by simulating the behaviour of a bee colony seeking food. The CA based on
BCO (BCO–CA) model is applied to a simulation of urban development in the Xi’an-Xian
Yang urban area in China.

2. Geographical CA model based on BCO

2.1. Bee colony optimisation

BCO determines the optimised solution by simulating bees’ behaviours for seeking
the best food source. In the process of seeking food, it is most important to form
collective knowledge through the exchange of information between bees. Communication
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information about the quality and position of food sources among bees is through a
dance termed the ‘waggle dance’, and the information from this dance is available to an
onlooker on the dance floor. A greater probability exists for onlookers to choose more
profitable sources because more information about the more profitable sources is circu-
lated (Karaboga et al. 2012). Hence, recruitment is proportional to the profitability of the
food source.

The BCO model includes three essential components: food sources, employed foragers
and unemployed foragers. If a food source exists, the behaviours of bees seeking the best
food source are shown in Figure 1. Initially, all foragers around the nest are unemployed
and have no information regarding food sources. These individuals have two options: one
is to scout and start searching for food around their hive (route ‘S’), and the other is to
be recruited after finding the waggle dances and then begin searching for food (route ‘R’).
When onlookers find food sources, they become employed foragers, record the information
about the position and nectar amount of the food source and then return to the hive. After
unloading the food, the foragers will calculate the nectar amount, and if the nectar amount
of the new food source is not higher than that of the previous source, they will continue to
search for a new food source (UF). Otherwise, the bees will recruit other bees through the
‘waggle dance’ (EF1) or continue to gather honey (EF2). When compared to other colony
optimisations, the essential advantage of BCO is that foragers will abandon food sources
when the number of searching times reaches a threshold. With this mechanism, the BCO
could better avoid the tendency to be vulnerable to local optimisation.

2.2. Discovering rules based on BCO

2.2.1. Rule construction

BCO is a complex, self-adaptive system that has four characteristics to which a self-
organisation system relies: positive feedback, negative feedback, fluctuations and multiple
interactions (Karaboga et al. 2012). In the context of data mining, the use of BCO for dis-
covering classification rules is a new research area with limited studies. The rule discovery
method that is based on BCO, i.e. the ABC-Miner, was first proposed by Shukran et al.
(2011). In this paper, the ABC-Miner program is used to discover transition rules for CA
from geographic data.

Unemployed bee

No nectar

S

S
UF

Waggle dance area

Nectar source

EF1

EF1

EF2

EF1

UF

EF2

Hive

R

Figure 1. Behaviours of bees seeking the best food source.
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Figure 2. The principle of structuring CA rule based on ABC-Miner.

This ABC-Miner program can discover optimised transition rules by simulating the
behaviour of bees. A transition rule is constructed by a cell status value and zones, each of
which is defined by a lower and an upper threshold value for each attribute. As is shown in
Figure 2, the cell status and attribute nodes with the same colour are linked to the structure
of a rule. Artificial bees can find the best lower and upper threshold values of the zones
in each attribute, and data mining for a transition rule can be regarded as a process of
searching for optimal food sources. The transition rule of CA could be represented by the
following reasoning:

If lower_threshold1 < Attribute 1 < upper_threshold1

And lower_threshold2 < Attribute 2 < upper_threshold2

. . . . . .

And lower_thresholdn < Attribute n < upper_thresholdn

then
The cell status is Ci

where n is the number of attributes; the lower_thresholdk is the best lower threshold value;
the upper_thresholdk is the best upper threshold value of the zone in the kth attribute, k∈{1,
2, . . . . . . , n}; Ci refers to a cell status value (i∈{1, 2, . . . . . . , m}); and m is the amount
of cell status.

Each bee randomly begins with a food source position, and the update for a food
source position relies on the nectar amount, which will be discussed in detail in
Section 2.2.3.When a rule is constructed, it is important to prune the rule and update the
training dataset, which will be discussed in detail in Section 2.2.4.

2.2.2. Rule evaluation

In the BCO, the validity of a transition rule is defined as the nectar amount and determines
the optimisation direction. The Gini index is applied to the calculation for validity (Shukran
et al. 2011) and is defined by the following expression:

f =
(

TP

TP + FN

)
×

(
FP

FP + TN

)
(1)
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where TP (true positives) is the total number of cases that are covered by the rule that have
predicted the class by the rule; FP (false positives) is the total number of cases that are
covered by the rule that have a class that is different from that which is predicted by the
rule; FN (false negatives) is the total number of cases that are not covered by the rule but
that have the class that is predicted by the rule; TN (true negatives) is the total number of
cases that are not covered by the rule and do not have the class that is predicted by the rule.
A higher value of f indicates higher validity.

2.2.3. Process of the discovering rule

The BCO constructs transition rules by stimulating the foraging behaviours of a bee colony.
Each bee searches the upper (X j−

i ) and lower thresholds (X j+
i ) for the best value in each

attribute. The best value zones [X j−
i ,X j+

i ] in each attribute can be connected with each other
by the operator ‘And’ and then linked with the cell status value, which forms the transition
rules.

Suppose m-bees and n-attributes are present, the food source position of the ith bee
could be represented as (X j−

1 , X j+
1 , . . . . . . , X j−

i , X j+
i , . . . . . . , X j−

n , X j+
n ). Each bee

searches the best value in a 2n-dimensional space; so, the following steps express the main
process for the construction of transition rules:

(1) Initialise food source positions: Each bee randomly generates an initial food
source position, and the initial position values can be represented by the following
equation:

X j−
i = X j

min + rand(0, 1)
(

X j
max − X j

min

)

X j+
i = X j

min + rand(0, 1)
(

X j
max − X j

min

) (2)

where X j−
1 and X j+

i represent the lower and upper thresholds of the ith bee at the jth
attribute, respectively, and, if X j−

i >X j+
i , these values will be exchanged. X j

min and
X j

max are the minimum and maximum values, respectively, of the jth attribute, and
rand(0,1) is a random value that varies between [0,1].
Subsequently, the nectar amount of the food sources will be calculated. The top
m/2 food sources will be set as the initial foodsource positions of the employed
bees, and the others will be abandoned.

(2) Update food source positions: Based on the nectar amount of the food sources, bees
begin to iteratively search for new food sources. The employed and unemployed
bees use different methods to search for food sources.
Each employed bee searches for a new food source in the neighbourhood of pre-
vious food sources, then the bee calculates the new nectar amount and chooses
the better one to be the new food source. The searching method is represented by
Formula (2).

V j−
i = X j−

i + θ
j
i

(
X j−

i − X j−
k

)

V j+
i = X j+

i + φ
j
i

(
X j+

i − X j+
k

) (3)



1854 J. Yang et al.

where V j−
i and V j+

i denote the new lower and upper thresholds, respectively, of the
ith bee at the jth attribute; and, if V j−

i >V j+
i , these values will be exchanged. X j−

k and

X j+
k refer to the lower and upper thresholds, respectively, of the kth bee at the jth

attribute, where k is a random value that belongs to {1, 2, . . . , m/2} and is not
equal to i. θ

j
i and φ

j
iare random values that vary in the range of [–1,1], and j is a

value that is randomly selected from {1, 2, . . . , n}.
After the employed bees complete their search, the unemployed bees probabilis-
tically choose their food sources depending on the information provided by the
employed bees and update the food source position based on Formula (2). If the
new food source is better than the previous one, the bees save the new food source,
and this method of selecting food is represented by the following equation:

P(X = Xi) = f (Xi)
N∑

i=1
f (Xi)

(4)

where Xi refers to the food source of the ith employed bee; and f (Xi)refers to the
nectar amount of the employed bee Xi.

(3) Local and global search mechanisms: If the searching time exceeds the limitation
value for a bee and the bee still cannot find a better food source, then the bee will
reinitialise a food source. This mechanism could avoid the tendency of the BCO
to be vulnerable to local optimisation as much as possible. This mechanism can be
expressed by the following equation:

{
Xt+1 = reInit() sNum ≥ Limit
Xt+1 = Gent(Xt) sNum < Limit

(5)

where Xt+1 refers to the position at time t + 1; sNum refers to the number of
searches; the function of reInit( ) is to reinitialise a position based on Formula
(1); and the function of Gent(Xt) is to generate a new position from Xt based on
Formula (3).

When all bees accomplish their current search, the best food source will be selected and
compared to the global optimum food source from the previous iteration, and the better
one will be recorded as the new global optimum.

When the number of iteration times reaches the predefined threshold, the algorithm will
stop searching, and the final, best food source and its fitness will be recorded. At this time,
one transition rule has been constructed.

2.2.4. Rule pruning and updating of the training dataset

The constructed rules must be pruned to improve their classification performance. The
goal of rule pruning is to remove unnecessary terms and improve the quality of the rules
because a shorter rule is generally more comprehensible by users (Liu et al. 2008). Another
motivation for rule pruning is to improve the predicative accuracy of the rules and prevent
the rules from overfitting the training data. In the following discussion, ‘term’ refers to a
zone at an attribute, and the specific pruning process for one rule is as follows:
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(1) remove one term from the rule;
(2) recalculate the validity of the rule;
(3) add back the term that was removed from the rule if the validity of the pruned rule

cannot be improved. Otherwise, remove the next term and go to step 2; and
(4) cycle step 2 to step 3 until removing any term reduces the validity.

After pruning a rule, instances that meet the rule are removed from the training dataset
to obtain the highest-quality rule. When the number of instances that are related to a cell
status is less than the predefined threshold, the algorithm stops discovering a rule for the
cell status.

2.3. BCO-based, geographical CA model building

The basic principle of BCO is to search for the optimised food sources by communicating
information about the food source position and nectar amount. BCO BCO–CA are put
forward to simulate the complex geographic processes by some explicit transition rules.
This paper introduces the ABC-Miner program to automatically derive transition rules of
CA from training data, and the structure of the BCO-based, geographical CA model is
shown in Figure 3.

BCO–CA consists of two parts: building transition rules based on the ABC-Miner and
simulating land-use change based on the rules. This paper first uses the ABC-Miner algo-
rithm to discover transition rules from land-use data within two periods and constructs a
BCO–CA model. The pseudo-code of the ABC-Miner algorithm is shown in Table 1, and
the ABC-Miner algorithm relates to the following parameters:

Distance to Road

Remote sensing image
Land use changes

ABC Miner
Rule 1

Number of developed cell
in the neighbourhood
Random variables
Land use ... ...

Rule 2

BCO–CA
model

Rule 3
Distance to Railway
Distance to City Centre

T T + ΔT

... ...

Figure 3. Structure BCO-based geographic CA model.
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Table 1. The pseudo-code of the ABC-Miner algorithm.

1: Input training dataset;
2: Initialise control parameters of ABC-Miner algorithm;
3: while remain instance number> Min _Num_Ins {
4: rules = Initialise(training_dataset, Bee_Num/2);
5: while iter < Max_IterTimes {
6: for i = 1 to Bee_Num/2 {
7: Optimise upper_value of rules(i);
8: Optimise lower_value of rules(i);
9: if the validity of rules(i) is not improved then
10: unimprovetimes(i) ++; }
11: NormFitnesses = Fitnesses/sum(Fitnesses);
12: counter = 1, t = 0;
13: while t < Bee_Num/2 {
14: if rand(0,1) < NormFitness(counter) then
15: Optimise upper_value of rules(i);
16: Optimise lower_value of rules(i);
17: if the validity of rules(i) is not improved then
18: unimprovetimes(i) ++ ;
19: t = t + 1;
20: else
21: counter ++;
22: if counter > Bee_Num/2 then counter = 1; }
23: if unimprovetimes(i) > Max_UnImNum then
24: reinitialise rules(i); }
25: iter++; }
26: best_rule = SelectBestRule(rules) ;
27: best_rule = RemoveUnnecessaryConditions(best_rule);
28: Removeclassifiedsamples(best_rule, traing_dataset);
29: Add the best rule to ruleset;}
30: ruleset = RemoveUnnecessaryRules(ruleset)

(1) Bee_Num: the number of bees, which means the number of candidate rules during
iteration;

(2) Min_Num_Ins: the minimum number of instances. If the number of instances
related to a cell status is less than the threshold, the algorithm stops discovering
rules for the current cell status;

(3) Max_IterTimes: the limitation of iteration-times. The program stops when the
number of iterations exceeds this limitation; and

(4) Max_UnImNum: the limitation of unimproved-times. A rule will be reinitialised if
the number of unimproved-times that are related to the rule exceeds this limitation.

During the simulation, the state conversion of a central cell is determined by these transi-
tion rules and by some uncertain factors. Therefore, a random variable is often incorporated
to generate realistic patterns for urban simulations (White and Engelen 1993, Wu and
Webster 1998, Liu et al. 2008). However, the probabilistic elements could not affect the
accuracy of the CA model because the uncertain parts cover small proportions and are
usually located at the fringes of urbanised clusters (Yeh and Li 2006, Liu et al. 2008).
In this paper, a random variable (γ ) is used to determine the effect of uncertain factors.
Subsequently, the status of a cell should be altered according to the following conditions:
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(1) Meeting one of the original rules;
(2) γ<α, whereαis calculated by Formula (6):

α = 1

K
(6)

where K is the number of iterations in the CA model.

Because the survey interval (�T) between the remote-sensing data is generally far greater
than the iteration interval (�t) of the CA simulation (Liu et al. 2008), it is necessary
to determine the number of converting cells in the iteration interval (�t) to make the
observation interval (�T) equal or close to the iteration interval (�t) (Li and Yeh 2004).

The number of iterations (K) of the CA model can be calculated by the following
equation:

K = �T

�t
(7)

Then, the number of conversions (�Q) is obtained from the land-use data for the survey
interval. Because �T > �t, only a portion of the cells are converted in an iteration interval
(�t), and the amount of converting cells (�Q0) between t and t + 1 is calculated by the
following formula:

�Q0 = �Q

K
(8)

where �Q0 is the amount of land-use conversion in an iteration interval �t.

3. Application and simulation

3.1. Test area and data

The BCO–CA model was applied to the simulation of urban expansion in the Xi’an-Xian
Yang urban area of China. TM satellite images, with a 30 metre resolution, are used to
investigate the urban areas in 2006 and 2009, and a supervised classification method based
on the minimum distance is used to obtain the land-use data from remote-sensing images.
The classification accuracies are 89.06% and 89.43%, respectively, in 2006 and 2009, and
the corresponding kappa coefficients are 0.8022 and 0.8298, respectively. The urban areas
are obtained from the classification results and used to confirm the predictability of the
CA model. The probability of urban development is influenced by a series of spatial dis-
tance variables, neighbourhood conditions and physical attributes (Liu et al. 2008), which
are derived from remote-sensing and basic geographic information data. These spatial
variables for discovering transition rules are listed in Table 2.

For discovering transition rules, the samples are extracted from the classification data
through a stratified, random sampling method. Eight thousand samples are randomly
selected and divided into two parts: 4000 to be used as training data, and the remainder
to be used as test data.
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Table 2. Spatial variables required for derivation of transition rules using ABC-Miner.

Spatial variables Calculate method Value range

1. Distance variables
Distance to City Proper (DistC) Straight Line tools of Arc/Info GRID 0∼28.9 km
Distance to Road (DistR) 0∼15.5 km
Distance to Railway (DistRW) 0∼22.6 km
2. Number of urban cells

(NeighbourInfo)
Focal functions of Arc/Info GRID
(window size is 3)

0∼9 cells

3. Land-use type (LandUse) 1∼4

3.2. Discovering transition rules

The predictive class of the transition rules is determined by whether the cells are translated
into urban land-use. Cells that are translated into urban land-use are marked as 1; and others
are marked as 0. The transition rules for urban development can be automatically derived
from training data through C# programming, and 13 rules yielded, a portion of which are
listed in Table 3. The parameter settings for ABC-Miner are as follows: Bee_Num = 400,
Min_Num_Ins = 5, Max_IterTimes = 2500 and Max_UnImNum = 200.

It is necessary to test the capability of the BCO in discovering rules. To reach this objec-
tive, the rules that are derived by BCO and ACO are applied to the classification of test data.
It should be noted that attribute values must be discretised before deriving rules by ACO.
In this paper, three discretisation methods, equal interval, equal frequency and information
entropy, are applied to discretise the attribute values. As is shown in Table 4, the classi-
fication accuracies of ACO vary with different discretisation methods. The classification

Table 3. Part of the transition rules derived by using ABC-Miner.

Rule 1
IF

DistC > = 0.17 & DistC < = 28.8 & DistR < = 15.4 & DistRW < = 22.5 & LandUse = 1
THEN

class = 0 confidence = 0.70
END

Rule 2
IF

DistC > = 23.4 & DistC <27.1 & DistR > = 0.09 & DistR <15.3 & DistRW > = 12.4
& DistRW < 20.8 & NeighbourInfo <6 & ( LandUse = 1 or LandUse = 2)

THEN
class = 1 confidence = 0.80

END

Rule3
IF

DistC > = 0.7& DistC < 23.7 & DistR <14.6 & DistRW < 17.6 & NeighborInfo <8
& LandUse = 2

THEN
class = 1 confidence = 0.70

END
. . . . . .
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Table 4. Comparison of accuracy for test data.

ACO

Equal interval Equal frequency Information Entropy BCO

71.13% 73.35% 79.43% 80.1%

accuracy of ACO based on information entropy is higher than that which is based on other
discretisation methods, but it is still lower than that of BCO.

3.3. Land-use simulation and result analysis

The transition rules that are obtained by ABC-Miner are applied to the simulation of urban
dynamics in the urban area around Xi’an-Xian Yang during the period of 2006–2009. The
simulation begins from the initial land use, which is obtained by classifying the TM data
in 2006. The land use in 2009 is then simulated by running the BCO–CA model with
200 iterations, and the process of iteration is listed in Figure 4, where T is the number of
iterations.

Validation is usually required if urban CA are applied to the simulation of actual cities
(Jenerette and Wu 2001). A simple method to assess the goodness-of-fit is to compare the
simulated patterns with the actual ones to visually validate CA (Clarke et al. 1997, White
et al. 1997, Ward et al. 2000). Visual comparison indicates that the simulated patterns fit
well with the actual patterns that are classified using remote-sensing images (Figure 4).

Visual comparison is a rather preliminary method; therefore, further quantitative analy-
sis is utilised to produce a confusion matrix for the concordance between the simulated and
actual land use. The simulation of the 2009 patterns is compared with the actual 2009 pat-
terns, and Table 5 lists the comparison of the patterns in 2009 for this BCO–CA. The
total accuracy is computed from cross-tabulation, which compares the goodness-of-fit on
a cell-by-cell basis. The total accuracy is 74.7%, and the kappa coefficient is 0.71.

It is noted that a predictive model should be compared with a NULL model of pure
persistence (no change) for model validation (Pontius and Malanson 2005). The NULL
model is a model that predicts nothing because nothing would change. The baseline for
this comparison is that the predictive model should show better performance than a NULL
model. Meanwhile, the overall accuracy is biased because of the difference between the
actual and chance agreements (Congalton 1991, Liu and Li 2006), which can be effectively
explained by the Kappa coefficient. Table 6 lists the comparisons of the patterns in 2009 for
this NULL model. As shown in Tables 5 and 6, during the period of 2006–2009, the total
accuracy of the BCO–CA model is only 1.2% higher than that of the NULL model, but the
kappa coefficient is 5% higher than that of the NULL model. These results indicate that
the BCO–CA model is fairly more accurate in simulating urban development.

To further validate the BCO–CA model, it is necessary to compare it with the ACO–CA
model, whose rules are derived by the ACO-Miner. For the ACO-Miner, the information
entropy is used to discretise the attribute value based on the experimental results in section
3.2.Table 7 compares the patterns in 2009 for the ACO–CA model. As is shown in Tables 5
and 7, the total accuracy of the BCO–CA model is 0.6% higher than that of the ACO–CA
model, and the kappa coefficient is 2% higher than that of the ACO–CA model. It is also
important to assess the structural features (Wu 2002). The Moran’s I index can reveal the
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Figure 4. Simulating results.

degree of spatial autocorrelation (Goodchild 1986), and the Moran’s I values for the simu-
lation and actual land are shown in Table 8. The Moran’s I values are 0.4852 and 0.5249 for
the simulation of urban development using ACO–CA and BCO–CA, respectively, in 2009,
and the Moran’s I value is 0.5348 for the actual land development in 2009. The above
results illustrate the capability of BCO–CA for simulating urban development.

Figure 5 further displays the spatial distribution of agreement and disagreement
between the simulated and actual development in 2009. Delft blue and Tzavorite green
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Table 5. Simulation accuracies of the BCO–CA.

Simulation 2009 non-urban Simulation 2009 urban

Actual 2009 non-urban 15,7978 13,0984
Actual 2009 urban 98,710 51,8248
Total Accuracy 74.7%
Kappa coefficient 0.71

Table 6. Accuracies of the NULL model of pure persistence.

2006 non-urban (no change) 2006 urban (no change)

Actual 2009 non-urban 25,6759 32,203
Actual 2009 urban 20,6862 41,0096
Total Accuracy 73.6%
Kappa coefficient 0.66

Table 7. Simulation accuracies of the CA model based on ACO.

Simulation 2009 non-urban Simulation 2009 urban

Actual 2009 non-urban 15,4478 13,1984
Actual 2009 urban 10,2710 51,6748
Total Accuracy 74.1%
Kappa coefficient 0.69

Table 8. Comparison of Moran’s I values.

2006 (actual) 2009 (actual) 2009 (ACO) 2009 (BCO)

0.3717 0.5348 0.4852 0.5249

colours indicate these two correctly simulated categories, ‘simulated non-urban to actual
non-urban’ and ‘simulated urban to actual urban’. Dark umber and Mars red indicate the
two incorrectly simulated categories, ‘simulated urban to actual non-urban’ and ‘simulated
non-urban to actual urban’. The BCO–CA model has a higher percentage of accuracy than
the NULL model because more Mars red than Ginger pink is observed.

4. Conclusion

CA is capable of simulating the evolution of complex geographical phenomena using a
set of local rules. This paper presents an intelligent method (BCO) for obtaining the tran-
sition rules of geographic CA and structures in a CA model (BCO–CA), which is based
on transition rules. With positive feedback, negative feedback, fluctuations and a multi-
ple interaction mechanism, the BCO is an effective method for discovering the reliable
transition rules that reveal complex relationships that are hidden in large datasets, and
especially, with local and global search mechanisms, the BCO performs better in avoiding
the tendency to be vulnerable to local optimisation.
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Figure 5. The distribution of agreement and disagreement between simulation and actual.

The rules derived by BCO and ACO are applied to the classification of test data
to demonstrate the advantages of BCO in discovering transition rules. Three methods,
i.e. equal interval, equal frequency and information entropy, are used to discretise the
attribute values for deriving rules by the ACO. The classification accuracies of ACO that
are based on equal interval, equal frequency and information entropy are, respectively,
71.13%, 73.35% and 79.43%. By contrast, the classification accuracy of the BCO is 80.1%.
These results indicate that the BCO is a better approach for discovering the transition rules
of CA.

The BCO–CA model is applied to the simulation of urban conversions in urban areas
near Xi’an-Xian Yang, China. The total accuracy of the BCO–CA model is 74.7%, which
is 1.1% and 0.6% higher than those of the NULL and ACO–CA model, respectively. The
kappa coefficient of the BCO–CA model is 0.71, which is 0.05 and 0.02 higher than those
of the NULL and ACO–CA models, respectively. The Moran’s I value of BCO–CA is
0.5249, which is 0.04 higher than that of the ACO–CA model. These results prove that the
BCO–CA model has great potential in simulating complex geographical systems.
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